
Discrete Applied Mathematics 48 (1994) 201-218

North-Holland

201

Scheduling identical parallel
machines to minimize total
weighted completion time

H. Belouadah and C.N. Potts

Faculty of Mathematical Studies, Unitwsiry of Southampton, Southampton SO9 5NH. UK

Received 15 November 1989

Revised 1 January 1991

Abstract

A branch and bound algorithm is proposed for the problem of scheduling jobs on identical parallel

machines to minimize the total weighted completion time. Based upon a formulation which

partitions the period of processing into unit time intervals, the lower bounding scheme is derived by

performing a Lagrangean relaxation of the machine capacity constraints. A special feature is that the

multipliers are obtained by a simple heuristic method which allows each lower bound to be

computed in polynomial time. This bounding scheme, along with a new dominance rule, is

incorporated into a branch and bound algorithm. Computational experience indicates that it is

superior to known algorithms.

1. Introduction

The problem of scheduling jobs on identical parallel machines to minimize total

weighted completion time may be stated as follows. Each of II jobs (numbered 1, . . . , n)

is to be processed on one of m identical parallel machines (numbered 1, . . . , m). No

machine can handle more than one job at a time. Each job i (i = 1, . . . , n) becomes

available for processing at time zero, requires a positive integer processing time pi on

the machine to which it is assigned and has a positive weight wi. Preemption ofjobs is

not allowed. A schedule defines the start time Si and the completion time Ci of each job

i. The objective is to find a schedule which minimizes the total weighted completion

time CT= r Wi Ci.

For the case of one machine, the shortest weighted processing time (SWPT) rule of

Smith [20] solves the problem in O(nlogn) time by sequencing the jobs in nonde-

creasing order of pi/Wi. Also, Conway et al. [S] show that the problem of minimizing

total completion time (wi = 1 for i = 1, n) on identical parallel machines is solved

in O(n log n) time using the following generalized SPT rule. Jobs are renumbered in

0166-218X/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0166-218X(92)00176-U

202 H. Belouadah, C.N. Potts

SPT order so that p1 <_ ... I p,, and are list scheduled: having scheduled jobs

1 , . ..> i - 1, job i is assigned to the first unfilled position on a machine that becomes

available earliest. For the case of arbitrary weights, an analogous generalized SWPT

rule, which is first suggested by Eastman et al. [6], may not generate an optimal

solution (unless pi = 1 for i = 1, . . . , n). This is not surprising, since for arbitrary

weights and two machines, Bruno et al. [3] show that the problem is NP-hard.

Nevertheless, computational results of Baker and Merten [l] show that the general-

ized SWPT rule consistently produces schedules having a total weighted completion

time which is close to the optimal value. Kawaguchi and Kayan [13] show that

the total weighted completion time for the schedule generated by the generalized

SWPT rule does not exceed ($2 + 1)/2 times the optimal value. An s-approximation

scheme is proposed by Sahni [l&l: for any E > 0, he describes an algorithm,

that requires O(r~(n~/s)~-~) time, for which the total weighted completion time

of the resulting schedule does not exceed 1 + E times the optimal value. Branch

and bound algorithms are proposed by Elmaghraby and Park [7], Barnes and

Brennan [2] and Sarin et al. [19] which are based on variants of a lower bound

originally derived by Eastman et al. The algorithm of Sarin et al. appears to be the

most effective.

We propose a branch and bound algorithm which is based on Lagrangean relax-

ation. The remaining sections of the paper are organized as follows. Section 2 reviews

various properties of an optimal schedule, some of which are used as dominance rules

to eliminate nodes of our branch and bound search tree. The derivation of a new lower

bounding procedure using Lagrangean relaxation is given in Section 3. Special atten-

tion is given to an efficient construction whereby values of multipliers are determined

at modest computational expense. A numerical example to illustrate the computation

of the bound is also included. A complete description of the algorithm is given in

Section 4. Section 5 reports on computational experience with the algorithm and

Section 6 contains some concluding remarks.

2. Properties of an optimal schedule

In this section, we review various results of Elmaghraby and Park. These results are

each used, either implicitly or explicitly, in our branch and bound algorithm.

Firstly, we observe that no optimal schedule can have machine idle time between

jobs: if there were idle time, it could be removed by scheduling some jobs earlier,

thereby reducing the total weighted completion time. Secondly, in any optimal

schedule, the jobs on each machine are sequenced in SWPT order since any other

ordering permits the total weighted completion time to be reduced through an

adjacent job interchange. We have established the following result.

Theorem 1 (Elmaghraby and Park). In any optimal schedule, there is no machine idle

time between jobs and, on each machine, jobs are sequenced in S WPT order.

Scheduling identical parallel machines 203

Theorem 1 shows that once jobs are assigned to machines, they are sequenced in

SWPT order. Thus, a schedule is specified by an assignment of jobs to machines. We

discuss later how Theorem 1 is used in our branch and bound algorithm.

Our next result is based on the observation that the total weighted completion time

of a schedule can be reduced if Si > C,, for any job i, where job h is the last job

scheduled on a machine: this reduction is achieved by reassigning job i to the machine

which processes job h and scheduling it to start at time Ch.

Theorem 2 (Elmaghraby and Park). In any optimal schedule, if job h is scheduled last

on a machine, then C,, 2 Si for all jobs i.

Theorem 2 is used later to justify the branching rule which is adopted in our branch

and bound algorithm. It is also used to derive an upper bound on the maximum

completion time.

The final result in this section is a dominance theorem which is used in most branch

and bound algorithms to eliminate search tree nodes.

Theorem 3 (Elmaghraby and Park). If ph I pi and wh 2 Wi for any jobs h and i, then

there exists an optimal schedule in which Sh < Si.

3. The proposed lower bound

3.1. Lagrangean relaxation

In this section, we derive a lower bounding scheme based on Lagrangean relaxation

[9, lo]. Our general approach resembles that adopted by Christofides et al. [4] for

a resource allocation problem in project networks and by Fisher [S] for the problem

of scheduling a single machine to minimize total tardiness. However, these algorithms

use subgradient optimization [121 to determine values of the multipliers, whereas we

propose a noniterative method which allows lower bounds to be computed at modest

computational expense.

Before giving our problem formulation, it is convenient to derive an upper bound

on the maximum completion time of any job in an optimal schedule. If job i is

completed last in an optimal schedule, then using Theorem 2, no machine can

complete its processing before time Si. Thus, Si I (xi= rp,, - p,)/m, since there is no

machine idle time between processing jobs. If

D =
1

i ph/m + (m - 1) max (ph)/m ,
h=l h=l,....n

1

it is apparent from the integrality of processing times that Ci = Si + pi I D. Thus, we

may regard D as a common deadline on job completion times.

204 H. Belouadah, C.N. Potts

Our formulation of the problem relies on partitioning into unit time intervals the

period [0, D] during which processing is possible in an optimal schedule. We use

a variable Ci to represent the completion time of job i (i = 1, . .., n) and a zero-one

variable Xit (i = 1, n; f = 1, D), where

i

1, if job i is processed during the interval [t - 1, t];
Xit =

0, otherwise.

Our formulation is

minimize i$I wiCi,

subject to CiE{pi, D} (i = 1, n), (1)

x,,=lfort=Ci-pi+l,...,Ci (i = 1, . ..) n), (2)

Xit = 0 for f = 1, . . . , Ci - pi, Ci + 1, D

(i= 1 , . ..> 4 (3)

(t = I, D). (4)

Constraints (1) specify the possible completion times of each job i, while constraints (2)

and (3) define the values of Xif for t = 1, . . . , D in terms of Ci. The machine capacity

constraints (4) specify that a maximum of m jobs can be processed concurrently in any

unit time interval.

We now obtain a lower bound by performing a Lagrangean relaxation of the

machine capacity constraints (4). Let ;L = (%,, 1,) be a vector of nonnegative

multipliers associated with constraints (4). The resulting Lagrangean problem is

L(A) = min { i$r wici + ,$r I?(i$I Xit - -)I,

subject to (l), (2) and (3).

Substituting the values of the variables Xif obtained from constraints (2) and (3) into

the Lagrangean function, we obtain the equivalent problem

CZ D

WiCi + 1 it -m C A,, (5)
t=c,-p,+1 *=I

subject to (1).

Standard theory of Lagrangean relaxation [9, lo] shows that L(1) is a lower bound on

the minimum total weighted completion time for any Iti 2 0. In a natural economic

interpretation of multipliers, we regard 1, as a price for using a machine during the

time interval [t - 1, t]. At the end of a schedule when many jobs are already

Scheduling identical parallel machines 205

processed, there is less competition for machine capacity than at the beginning of the

schedule. Thus, based on our economic interpretation, a method which selects

multipliers so that {At} for t = 1, . . . , D forms a nonincreasing sequence is intuitively

appealing.

For a given I, the lower bound L(E,) is obtained by solving the Lagrangean problem.

The Lagrangean problem decomposes into n subproblems, so that for each job

i(i = 1, . ..) n), a search over all the possible completion times given by (1) enables L(i,)

to be computed in O(nD) time. The best lower bound that can be obtained from our

Lagrangean relaxation approach is L(loPT) = max~Zo(L(~)}. A conventional ap-

proach to determine /z OPT is to use subgradient optimization. However, this requires

pseudopolynomial time per iteration and, therefore, might entail much computation

without guarantee of a tight enough lower bound to restrict substantially the size of

the branch and bound search tree. We prefer instead to use a heuristic method to find,

in polynomial time, a vector of multipliers A* which approximates AoPT. This poly-

nomial bound on the time complexity cannot be achieved by the explicit specification

of all multipliers of 2”. Thus, our method computes /2: for certain values of t and

specifies other multipliers in functional form only. Subsequent analysis shows that the

complete lower bounding computation is performed in polynomial time.

3.2. Determination of the multipliers

Our multipliers A:, . . . , E,i are determined from the heuristic schedule generated by

the generalized SWPT rule of Conway et al. which, henceforth, is referred to as the

SWPT Heuristic. Let SF and C” denote the start and completion time of job

i(i = 1, n) in this heuristic solution. During the application of the SWPT Heuris-

tic, certain unit time intervals are selected as follows. For each t (t = 1, . . ., D), if

SF = t - 1 for some job i, then we define [t - 1, t] as a changeover interval. Further-

more, i is the changeover job for interval [t - 1, r] if pi/Wi = max,,=,,,,,,,{P,,/w~(

Sr = t - l}. If it is not already defined by a start time, we create an additional

changeover interval [t - 1, t], where t = r I:= 1 pi/m 1. We explain later how multi-

pliers are defined in terms of changeover intervals and jobs.

The procedure below provides a formal description of the SWPT Heuristic and the

method by which changeover intervals and jobs are determined. We use Tj to denote

the total processing time currently assigned to machine j (j = 1, . . . , m), WC to denote

the total weighted completion time for jobs which are scheduled, i to specify which job

is to be scheduled next, t 1, . . . , tk to denote the endpoints of those changeover intervals

which are currently known and il, . . , ik to denote the corresponding changeover jobs.

SWPT Heuristic.

Step 1. Number jobs in SWPT order so that pl/wl i . . . I p,,/w,,, set Tj = 0 for

j=l,..., m,setWC=O,seti=landsetk=O.

Step 2. Find a machine j with Tj as small as possible and schedule job i on machine

j. Set SF = 7;, set Cy = 7; + pi, set q = rj + pi and set WC = WC + wi Tj.

206 H. Belouadah, C.N. Potts

Step 3. If k = 0 or if k > 0 and tk < S” + 1, set k = k + 1, set tk = Sr + 1 and set

ik = i; otherwise set ik = i. If i < n, set i = i + 1 and go to Step 2.

Step 4. If tk < rc;= 1 pi/m 1, set k = k + 1 and set tk = TX;= Ipi/rn 1. Stop with

a schedule having been generated which has total weighted completion time WC;

k changeover intervals and jobs have also been defined.

Although the interpretation of most statements in this procedure is clear, some

explanation of Step 3 is helpful. The first of the two possibilities deals with the case

where a new changeover interval is found because no previously scheduled job has

start time SF. For the alternative case that a previously scheduled job has start time

SF, no new changeover interval is found, but the changeover job now becomes i. Also,

we note that if a new changeover interval is defined in Step 4, there is no correspond-

ing changeover job. For m = 1, we observe that k = n; alternatively, for m > 1, since

the min {m, n} jobs which are scheduled first by the SWPT Heuristic each have a start

time of zero, there are less than n changeover jobs and hence k I n.

Letusdefine;l,*,=O,tk+l =Dand,?z+, = 0. Having applied the SWPT Heuristic,

multipliers corresponding to the changeover intervals with endpoints tl

(l= l,..., k - 1) are determined from the backward recursion

)*:: = x,, + Ctl+l - tl)wi,/Pif. (6)

The multiplier for a nonchangeover interval is computed under the assumption that

2: decreases linearly with t between successive changeover intervals. Thus, when

At*,> A,*,+, are known, the multiplier for any relevant interval [t - 1, t], where

tl I t I tl+l for some 1 (I= 1, k), is defined by

AI” = ((h+ 1 - w:: + 0 - 4)~::+,)/(4+ 1 - td. (7)

(We note that i always exists because 1 = t, < ... < tk 5 tk+ 1 = D.) It is clear from

these definitions that 2; > ... > A,*, = 2z+1 = ... = I$ = 0, which is consistent with

our economic interpretation that the sequence (2:) for t = 1, D should be nonin-

creasing. In our lower bounding scheme, the multipliers $, . . . , A,*,+ I are computed

first from the initial conditions and (6). When they are needed in subsequent computa-

tions, multipliers for nonchangeover intervals are found from (7).

In Subsection 3.5, a theoretical justification for this choice of multipliers is given.

We show that the solution of the Lagrangean problem generated by these multipliers

is close to the solution obtained from the SWPT Heuristic and that an exact lower

bound is obtained for the case of a single machine and for the case of unit processing

times.

3.3. Solution of the Lagrangean problem

In this subsection, we discuss how the Lagrangean problem is solved when the

multipliers are determined using (6) and (7). Firstly, using algebraic manipulations of (5),

Scheduling identical parallel machines 201

we express the Lagrangean function as

For each job i (i = 1, n), let US define Cit = wit/pi + 1: for t = 1, . . . , D. Also, let

Ki, = xi, =t _pi + 1 cirp denote the cost in the Lagrangean problem of scheduling job i to

be completed at time t (t = pi, D). It is apparent that the Lagrangean problem is

solved by choosing, for each job i, Cie { pi, D} such that Ki,c; is minimized. Let

Ci = CT define an optimal solution of the Lagrangean problem. To restrict the search

for Cr, it is helpful to explore some properties of the sequences {tit} and {Kit}.

Theorem 4. For each job i (i = 1, . . ., n), the sequence {Cit) for t = 1, . . . , D is nonin-
creasing for t I S” + 1 and is nondecreasing for t 2 S” + 1, where S” is the start time

of job i in the SWPT Heuristic.

Proof. Assume that jobs are numbered in SWPT order. Consider any t (t = 2, tk)

and suppose that tl + 1 I t I tl + 1 for some I(1 = 1, . . . , k - 1). Thus, by the definition

of changeover jobs, we deduce that if interval [tl+ I - 1, tl+ 1] has a changeover job

i[+i, then

S~+2ItIS;+,+l; (8)

otherwise, 1 = k - 1 and there is no changeover job corresponding to the interval

[tk - 1, tJ. Using the definition of tit and equations (6) and (7), we obtain

Cir - Ci,t_ 1 = wilPi - (X- 1 - 2) = wi/Pi - wi,lPi,. (9)

We use the nondecreasing property Sy I .‘. _< S: of the start times generated by the

SWPT Heuristic to establish the required result.

Firstly, consider the case that 2 I t < Sf + 1. If i < il, then using the nondecreasing

start time property we obtain t I Sf’ + 1 I St + 1, which contradicts (8). Thus, i 2 il.
Since jobs are numbered in SWPT order, we use Wir/Pil 2 Wi/pi in (9) to deduce that

ci,r- 1 2 Cit. Thus, the sequence {tit} is nonincreasing for t I Sf + 1.

We now analyze the alternative case that SF + 2 < t I tk. Suppose that i > il.
From the nondecreasing start time property, we have Sy r Sf. However, if S” = St,

the SWPT Heuristic would choose i rather than il as the changeover job for the

interval [Sf, SF + 11. Thus, S” > S,rf, and since il cannot be the final changeover job,

we observe that a changeover job i I + 1 exists. Furthermore, if St < SF < Sy+ 1, then
there would be a changeover interval between [SE, Sy + l] and [SF,, , Sf, 1 + l] for

which S” is the start point. Since this is not the case, we have SF 2 SC,, which, when

combined with t 2 SF + 2, contradicts (8). Therefore, our supposition that i > il is

208 H. Belouadah, C.N. Potts

incorrect, so we have established that i I i,. Again, from the SWPT numbering, we use

Wi/pi 2 Wi,/pi, in (9) to deduce that Cif 2 Ci,f_ 1 for t = S” + 2, tk,

To complete the proof, we analyze the sequence {Cic] for t = tkr D. For

tk < t 5 D, we recall that A,*_ 1 = 2: = 0 from which we obtain Cir - Ci,t~ 1
= Wi/pi > 0. We have now established that the sequence {Cit} is nondecreasing for

t&s”+l. 0

Theorem 5. For each job i (i = 1, n), C*E{C~, Cy}, where Cf =

max{S” + 1, pi} and Cy = C” = SF + pi. Furthermore, the sequence {K,} for

t = pi, .*.y D is nonincreasing for t I CT and is nondecreasing for t 2 CF.

Proof. From the definition of Kit, we note that

Kit - Ki,t-1 = Cit - ci,f-p, (10)

for t = pi + 1, D. Applying Theorem 4 to equation (10) shows that the sequence

{Kit) for t = pi, D is nonincreasing for t I Sf + 1 and is nondecreasing for

t 2 SF + pi = CF. Thus, S” + 1 I CF I Cr. Combining these bounds with the in-

equality CT 2 pi, which is obtained from (l), yields CT E {Ci, Cy}.

To complete the proof, we analyze the sequence IKit} for

max{S” + 1, pi} I t I SW + pi. Firstly, for max{S” + 1, pi) < t I CT, we have from

Theorem 4 that Ci,t~m 2 ci,c:_pi, since CT - pi I Cy - pi < S” + 1, and Cit I ci,c:.

Substituting these inequalities into (lo), we obtain

Kit - Ki,t- I I Ci.c: - Ct,c:mp,. (11)

The optimality of the solution CT for the Lagrangean problem provides the inequality

Ki, c: I Ki, c:_ 1, which, on substitution in (lo), yields Ci, c: I Ci, c: -pi. We deduce from

(ll), therefore, that Ki, I Ki,,_l. Thus, the sequence {Kit} is nonincreasing for

t I CT. Alternatively, for CF < t I SF + pi, we use an analogous argument. Substi-

tuting the inequalities ci, f _ h 2 ci, ,-; _ pi + 1 and Cit 2 Ci,_-: + 1, which are deduced from

Theorem 4, into (10) yields

Kit - Ki,t-l 2 ci,C:+l - ci,C:mp,+l. (12)

Since CF is an optimal solution for the Lagrangean problem, we obtain the inequality

Ki,ct+ 1 2 Ki,c:, which, on substitution in (lo), yields Ci,c:+ 1 2 Ci,c:-p,+ 1. Hence,

ineqlality (12) implies that Ki, 2 Ki,t_ 1. We conclude that the sequence {Kit} is

nondecreasing for t 2 CT. 0

Having obtained I? *, it is straightforward to derive from Theorem 5 a bisection

search procedure to find CT (i = 1, n). Our procedure initially uses the lower and

upper limits Cf and Cy which are defined in Theorem 5. If Cf # Cy, it computes

t = r (Cf + C3/2 1 and evaluates ci,t-p, and Cit. Firstly, if Ci,t-p; < Cir, then Theorem

5 and equation (10) show that t - 1 is a valid upper bound on CF; thus, our procedure

Scheduling identical parallel machines 209

sets Cy = t - 1. Secondly, if Ci,t-p, > Cir, then the current lower bound on CF is

updated using Ci = t; again, this is justified by Theorem 5 and equation (10). Finally, if

Ci,tmp, = tit, then a straightforward extension of the analysis in the proof of Theorem

5 shows that CF = t and Cr = t - 1 each define a solution of the Lagrangean

problem. Thus, our procedure terminates with Cf = t if ci,t-p, = cit. Unless

ci,t-p, = Cit, the procedure continues until Cf = Cy, at which stage it is clear that
C: = C; = Cy.

3.4. Implementation of the lower bound

In this subsection, we show that, using a suitable implementation, the lower bound

L(I*) is computed in polynomial time. As pointed out in Subsection 3.1, an explicit

formulation of the Lagrangean problem requires the computation of 2: for

t = 1, . ..) D, the time complexity of which is O(D). To avoid this pseudopolynomial

time construction, at most n multipliers are computed explicitly using (6), whereas the

others are implicit in (7).

Our lower bounding procedure first applies the SWPT Heuristic and, having found

changeover intervals and changeover jobs, sets At*, = 0, tk+ 1 = D and AZ+, = 0, and

uses (6) to compute 2: for I = 1, k - 1. The SWPT Heuristic requires O(n log n)

time, whereas the application of (6) requires O(n) time, since k I n.

The next stage in the computation of L(I*) is to apply the bisection search

procedure of the previous subsection to find CT for i = 1, n. Since Theorem 5

shows that Cy - Cl < pi, at most r log, pi 1 bisection search iterations are necessary.

For each iteration, it is necessary to compute A,*_, and $ so that c~,~_~, and Cit can be

evaluated. A prerequisite for using (7) to find 2: is a value I, where 1 I I I k, such that

tJ i t I tl+l. A bisection search determines I in O(log n) time, since k I n. Thus, tit,

and in a similar way Ci,r_pi, is found in O(logn) time. It is now apparent that the

complete bisection search procedure requires O(log n cy= 1 log pi) time.

Having found Cr for i = 1, n, our lower bound L(1*) is evaluated using (5). We

now describe an efficient method to compute ~~~,*_,, + 1 1: for i = 1, . . . , n. Firstly, an

O(logn) bisection search is used to find 1’ and 1”, where 1 5 1’ < 1” I k, such that

tl, < CF - pi + 1 < tl,+ 1 and tl,, < CT I tl,,+ 1. Then, we use the following expres-

sions which are derived from (7). If 1’ = 1”, then

2 32: = pi((tl’+l - Ci* + (pi - 1)/2)A,T.
t=c:-p,+l

+ Cc* - t2’ - (Pi - l)/2)JbE + ,)/(tl’+ 1 - tl,).

Alternatively, if I’ < I”, then

tj AT = y A: + y ‘2 &ic + 2 $,

1=Cf-pi+1 r=c:-,+1 I=[‘+1 t=t,+1 t=ty+1

210

where

H. Belouadah. C.N. Ports

11 f,

c 2: = (4,+1 - C* + Pi)((t[‘+l - C* + pi - I)&,
t=cy-p,+1

I”- 1 fs+ 1

1 c 2: = (b+2 - tr+1 - Wt,.+,P

1=1’+1 t=fl+l

1”- 1

+ c (tl+l - f&l)&/2 + (b - 4,,-1 + I)&, /2,

1=1,+2

+ (CT + 1 - tpp,,~~+ 1)/(2(t,,,+, - tl,,)).

Thus, c;:,e_ p,+ 1 2: is computed in O(n) time. We also deduce from (7) that cp= 1 1: is

computed in O(n) time using

k-l

t1 + l)J.,,P + c (4+1 - bl)W.

1=2

It is now evident that, having computed CT for i = 1, . . . , n, we obtain L(A*) in 0 (n’)

time.

The analysis of this section is summarized in the following result.

Theorem 6. The computation of L(;I*) requires 0(n2 + log n cy= 1 log pi) time.

3.5. Analysis of the lower bound

In this subsection, we justify the use of multipliers II* by first showing that an exact

lower bound is generated for the case of a single machine and for the case of unit

processing times. We also aim to establish the maximum deviation of the lower bound

from the optimal solution value.

Theorem 7. Zf m = 1, then L(2*) = WC, where WC = ~~=, WiCH is the total weighted

completion time of the S WPT sequence (1, n).

Proof. Firstly, we show that there exists a solution to the Lagrangean problem for

which CT = C”(i = 1, n). Using Theorem 4, it is sufficient to show that each of the

values Ci(for t = S” + 1, C” are identical. The endpoints of the changeover

intervals found in Step 3 of the SWPT Heuristic are SF + 1, Sf + 1, and the

corresponding changeover jobs are 1, n respectively. Noting that SF = CT 1 for

i = 2, n, we deduce from equations (6) and (7) that A,*_ 1 - 1: = Wi/pi for

Scheduling identical parallel machines 211

t = s” + 2, . ..) CF. Thus, Cit - Ci,t- 1 = 0 for t = S” + 2, . . . , C”, which establishes

that CF = C” (i = 1, n). We observe that x1= 1 ~~~,-; _ p, + 1 A: = cp= 1 2: since

D = C:. Substituting in (5), we obtain L(A*) = II= 1 WiCf = WC, as required. 0

Theorem 8. Zf pi = 1 for i = 1, n, then L(A.*) = WC, where WC = I:= 1 WiC”.

Proof. Theorem 5 shows that CT = C” (i = 1, n). Since the SWPT Heuristic

generates a schedule in which m unit time jobs are scheduled in each of the intervals

[It- l,t] for t= l,..., tk - 1 and since A: = 0 for t 2 tk, we deduce that

~~=,~~&,+l ;I: = rn~~=,Al*. Th e re uired result that L(A*) = XI= 1 WiC” = WC q

is obtained by substitution in (5). 0

Theorem 7 shows that, as is the case for the lower bound of Eastman et al., our

proposed bound is exact when there is a single machine. For the problem of schedul-

ing jobs with unit processing times on m machines, however, our proposed lower

bound is guaranteed from Theorem 8 to be exact, whereas the Eastman et al. bound

may deviate from the optimal solution value. Even though we have no proof of

uniform superiority, our proposed lower bound is tighter than that of Eastman et al.

for at least one class of problems.

It is now convenient to extend our problem definition to allow jobs to have zero

weight. In an SWPT order, it is assumed that any jobs with zero weight appear after

all jobs with positive weight. We now establish the maximum deviation from the

optimal solution value of the lower bound L(A*), under the assumption that at least

one job has zero weight. It is apparent that a dummy job with zero weight can be

added to the problem, if necessary, without affecting how other jobs are scheduled.

Such a dummy job may, however, influence A*.

Theorem 9. Zf jobs are numbered in SWPT order and w, = 0, then WC - L(A*)

2 cI=m+ 1 Wi(pi - l), where WC = Cy=l WiC”.

Proof. From (5) we have

L(A*) = i (WiC* +
i=l \ t=c;-p,+ 1 / t=1

We now derive a lower bound on L(A*) by using suitable bounds on CT and 1: in (13).

Firstly, applying Theorem 5, we obtain Cr = C” = pi for i = 1, . . ., min(m, n} and

C* 2 CF - pi + 1 for i = m + 1, n. Secondly, since CF zz CF from Theorem 5 and

the sequence {A:} for t = 1, D is nonincreasing, we have 2: 2 A: for

~ = C* - pi + 1, Cr and t’ = t + Cf - CT (i = 1, n). Substituting in (13) yields

L(1*) 2 i (WiCH + 3 A:>- i Wi(pi - 1) - m t 2:. (14)
i=l z=c:-,+I i=m+ 1 1=1

212 H. Belouadah, C.N. Ports

In the schedule given by the SWPT Heuristic, there is no idle time on any machine

during a time interval [t - 1, t], where t = 1, S,“. Also, [S:, S,” + l] is the final

changeover interval defined in Step 3 of the SWPT Heuristic and y1 is the correspond-

ing changeover job. Since w, = 0, we have from (6) and (7) that 2: = 0 for

t = S; + 1, . . ., D. Thus,

i 3 /2: = m ; 2:.
i=l t=Cy-p,+l t=1

From (14) and (15) we obtain

(15)

n
L(i*) 2 C WiC” - i=$+ 1 wi(Pi - l) = wc - i wi(Pi - l),

i=l i=m+l

which is the required inequality. q

Our initial experiments show that better results are obtained if a dummy job with

zero weight is not included. Nevertheless, it is satisfying to have the performance

guarantee given by Theorem 9 for this type of lower bound. As a by-product of this

analysis, we obtain a bound on the worst-case performance of the SWPT Heuristic. If

WC* denotes the total weighted completion time for an optimal schedule, then we

deduce from Theorem 9 that WC - WC* I I;=,,+ 1 Wi(pi - 1) if jobs are numbered

in SWPT order.

3.6. A numerical example

In this subsection, we illustrate the computation of the lower bound L(1*) with

a numerical example. There are three machines and six jobs. Processing times and

weights are given in Table 1. The SWPT Heuristic schedules jobs 1 and 4 on machine

1, jobs 2 and 5 on machine 2 and jobs 3 and 6 on machine 3 to give Sf = 0, Sy = 0,

Sy = 0, Sf = 3, ST = 3, St = 4 and WC = 1225. Also, the SWPT Heuristic detects

four changeover intervals which are defined by tl = 1, t2 = 4, t3 = 5 and t4 = 7;

changeover jobs are il = 3, i2 = 5 and i3 = 6 (there is no changeover job correspond-

ing to t4). Also, D = 10, while (6) yields multipliers AT,, = O,n: = 0, A: = 2,1/z = 7 and

3,: = 67. Values of the other multipliers obtained from (7), together with all values of

cir, are shown in Table 2 (although not all of these values are computed explicitly if the

Table I
Data for the example

i 1 2 3 4 56

Pa 3 3 4 5 24
wi 75 66 80 50 10 4

Scheduling identical parallel machines 213

Table 2

Values of 1.: and c,,

t 1 2 3 4 5 6 I 8 9 10

n: 61 47 21 7 2 1 0 0 0 0

Cl1 92 91 102 107 127 151 175 200 225 250
CZf 89 91 93 95 112 133 154 176 198 220
cat 87 87 87 87 102 121 140 160 180 200
c4t 71 67 57 47 52 61 70 80 90 100
c5t 72 57 42 27 27 31 35 40 45 50
CC, 68 49 30 11 1 7 7 8 9 10

implementation of Subsection 3.4 is adopted). Application of the bisection search

procedure using the values in Table 2 yields CT = 3, CT = 3, C: = 4, Cx = 6, CT = 5,

C,* = 8, which gives L(i*) = 1198. We note that, for this example, the SWPT Heuris-

tic generates an optimal schedule.

4. The branch and bound algorithm

In this section, we give a complete description of our branch and bound algorithm.

Special attention is given to a description of our branching rule and to the

implementation of various dominance rules which are used to eliminate nodes of the

search tree.

We use a forward scheduling branching rule in which each node of the search tree

corresponds to an initial partial sequence ofjobs on each machine. More precisely, the

current initial partial schedule is examined and the machine j which becomes avail-

able earliest is selected; ties are broken by choosing j as small as possible. Search tree

nodes are constructed which correspond to appending unscheduled jobs to the

current partial sequence on machine j. Theorems 1 and 2 show that we need not

consider schedules which have no job appearing next on machine j.

We now explain how dominance rules are used to eliminate nodes of the search

tree. Assume that jobs are numbered in SWPT order so that pi/w, I ... I p,,/w,.

Our jirst elimination test discards a node of the search tree if job i is scheduled

first on machine jr and job h is scheduled first on machine j,, where h < i and jr < j,.

We justify the elimination of this node by noting that an equivalent partial schedule

is obtained by interchanging the partial sequences on machines j, and j,; clearly,

it is sufficient to retain just one of these partial schedules. A consequence of this

first test is that job 1 must be sequenced first on machine 1 in an optimal schedule:

job 1 is assumed to be sequenced first on some machine according to Theorem 1

and our test eliminates the possibility that it is sequenced first on any other

machine.

214 H. Belouadah. C.N. Ports

Our second elimination test is a straightforward application of Theorem 1. If some

job i appears out of SWPT order when it is appended to the partial sequence on

machine j, then the corresponding search tree node is discarded.

We use Theorem 3 in our third elimination test. If h and i are unscheduled jobs,

where P,, I pi, w,, 2 Wi and h < i, then a node which corresponds to scheduling job

i on machine j, but leaving h unscheduled, is discarded. To justify the elimination of

this node, we note that it must lead to a schedule in which Si I S,,. If Si < S,,, then

Theorem 3 shows that the schedule is dominated. On the other hand, if Si = S,, and

h is scheduled on some machine j’ (j’ fj), then interchanging the final partial

sequences from jobs h and i onwards on machines j and j’ respectively yields

a schedule with the same total weighted completion time. Clearly, it is not necessary to

consider both of these schedules which have the same total weighted completion time:

the one which assigns job i to machine j is discarded.

Our fourth elimination test is also derived from Theorem 3. Let hl, h, be jobs

which are sequenced in adjacent positions on some machine and let il, i, be

a group of adjacent jobs on another machine in the partial schedule at some node of

the search tree. Using Lawler’s theory [14], a group of consecutively sequenced jobs

can be treated as a composite job. In our case, these composite jobs h and i have

processing times and weights given by ph = phi + ... + ph,, wh = wh, + ... + wh,,
pi = pi, + ... + pi, and wi = wi, + ... + Wi,. If Theorem 3 is applied to composite jobs

h and i, then the search tree node is eliminated if ph I pi, w,, 2 wi and S,,, > Si,. Our

implementation of this fourth test is as follows. Based on the results of initial

computational experiments, we perform elimination tests with composite jobs h and

i which contain at most three of the last jobs on a machine: the investment in

computation time is too great if larger composite jobs are considered. Suppose that

the current search tree node is created by scheduling a job on machine j. For each

machine j’ (j’ Zj), attempts are made to eliminate this current node, firstly by

selecting h and i to be the composite jobs formed from the last jobs on machines j and

j’ respectively, and secondly by forming composite jobs h and i from the last jobs on

machines j’ and j respectively. Thus, for each of the m - 1 possible choices of machine

j’, tests are undertaken by forming composite jobs h and i for each value r E { 1,2,3}

and SE { 1,2, 3) (where r and s define the number of jobs in h and i respectively),

although no test is performed when r = s = 1 since our third elimination test deals

with this case. When ph = pi and wh = wi in this fourth test, care must be taken that the

relevant pair of partial schedules are not used to dominate each other, thereby risking

the elimination of all nodes which lead to an optimal schedule.

Whenever a node is not eliminated by one of these tests, a lower bound is computed.

If L(i*) is used, then the SWPT Heuristic is applied at each node of the search tree to

generate an upper bound. However, the SWPT Heuristic is applied only at the root

node if the lower bounding scheme of Eastman et al. replaces L(i*). A newest active

node search selects a node from which to branch.

Having described our algorithm, a discussion of its relationship with other branch

and bound algorithms is appropriate. Our branching rule is, essentially, the same as

Scheduling identical parallel machines 215

that used by Elmaghraby and Park, and Barnes and Brennan. Sarin et al., however,

claim that a more efficient rule is to select an unscheduled job i, with pi/Wi as small as

possible, and create m branches which correspond to assigning job i to each machine.

Sarin et al. argue that there is redundancy in the rule which assigns jobs to a specified

position in a partial sequence, i.e., some schedules are generated more than once. We

counter this by claiming that redundancy is removed through the use of our first two

elimination tests. Thus, the performance of the algorithm described above, which uses

the first three elimination tests and the lower bounding scheme of Eastman et al., is

expected to closely match that of Sarin et al.

5. Computational experience

Our aim in this section is to evaluate the proposed branch and bound algorithm. In

particular, the performance of our Lagrangean based lower bound L(I*) relative to

that of Eastman et al. is of interest. Also, the effectiveness of using composite jobs

in Theorem 3 to eliminate search tree nodes (our fourth elimination test), which is

not attempted in previous algorithms, should be assessed. We compare algorithms

A(EE1, ET3), A(LAG, ET3), A(EE1, ET4) and A(LAG, ET4), where the first parameter

indicates which lower bound is used and the second parameter indicates which

elimination tests are applied. Thus, EEI indicates that the bound of Eastman, Even

and Isaacs (as defined by equation (3) of [19]) is used, whereas LAG refers to our

Lagrangean based bound; ET3 indicates that only the first three elimination tests are

used, whereas the fourth test is additionally applied under ET4.

Test problems having 2, 3,4, 5 and 8 machines and up to 40 jobs were generated as

follows. For each job i, an integer processing time pi from the uniform distribution

[l, lo] and an integer weight Wi from the uniform distribution [l, 1001 were

generated. For each selected pair of values of m and n, 20 problems were generated.

The algorithms were coded in FORTRAN 77 and run on a CDC 7600 computer.

Whenever a problem was not solved within the time limit of 60 seconds, computation

was abandoned for that problem. Computational results are given in Table 3.

For each algorithm, average computation times in seconds (with unsolved problems

contributing 60 seconds in the computation of the average), numbers of unsolved

problems and average numbers of search tree nodes (with the number of nodes

for unsolved problems at the time of abandonment used in the computation of

the average) are listed. Averages are not given, however, when all problems are

unsolved.

Our first observation from Table 3 is that, except for some of the small problems

where A(EE1, ET3) gives the lowest computation times, algorithm A(LAG, ET4) is the

most efficient in terms of average computation times, numbers of unsolved problems

and average number of search tree nodes. A more detailed analysis of how our

Lagrangean based lower bound and the fourth elimination test individually affect

efficiency is given below.

216

Table 3

Computational results (ACT: average computation time in seconds, NU: number of unsolved problems, if

any, ANN: average number of search tree nodes)

A(EEI, ET3) A(LAG, ET3) A(EEI, ET4) A(LAG, ET4)

nr n ACT:NU ANN ACT:NU ANN ACT:NU ANN ACT:NU ANN

2 15
2 20
2 30
2 40

3 15

3 20
3 30

4 15
4 20
4 30

5 15

5 20

8 15

8 20
8 25

0.13 1934

0.55 7557

33.14: 4 389620

- :20 _

0.60 8840

6.91 95116
- :20

0.73 10840

12.00: 2 162216
-:20 _

0.51 7438

10.63: 1 141893

0.06 716

1.11 12681
47.28:l l 506204

0.14 173
0.45 436
7.90 4511

43.44: 9 21624

0.5 1 723

3.46 3530
48.95:12 37499

0.89 1502

8.63 9516
58.30:19 50011

0.85 1441

10.23 11315

0.27 438
2.96 3449

50.31 :I3 48527

0.19

0.60

22.57: 1

-:20

1139

3219

102899

0.14 149

0.41 349
5.60 2989

33.53: 5 15685

0.9 1

6.58

:20

4409

27459

0.50 587

2.88 2475

42.21 : 9 28129

1.38

12.00: 1

:20

6347

42571

0.93 1247

7.34 6461

57.42:17 38994

1.17 5674 0.93 1317

12.69: I 43653 9.16: 1 8310

0.14 703 0.31 430

2.59 10536 3.20 3180

53.80:13 155416 49.26112 38324

We discuss now the effect of replacing the bound EEI of Eastman et al. by our

Lagrangean based bound LAG. The reduction in the size of the search tree is striking.

For instance, there is a 97% reduction in size when LAG replaces EEI for m = 2 and

n = 30. Even though the computation time required to compute LAG is much larger

than that for EEI, computation times for algorithms A(LAG, ET3) and A(LAG. ET4)

are significantly smaller than their counterparts in which EEI replaces LAG, except

for some of the smaller problems for which the elimination tests by themselves are

sufficient to restrict the search. The replacement of EEI by LAG also produces

a significant reduction in numbers of unsolved problems.

Comparing computation times for algorithms A(EE1, ET3) and A(EE1, ET4), it is

not clear that there is any advantage in applying the fourth elimination test. Although

this extra test is effective in reducing search tree size, its computational requirements

are large compared with those of the lower bound EEI. On the other hand, computa-

tion times for A(LAG, ET4) are generally smaller than those for A(LAG, ET3). In this

case, the elimination of a node generates a much larger saving due to the more

substantial computational requirements of LAG.

As is expected for II 2 m, problems become much harder to solve as n increases. For

fixed n, problems are relatively easy for m = 2, but become harder as m increases until

a stage is reached when m and n are sufficiently close that they start to become easier

(the case m = n is trivial).

As observed above, the best of the previously published algorithms is that of Sarin

et al. and its performance is likely to be similar to that of A (EEL ET3). Computational

Scheduling identical parallel machines 217

results show that our algorithm A(LAG, ET4) is superior. In spite of its superiority,

A(LAG, ET4) experiences difficulty in solving 30 job problems (except for m = 2).

A partial explanation is that there appear to be many near-optimal solutions for the

majority of problems.

6. Concluding remarks

Using Lagrangean relaxation, we have developed a new lower bound for the

problem of scheduling jobs on identical parallel machines to minimize total weighted

completion time. In common with lower bounds for other scheduling problems [l 1,

15, 16, 171, multipliers are found from a simple construction rather than using the

computationally expensive subgradient optimization technique. Our lower bound is

used in a branch and bound algorithm which, according to the results of extensive

computational tests, is superior to previous algorithms. A contributory factor to the

success of the algorithm is the use of a new dominance rule (the fourth elimination

test).

Computational results indicate that there is scope for further research into the

development of an algorithm which can successfully solve problems with 30 or more

jobs. Possibly, an approach which uses adjustments to the multipliers given by our

approach may be fruitful, although pseudopolynomial time may be required if a very

tight lower bound is to be obtained from this relaxation.

Acknowledgement

The research by the first author was supported by a grant from the Algerian

government.

References

[1] K.R. Baker and A.G. Merten, Scheduling with parallel processors and linear delay costs, Naval Res.

Logist. Quart. 20 (1973) 7933804.

[Z] J.W. Barnes and J.J. Brennan, An improved algorithm for scheduling jobs on identical machines, AIIE
Trans. 9 (1977) 25-31.

[3] J. Bruno, E.G. Coffman Jr and R. Sethi, Scheduling independent tasks to reduce mean finishing time,

Comm. ACM 17 (1974) 382-387.

[4] N. Christofides, R. Alvarez-Valdes and J.M. Tamarit, Project scheduling with resource constraints:

a branch and bound approach, European J. Oper. Res. 29 (1987) 2622273.
[S] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory ofScheduhng (Addison-Wesley, Readjng, MA.

1967).

[6] W.L. Eastman, S. Even and I.M. Isaacs, Bounds for the optimal scheduling of n jobs on m processors,
Management Sci. 11 (1964) 2688279.

[7] S.E. Elmaghraby and S.H. Park, Scheduling jobs on a number of identical machines, AIIE Trans.
6 (1974) l--12.

218 H. Belouadah. C.N. Ports

[S] M.L. Fisher, A dual algorithm for the one-machine scheduling problem, Math. Programming 11

(1976) 2299251.

[9] M.L. Fisher, The Lagrangian relaxation method for integer programming problems, Management

Sci. 27 (1981) l-18.

[lo] A.M. Geoffrion, Lagrangean relaxation for integer programming, Math. Programming Stud. 2 (1974)
82-114.

[1 1] A.M.A. Hariri and C.N. Potts, An algorithm for single machine sequencing with release dates to

minimize total weighted completion time, Discrete Appl. Math. 5 (1983) 999109.

[12] M. Held, P. Wolfe and H.P. Crowder, Validation of subgradient optimization, Math. Programming

6 (1974) 62-88.

[13] T. Kawaguchi and S. Kyan, Worst case bound of an LRF schedule for the mean weighted flow-time

problem, SIAM J. Comput. 15 (1986) 111991129.

[14] E.L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence

constraints, in: Annals of Discrete Mathematics 2 (North-Holland, Amsterdam, 1978) 75-90.

[15] C.N. Potts, A Lagrangean based branch and bound algorithm for single machine sequencing with

precedence constraints to minimize total weighted completion time, Management Sci. 31 (1985)

1300~1311.

[16] C.N. Potts and L.N. Van Wassenhove, An algorithm for single machine sequencing with deadlines to

minimize total weighted completion time, European J. Oper. Res. 12 (1983) 3799387.

1171 C.N. Potts and L.N. Van Wassenhove, A branch and bound algorithm for the total weighted tardiness

problem, Oper. Res. 33 (1985) 363-377.

[lS] S. Sahni, Algorithms for scheduling independent tasks, J. ACM 23 (1976) 116-127.

[IS] SC. Sarin, S. Ahn and A.B. Bishop, An improved branching scheme for the branch and bound

procedure of scheduling n jobs on m parallel machines to minimize total weighted fiowtime, Internat.

J. Production Res. 26 (1988) 118331191.

[20] W.E. Smith, Various optimizers for single-stage production, Naval Res. Logist. Quart. 3 (1956) 59-66.

