
Discrete Applied Mathematics 140 (2004) 103–114
www.elsevier.com/locate/dam

A faster 2-approximation algorithm for the
minmax p-traveling salesmen problem on a tree

Hiroshi Nagamochia , Kohei Okadab
aDepartment of Information and Computer Sciences, Toyohashi University of Technology,

Toyohashi, Aichi 441-8580, Japan
bMatsushita Electric Industrial Co., Ltd., Kadoma 1006, Osaka 571-8501, Japan

Received 25 June 2002; received in revised form 25 June 2003; accepted 30 June 2003

Abstract

Given an edge-weighted tree T and an integer p¿ 1, the minmax p-traveling salesmen prob-
lem on a tree T asks to /nd p tours such that the union of the p tours covers all the vertices.
The objective is to minimize the maximum of length of the p tours. It is known that the problem
is NP-hard and has a (2− 2=(p+1))-approximation algorithm which runs in O(pp−1np−1) time
for a tree with n vertices. In this paper, we consider an extension of the problem in which the
set of vertices to be covered now can be chosen as a subset S of vertices and weights to process
vertices in S are also introduced in the tour length. For the problem, we give an approximation
algorithm that has the same performance guarantee, but runs in O((p− 1)! · n) time.
? 2003 Elsevier B.V. All rights reserved.

Keywords: Traveling salesman problem; Vehicle routing; Tree; Graph partition; NP-hard; Approximation
algorithm

1. Introduction

Given a graph, the p-traveling salesmen problem (p-TSP) asks to /nd a set of
p tours that cover all vertices in the graph, minimizing a given objective function.
This type of problems arises in many applications such as the multi-vehicle scheduling
problem [7]. Graphs are restricted as paths or trees in some applications such as the
task sequencing problem [6], the delivery scheduling by ships on a shoreline [13] and
the scheduling of automated guided vehicles. Thus the 1-TSP or p-TSP on these graphs
and related problems have been studied extensively (e.g., [1,2,8–14]).

E-mail address: naga@ics.tut.ac.jp (H. Nagamochi).

0166-218X/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2003.06.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82425799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:naga@ics.tut.ac.jp

104 H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114

In this paper, we consider the minmax p-traveling salesmen problem (the minmax
p-TSP for short) on an edge-weighted tree. There are p identical service units (called
vehicles), initially situated at some points of the tree (called home locations). A set DP
of demand points is prescribed (where a demand point is a vertex or an intermediate
position on an edge); each demand point in DP must be served by being visited by at
least one vehicle. Each vehicle must return back to its home location before /nishing
its service. The objective is to minimize the maximum length of the tours.
Averbakh and Berman [3] studied the minmax 2-TSP with given home locations on

a tree, and gave a 4
3 -approximation algorithm for the case of equal home locations

and 3
2 -approximation for the case of diGerent home locations. Averbakh and Berman

[4] considered the minmax p-TSP, where home locations of vehicles are not given
in advance and should be chosen along with tours for vehicles. More formally the
problem is described as follows. Let HL denote a set of points that are allowed to be
chosen as home locations of vehicles. We denote by HL= V (resp., HL= E) if home
locations can be chosen from the set of all vertices (resp., the set of all vertices and all
points on edges). Similarly DP=V (resp., DP=E) means that a set of demand points
is given as a set of all vertices in the tree (resp., the set of all vertices and all points
on edges). Thus, there are four possible problems by the choice of HL= V or E, and
DP = V or E. But the case with HL= E and DP = V needs no special consideration
since it is easily reduced to the problem with HL = V and DP = V . Averbakh and
Berman [4] presented a (2−2=(p+1))-approximation algorithm for each of these three
problems (excluding the reducible one), which are all shown to be NP-hard. The run
time of their algorithms in a tree with n vertices is O(p + n) to the problem with
HL= E, and O(pp−1np−1) to the problem with HL= V and DP = V .

In this paper, we reduce the time bound to the problem with HL= V and DP = V ,
which is currently extremely high complexity. We /rst extend the minmax p-TSP with
HL=V and DP=V in such a way that a nonnegative vertex-weight is introduced and
DP is allowed to be a subset of vertices. In what follows, we give a formal de/nition
of our problem. Since an edge in a tour is traversed exactly twice, the problem will
be described as a problem of /nding a set of p subtrees that covers S.
Let T be a tree with edges weighted by nonnegative reals, where the weight of an

edge e is denoted by w(e). The vertex set and the edge set of a tree T are denoted by
V (T) and E(T), respectively. Let S be a nonempty subset of V (T), where each vertex
u in S has a nonnegative weight h(u); for convenience we use h(v) = 0 for vertices
v∈V (T)−S. A vertex with degree 1 is called a leaf. A connected subgraph T ′ of T is
called a subtree of T , and we denote this by T ′ ⊆ T . For a set T of subtrees Ti ⊆ T ,
i=1; 2; : : : ; h, we denote by V (T) and E(T) the sets of vertices and edges in subtrees
in T, respectively. The sum of vertex weights (resp., edge weights) in a subtree T ′ is
denoted by H (T ′) (resp., W (T ′)). Let WH (T ′) denote W (T ′) + H (T ′). For a subset
X ⊆ V (T) of vertices, let T − X denote the graph obtained from T by removing the
vertices in X together with all adjacent edges, and let T 〈X 〉 denote the minimal subtree
of T that contains X (where the leaves of T 〈X 〉 will be vertices in X). For a subset
S ⊆ V (T), a collection S of subsets S1; S2; : : : ; Sk (not necessarily nonempty) of S is
called a partition of S if their union is S, and is called a p-partition of S if |S|=p.
The cost of a subset Si ∈S is de/ned by cost(Si) =W (T 〈Si〉) + H (Si) (implying the

H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114 105

travel cost of T 〈Si〉 plus the processing cost of Si). The cost of a partition S is de/ned
by cost(S) = maxSi∈S cost(Si). Then our problem is described as follows:

Minmax p-subtrees cover problem (MSCP for short):
Input: A tree T , a subset S ⊆ V (T) and an integer p with 16p6 |S|.
Feasible solution: A p-partition S= {S1; S2; : : : ; Sp} of S.
Goal: Minimize cost(S).

The result of the minmax p-TSP by Averbakh and Berman [4] implies that a (2−
2=(p + 1))-approximate solution to the MSCP can be found in O(pp−1np−1) time in
the special case of S=V (T) and h(v)=0, v∈V (T). In this paper, partly following their
approach, we present an algorithm that /nds a (2 − 2=(p + 1))-approximate solution
to the MSCP in the time complexity of O((p − 1)! · n), which is a linear time for a
/xed p. In our algorithm, a new idea is exploited to design an O((p − 1)! · n) time
algorithm for computing a lower bound on an optimal solution.
The paper is organized as follows. In Section 2, we give a procedure for decomposing

a tree into a set of edge-disjoint subtrees such that the weight of each subtree is bounded
by a certain value. In Section 3, we introduce a lower bound on the optimal value of
the MSCP by modifying the one introduced by Averbakh and Berman [4]. We then
design a new and fast algorithm for computing the lower bound. Based on the results in
Sections 2 and 3, we in Section 4 present an approximation algorithm for the MSCP.
As an application, we in Section 5 use our algorithm to design algorithms for the
multi-vehicle scheduling problem in trees. In Section 6, we describe some concluding
remarks.

2. Decomposing a tree

In this section, we prove the next lemma, which will be the basis of our approxi-
mation algorithm given in Section 4. Let hmax denote maxv∈V (T) h(v).

Lemma 1. For any instance (T; S; p) of the MSCP, there exists a p-partition S of
S with

cost(S)6max
{(

2− 2
p+ 1

)
· WH (T)

p
; hmax

}

such that for any two Si; Sj ∈S, subtrees T 〈Si〉 and T 〈Sj〉 are edge-disjoint. Such an
S can be obtained in O(p+ n) time.

The lemma in the case that S = V (T) and h(u) = 0, u∈ S has been obtained by
Averbakh and Berman [4]. Based on their idea of chopping a maximally eligible subtree
oG the current tree, we in the below give a procedure for constructing such an S in
the lemma. (We remark that unlike their procedure [4] ours can take a vertex weight
h into account, treat a given tree as a rooted one, and split no edge into two edges
with fractional weights; a distinct solution S may be produced by ours even for the
case that S = V (T) and h(u) = 0, u∈V (T).)

106 H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114

In a rooted tree T , a subtree of T rooted at a vertex v is denoted by Tv, and an edge
e = (u; v) such that v is a child of u is called the parent-edge of v or a child-edge of
u. For a real �¿ 0, a tree T is called a �-pseudo-star centered at a vertex u if T can
be rooted at u so that WH (Tv) + w(e)6 � holds for all child-edges e = (u; v) of the
root u.

Lemma 2. Let T ′ be a tree with an edge weight w and a vertex weight h. If T ′ is a
L- pseudo-star centered at a vertex u for some L¿ 0, then for p′ =max{1;

WH (T ′)=L�}, there is a p′-partition S= {S1; S2; : : : ; Sp′} of V (T ′) such that cost(S)
6max{2L; h(u)}.

Proof. If WH (T ′)¡ 2L then p′=1 and the lemma holds. Assume that WH (T ′)¿ 2L
and p′¿ 2. Let V0 = {u} and a(V0)=h(u). For child-edges ei=(u; vi), i=1; 2; : : : ; k of u,
let Vi =V (Tvi) and a(Vi)=WH (Tvi)+w(ei). Let A={V0; V1; : : : ; Vk}. Since a(Vi)6L
(16 i6 k) by T ′ being a L-pseudo-star, we can repeat choosing a maximal subset
B ⊆ A such that L6

∑
Vi∈B a(Vi)6max{2L; h(u)} and setting A := A−B until A=∅

holds or such B is obtained p′−1 times. Let B1; B2; : : : ; Bt be the chosen subsets, and let
Sj=

⋃
Vi∈Bj Vi for j=1; 2; : : : ; t, where cost(Sj)6max{2L; h(u)} holds by construction.

If A=∅ holds when the procedure halts, then {S1; S2; : : : ; St} (together with p′−t empty
subsets if t ¡p′) is a desired p′-partition. Consider the latter case (i.e., t = p′ − 1).
Let Sp′ =

⋃
Vi∈A Vi for the resulting set A. Hence, cost(Sp′) is at most WH (T ′)− (p′−

1)L6WH (T ′)− (
WH (T ′)=L� − 1)L¡WH (T ′)− (WH (T ′)=L− 2)L = 2L. Thus,
{S1; S2; : : : ; Sp′−1; Sp′} satis/es the lemma.

For a rooted tree T and a given L¿ 0, we call an edge (u; v) between a vertex u
and its child v light if WH (Tv) + w(e)6L and heavy otherwise. We call a vertex v
in T admissible if its parent-edge (if any) is heavy and its child-edges (if any) are all
light. Note that there exists at least one admissible vertex v in any rooted tree T , and
that Tv for an admissible vertex v is a L-pseudo-star. We now give a procedure for
decomposing a given tree T rooted at r. For a given tree T rooted at r and p¿ 2, we
set L := [1=(p+ 1)]WH (T) (where WH (T)¿L), T ′ := T and i := 1, and apply the
next.

DECOMPOSE(T ′; i)
case-1) If WH (T ′)6 2L, then halt outputting Ti := T ′ and #i := WH (T ′)(¿L).
case-2) Otherwise (WH (T ′)¿ 2L), /nd an admissible vertex v closest to
root r in T ′.

(i) If WH (T ′)−WH (Tv)6L (i.e., the current T ′ is a L-pseudo-star
centered at v), then halt outputting Ti := T ′ and #i := WH (T ′)(¿L).
(ii) Otherwise (WH (T ′)−WH (Tv)¿L), let ev be the parent-edge of v
(where ev is heavy in T ′).
(a) If WH (T ′)−WH (Tv)− w(ev)6L, then halt outputting
Ti := T ′ − V (Tv), #i := L(¿WH (Ti)),
Ti+1 := Tv and #i+1 := WH (T ′)−L (¿max{L; WH (Tv)}).
(b) Otherwise (WH (T ′)−WH (Tv)− w(ev)¿L),output
Ti := Tv and #i := WH (Tv) + w(ev)(¿L), and DECOMPOSE(T ′; i)
after setting i := i + 1 and T ′ := T ′ − V (Tv)
(note that WH (T ′)¿L).

H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114 107

Let T1; T2; : : : ; Tk and #1; #2; : : : ; #k be the subtrees and the values associated with
them computed by the procedure, where any two of these subtrees are vertex-disjoint.
Moreover, Ti is a L-pseudo-star unless WH (Ti)6 2L. Observe that #i satis/es∑

16i6k

#i =WH (T); and #i¿max{L; WH (Ti)} for i = 1; 2; : : : ; k:

In particular, #k ¿L. We further decompose each Ti into an adequate number p(i) of
subtrees. The number p(i) is given as follows.

Lemma 3. Let p(i)=
#i=L�, i=1; 2; : : : ; k. Then we have max{1;
WH (Ti)=L�}6p(i),
i = 1; 2; : : : ; k, and

∑k
i=1 p(i)6p.

Proof. By #i¿max{L; WH (Ti)}, p(i)¿max{1;
WH (Ti)=L�}. By noting #k ¿L,
we obtain

∑k
i=1 p(i)¡

∑k
i=1 #i=L6 (1=L)WH (T) = p+ 1.

For each Ti, we /nd a p(i)-partition Si of V (Ti) such that cost(Si)6
max{2L; hmax}. Such an Si can be found by Lemmas 2 and 3 if Ti is a L-pseudo-star;
Si can be chosen as any p(i)-partition of V (Ti) otherwise (since WH (Ti)6 2L holds).
Therefore, the union S of the resulting partitions S1;S2; : : : ;Sk (adding empty sub-
sets if necessary) gives a p-partition of V (T) and satis/es cost(S)6max{2L; hmax}=
{2p=(p + 1) ·WH (T)=p; hmax}. Furthermore, by construction, for any two S ′; S ′′ ∈S,
the subtrees T 〈S ′〉 and T 〈S ′′〉 are edge-disjoint. Thus, S satis/es the conditions in
Lemma 1. It is not diMcult to see that S can be obtained in O(p+ n) time.
It should be noted that Lemma 1 does not immediately imply the (2 − 2=(p +

1))-approximability of the MSCP since WH (T)=p is not a lower bound in general (i.e.,
some edge may not be used in any subtree T 〈Si〉 in an optimal solution {S1; S2; : : : ; Sp}).

3. Computing a lower bound

In this section, we give an algorithm for computing a lower bound on the optimal
value to the MSCP. The lower bound is a modi/cation of the one by Averbakh and
Berman [4], but the time to compute the lower bound will be reduced signi/cantly
by our new idea below. We start with a simple observation of a lower bound on the
optimal value.

Lemma 4. For an instance (T; S; p) of the MSCP, max{WH (T)=p; hmax} is a lower
bound on the optimal value provided that each edge is contained in some subtree
T 〈Si〉 for an optimal solution S∗ = {S1; S2; : : : ; Sp}.

For a p-partition S = {S1; S2; : : : ; Sp} of S, the subtrees T 〈Si〉, i = 1; 2; : : : ; p are
uniquely determined, where possibly V (T 〈Si〉)∩V (T 〈Sj〉) �= $ for some i and j. There
may be an edge e∈E(T) that is not contained in any subtree T 〈Si〉. Also there may
be a vertex v∈V (T) −⋃

Si∈S V (T 〈Si〉). We call such edges and vertices unused. By
removing all unused edges from T , we have several vertex-disjoint subtrees of T , each

108 H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114

of which is given by either the subtree T 〈Si1 ∪ Si2 ∪ · · · ∪ Sik 〉 for some union of some
subsets in S or a subtree consisting of a single unused vertex. We denote by T〈S〉
the set of such subtrees with the form of T 〈Si1 ∪ Si2 ∪ · · · ∪ Sik 〉. For each T ′ ∈T〈S〉,
let p(T ′) denote the number of subsets Si ∈S such that Si ⊆ V (T ′).
Let S∗ be an optimal p-partition of S to the problem. With the set T =T〈S∗〉

of subtrees and the set {p(T ′) |T ′ ∈T〈S∗〉} of numbers (but without knowing S∗

itself), we can construct a (2 − 2=(p + 1))-approximation solution by computing a
p(T ′)-partition of V (T ′) for each subtree T ′ ∈T with number p(T ′) by Lemma 1.
Hence, by generating all possible sets T of subtrees and sets {p(T ′)} of numbers
and by computing such a solution for each pair of T and {p(T ′)}, we can obtain
a (2 − 2=(p + 1))-approximation solution. This, however, takes time complexity of
O(pp−1np−1), as already observed in [4]. To avoid this brute-force search, we in this
section introduce a new idea for computing a lower bound. For this, we de/ne new
notions such as valued subtree collections, rational edges, and rational points.
For a tree T , a subset S ⊆ V (T) and an integer p6 |S|, we de/ne a valued subtree

collection of (T; S; p) as a set T of vertex-disjoint subtrees T1; T2; : : : ; Tk ⊆ T such
that S ⊆ V (T) holds and a positive integer pTi with

∑
Ti∈T pTi =p is associated with

each Ti. We de/ne

%(T) = max
{
WH (Ti)
pTi

∣∣∣∣ Ti ∈T

}

and

%∗(T; S; p) = min{%(T) | all valued subtree collections T of (T; S; p)}:

Lemma 5. %∗(T; S; p) is a lower bound on the optimal value to the MSCP.

Proof. Let S∗ be an optimal p-partition of S, and T=T〈S∗〉={T1; T2; : : : ; Tq} with
{p(T ′) |T ′ ∈T〈S∗〉} be the valued subtree collection induced by S∗. Since all edges
in E(Ti) are used in Ti, it holds WH (Ti)=p(Ti)6 cost(Sj) for subsets Sj ∈S∗ with Sj ⊆
V (Ti). Thus %(T)6 cost(S∗). On the other hand, we have %∗(T; S; p)6 %(T) since
T with {p(T ′)} is a valued subtree collection. Therefore %∗(T; S; p)6 cost(S∗).

A recursive form of %∗(T; S; p) is given by

%∗(T; S; p) =min
{
WH (T)

p
;

min{max{%∗(Tu; S ∩ V (Tu); p′); %∗(Tv; S ∩ V (Tv); p′′)}

|e =(u; v)∈E(T); p′ + p′′ = p}
}
;

where Tu and Tv denote the subtrees obtained from T by removing e=(u; v). Comput-
ing %(T; S; p) by the recursion still takes O(pp−1np−1) time. In this section, we prove
the next result.

H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114 109

Theorem 6. For a tree T , a subset S ⊆ V (T) and an integer p6 |S|, %∗(T; S; p) and
a valued subtree collection T of (T; S; p) with %(T) = %∗(T; S; p) can be computed
in O((p− 1)! · n) time.

To prove the theorem, an edge e = (u; v) in a tree T may be treated as a segment
that consists of in/nitely many points. A point x in e is speci/ed by the distance from
one of the end vertices of e. The point with distance t (06 t6w(e)) from u on e is
denoted by xe;u(t).
An edge e = (u; v) in a tree T is called a p-rational edge of T if the subtrees

Tu; Tv ⊆ T obtained from T by removing e satisfy

WH (Tu)6p′ WH (T)
p

and WH (Tv)6p′′ WH (T)
p

for some positive integers p′ and p′′ with p′+p′′=p, where a point xe;u(t) in e with
WH (Tu) + t = p′WH (T)=p is called a p-rational point of T (note that a p-rational
edge may contain more than one p-rational point).

Lemma 7. Let T be a tree, and S be a nonempty subset of V (T). Assume that
T=T 〈S〉. Let T be a valued subtree collection of (T; S; p). Then if %(T)¡WH (T)=p,
then E(T)− E(T) contains at least one p-rational edge.

Proof. A vertex or edge not contained in any T ′ ∈T is called unused. Hence, E(T)−
E(T) is the set of unused edges. By %(T)¡WH (T)=p, |E(T) − E(T)|¿ 1. We
show the lemma by induction on k = |E(T)− E(T)|. We consider T as a rooted tree
by choosing an arbitrary vertex as the root. Let Tu be a subtree in T which is the
farthest one from the root, and e = (u; v)∈E(T) − E(T) be the edge connecting Tu

and T − V (Tu) in T , where u∈V (Tu) is assumed without loss of generality. Then
let Tv be the subtree containing v among the subtrees obtained from T by removing
E(T)−E(T), where Tv may not belong to T (i.e., it may consist of a single unused
vertex).
(i) Let k = |E(T) − E(T)| = 1. By T = T 〈S〉, Tv also belongs to T. By %(T)¡

WH (T)=p, we have WH (Tv)¡pTv · WH (T)=p, i.e., WH (T) − WH (Tu) − w(e)¡
(p−pTu)WH (T)=p by WH (T)=WH (Tu)+WH (Tv)−w(e) and p=pTu +pTv . From
this,

WH (T)
p

¡
WH (Tu) + w(e)

pTu
:

With this and WH (Tu)=pTu ¡WH (T)=p, there is a real t ∈ (0; w(e)) such that
WH (T)

p
=
WH (Tu) + t

pTu

implying that e is a p-rational edge.
(ii) Let k ¿ 1 and assume that the lemma holds for k − 1. Now WH (Tu)=pTu ¡

WH (T)=p. If
WH (T)

p
6

WH (Tu) + w(e)
pTu

110 H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114

then there is a real t ∈ (0; w(e)] such that

WH (T)
p

=
WH (Tu) + t

pTu

implying that e is a p-rational edge. Then assume

WH (Tu) + w(e)
pTu

¡
WH (T)

p
: (1)

We /rst assume that Tv �∈ T (i.e., v is an unused vertex and h(v) = 0 by v �∈ S).
Construct the subtree T̂ u=T 〈V (Tu)∪{v}〉 with the associated integer pT̂u =pTu . Then
it satis/es

WH (T̂ u)
pT̂u

=
WH (Tu) + w(e)

pTu
¡

WH (T)
p

:

Note that T′=(T−{Tu})∪{T̂ u} still satis/es the assumption of the lemma, having one
less unused edge, and by the induction hypothesis, it has a p-rational edge e′ ∈E(T)−
E(T′)(⊂ E(T)− E(T)).
We next assume that Tv ∈T. Construct the subtree Tuv = T 〈V (Tu) ∪ V (Tv)〉 with

the associated integer pTuv = pTu + pTv . With (1) and WH (Tv)=pTv ¡WH (T)=p, Tuv
satis/es

WH (Tuv)
pTuv

¡
WH (T)

p
:

Since T′ = (T− {Tu; T v}) ∪ {Tuv} satis/es the assumption of the lemma, we have a
p-rational edge e′ ∈E(T)− E(T′)(⊂ E(T)− E(T)) by the induction hypothesis.

Lemma 8. For a tree T and an integer p¿ 2, the number of p-rational points in T
is at most p−1, and the number of p-rational edges in T is at most min{p−1; n−1}.

Proof. It suMces to show the former part of the lemma. The case of p= 2 is trivial.
We can prove the case of p¿ 2 by an inductive proof. Let T be rooted at some vertex
r, and choose a vertex v closest to r such that Tv contains no p-rational edge. Thus, the
edge e=(u; v) joining v and its parent u contains a p-rational point xe;u(t); we choose x
as the one closest to v. Construct the tree T ′ obtained from T by contracting vertices in
Tv into a single vertex v∗ and by setting weight h(v∗)=0 for the vertex v∗ and weight
w(e∗) = t for the adjacent edge e∗ = (u; v∗). Then WH (T ′) =WH (T)− (1=p)WH (T)
holds. Thus, any p-rational point in T (except for the xe;u(t)) is a (p − 1)-rational
point in T ′. By the induction hypothesis, the number of such (p − 1)-rational points
is at most p− 2. Thus, T has at most p− 1 p-rational points.

Lemma 9. All p-rational edges and p-rational points in a tree T can be found in
O(p+ n) time.

Proof. Choose an arbitrary vertex r ∈V (T) as the root of T . All WH (Tu), u∈V (T)
can be computed in O(n) time by computing them in a bottom-up manner. Let L =

H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114 111

WH (T)=p. For each edge e = (u; v) between a vertex u and its parent v, compute the
maximum integer ke¿ 0 such that(⌊

WH (Tu)
L

⌋
+ ke

)
L6WH (Tu) + w(e):

Then e is a p-rational edge if and only if ke¿ 1 or
WH (Tu)=L�L=WH (Tu) holds.
Moreover, e contains ke p-rational points xe;u((
WH (Tu)=L� + j)L − WH (Tu)), j =
0; 1; : : : ; ke. It is easy to see that each edge e can be processed in O(ke+1) time. Thus,
the entire running time is O(

∑
e∈E(T) (ke + 1)) = O(p+ n) by Lemma 8.

Let RP(T; p) denote the set of all p-rational points in T . For a point x∈RP(T; p),
let ex = (ux; vx) be the p-rational edge containing x, ‘x be the distance of x from ux,
and Tux and Tvx be the subtrees obtained from T by removing ex. Let pux and pvx be
the integers assigned to Tux and Tvx , i.e.,

pux =
(WH (Tux) + ‘x)p

WH (T)
and pvx =

(WH (Tvx) + w(ex)− ‘x)p
WH (T)

= p− pux ;

respectively. Assume that T =T 〈S〉 (otherwise we can reset T by T 〈S〉 without losing
the optimality of the given instance (T; S; p)). Then let Sux=S∩V (Tux), Svx=S∩V (Tvx),
T ′
ux = T 〈Sux〉 and T ′

vx = T 〈Svx〉. By Lemma 7, another recursive form of %∗(T; S; p) is
given by

%∗(T; S; p) =




WH (T)
p

if RP(T; p) = ∅;

min
{
max{%∗(T ′

ux ; Sux ; pux); %
∗(T ′

vx ; Svx ; pvx)}
|x∈RP(T; p)} otherwise:

We consider the time complexity for computing %∗(T; S; p) in this form. It is a simple
matter to see that the total number of recursive calls is bounded by (p − 1)! from
above. For each call %∗(T ′

ux ; Sux ; pux), we can compute the set of pux -rational points in
O(n) time by Lemma 9. Thus the time to compute %∗(T; S; p) is O((p − 1)!n). Also
a valued subtree collection T of (T; S; p) attaining the %∗(T; S; p) can be retrieved in
the same time complexity, proving Theorem 6.

4. Approximation algorithm

Based on Theorem 6, we obtain the following algorithm for computing a p-partition
S to an instance (T; S; p) of the MSCP.
APPROX(T; S; p)
Step 1. Set T := T 〈S〉, and compute a valued subtree collection T of (T; S; p)

attaining %(T) = %∗(T; S; p).
Step 2. For each subtree T ′ ∈T and the associated integer pT ′ , construct an instance

(T ′; S ∩V (T ′); pT ′) of the MSCP, and compute a pT ′ -partition ST ′ of S ∩V (T ′) such
that

cost(ST ′)6max
{(

2− 2
pT ′ + 1

)
WH (T ′)
pT ′

; max
v∈V (T ′)

h(v)
}
:

112 H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114

Step 3. Output the union ∪T ′∈T ST ′ as a solution to the instance (T; S; p).
Step 1 can be executed in O((p− 1)!n) time by Theorem 6. By Lemma 1, we can

obtain in O(pT ′+n) time such a solution ST ′ in Step 2. For a solution S=∪T ′∈T ST ′

output by APPROX(T; S; p), it holds cost(S)6max{(2− 2=(p+1))%∗(T; S; p); hmax}.
Therefore the next is established.

Theorem 10. For an instance (T; S; p) of the MSCP, there exists a p-partition of S
such that cost(S)6max{(2−2=(p+1))%∗(T; S; p); hmax} holds and subtrees T 〈S ′〉 and
T 〈S ′′〉 are edge-disjoint for any two distinct S ′; S ′′ ∈S. Such an S can be obtained
in O((p− 1)!n) time.

Since the subtrees T 〈Si〉, Si ∈S in the theorem are edge-disjoint, we can enjoy the
same approximability even when the condition that T 〈Si〉, Si ∈S are edge-disjoint is
additionally imposed on the MSCP. We remark that the vertex-disjoint version of
the MSCP with S = V (T) (i.e., the case where T 〈Si〉, Si ∈S are required to be
vertex-disjoint) has been studied as a tree partition problem, for which an O(p3n)
time algorithm has been obtained [5]. We close this section by showing that there is
a tight example to algorithm APPROX.

Example 1. Let T be a tree with vertex set V (T) = {u1; u2; : : : ; up; u′; v′, v1; v2; : : : ; vp}
and edge set E(T) = {(ui; u′) | i = 1; 2; : : : ; p} ∪ {(u′; v′)} ∪ {(v′; vi) | i = 1; 2; : : : ; p},
where for a positive + edges are weighted by w(e) = 1 for e = (ui; u′), i = 1; 2; : : : ; p,
w(e)= 1− 2+ for e=(u′; v′), and w(e)= + for e=(v′; vi), i=1; 2; : : : ; p. Let S =V (T)
and h(u) = 0 for all u∈V (T). Then %∗(T; S; p)6WH (T)=p = (p + 1 + (p − 2)+)=p.
An optimal solution to this instance of the MSCP is S∗={Si={ui; vi} | i=1; 2; : : : ; p}
with cost(S∗) = 2 − +. Thus cost(S∗)=%∗(T; S; p)¿ (2 − +)=[(p + 1 + (p − 2)+)=p],
which approaches (2− 2=(p+ 1)) as + → 0.

This example shows that the approximation guarantee (2 − 2=(p + 1)) in Theorem
10 cannot be improved unless the current lower bound %∗(T; S; p) is strengthened.
However, we are not aware of any example with the same gap which has an optimal
solution S∗ = {S1; S2; : : : ; Sp} such that any two subtrees T 〈Si〉 and T 〈Sj〉 are edge-
disjoint.

5. Application to multi-vehicle scheduling in trees

As an application of Theorem 10, we in this section consider the following multi-
vehicle scheduling problem in trees. There are p vehicles (16p6 n) in a tree T with
n vertices. Travel time w(u; v) (=w(v; u)) is associated with each edge (u; v)∈E(T).
Each vertex v∈V (T) has a job (denoted also by v), and any job must be processed
by exactly one vehicle. Each job v has release time r(v) and handling time h(v). That
is, a vehicle cannot start processing job v before time r(v), and it takes h(v) time units
to process job v (no interruption of the processing is allowed). A vehicle at vertex v
may wait until time r(v) to process job v, or move to other vertices without processing

H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114 113

job v if it is more advantageous (in this case, the vehicle must come back to v later to
process job v, or another vehicle must come to v to process it). The problem asks to
/nd an optimal schedule of p vehicles that minimizes the makespan (i.e., the maximum
completion time) of all the jobs. The initial location for each vehicle is also chosen so
as to minimize the makespan. The problem is known to be NP-hard for any /xed p¿ 2.
Let b be the number of leaves in T . It is shown [9] that the problem with /xed p and
b admits a polynomial time approximation scheme that /nds a (1 + j)-approximation
algorithm in time O((1 + 2=j)nppp+1(n2 + 21+2=j)(8pn2+b=j)p(1+2=j)). Currently, it
is left open whether there is a constant factor approximation algorithm that runs in
polynomial in both p and b (such an approximation algorithm is known if a given
graph is a path [8]). By using Theorem 10 we obtain a constant factor approximation
algorithm that runs in O((p− 1)!n) time.

Corollary 1. A (5−4=(p+1))-approximation solution to the multi-vehicle scheduling
problem in a tree can be obtained in O((p − 1)!n) time. If each vehicle is required
to return to the initial location, then a (3 − 2=(p + 1))-approximation solution can
be obtained in O((p− 1)!n) time.

Proof. Let rmax =maxv∈V (T) r(v) and hmax =maxv∈V (T) h(v). Ignoring release times r,
we /nd in O((p − 1)!n) time a p-partition S of S = V (T) such that cost(S)6
max{(2−2=(p+1))%∗(T; S; p); hmax} by Theorem 10. For each Si ∈S, the i-th vehicle
can process all jobs in Si along the subtree T 〈Si〉 until time rmax + 2(W (T 〈Si〉) +
H (Si))6 rmax + max{2(2 − 2=(p + 1))%∗(T; S; p); 2hmax} at latest. Since max{rmax;
%∗(T; S; p); hmax} is a lower bound on the optimal value to the multi-vehicle scheduling
problem, the scheduling along these subtrees is a (5−4=(p+1))-approximation solution.
We consider the case that each vehicle is required to return to the initial location.

Then each edge must be traversed even number of times. For S = V (T), we compute
the lower bound %∗(T; S; p) after doubling all the edge weights in T . We then /nd a
p-partition S of S=V (T) such that cost(S)6max{(2− 2=(p+1))%∗(T; S; p); hmax}.
For each Si ∈S, the ith vehicle can process all jobs in Si along the subtree T 〈Si〉 until
time rmax +W (T 〈Si〉) +H (Si)6 rmax +max{(2− 2=(p+1))%∗(T; S; p); hmax} at latest.
This gives a (3− 2=(p+ 1))-approximation solution.

6. Concluding remarks

We improved the time complexity of /nding a (2 − 2=(p + 1))-approximation
solution to the MSCP by designing an eMcient procedure of computing a lower bound
on the optimal value. However, the time complexity is not polynomial in p. On the
other hand the MSCP with S =V (T) is known to be solvable if subtrees T 〈Si〉 are re-
quired to be vertex-disjoint. It is left open to reduce the complexity of a
(2 − 2=(p + 1))-approximation algorithm to the one polynomial in both p and n and
to obtain a better approximation algorithm, say, to the case where subtrees T 〈Si〉 are
required to be edge-disjoint.

114 H. Nagamochi, K. Okada /Discrete Applied Mathematics 140 (2004) 103–114

Acknowledgements

This research was partially supported by the Scienti/c Grant-in-Aid from Ministry
of Education, Culture, Sports, Science and Technology of Japan. The authors would
like to thank anonymous referees for their valuable comments.

References

[1] T. Asano, N. Katoh, K. Kawashima, A new approximation algorithm for the capacitated vehicle routing
problem on a tree, J. Combin. Optim. 5 (2001) 213–231.

[2] I. Averbakh, O. Berman, Sales-delivery man problems on treelike networks, Networks 25 (1995)
45–58.

[3] I. Averbakh, O. Berman, A heuristic with worst-case analysis for minmax routing of two traveling
salesmen on a tree, Discrete Appl. Math. 68 (1996) 17–32.

[4] I. Averbakh, O. Berman, (p− 1)=(p+ 1)-approximate algorithm for p-traveling salesmen problems on
a tree with minmax objective, Discrete Appl. Math. 75 (1997) 201–216.

[5] R. Becker, Y. Perl, The shifting algorithm technique for the partitioning of trees, Discrete Appl. Math.
62 (1995) 15–34.

[6] J. Bruno, P. Downey, Complexity of task sequencing with deadlines, set-up times and changeover costs,
SIAM J. Comput. 7 (1978) 393–581.

[7] J. Desrosiers, Y. Dumas, M.M. Solomon, F. Soumis, Time constrained routing and scheduling, in:
M.O. Ball, T.L. Magnanti. C.L. Monma, G.L. Nemhauser (Eds.), Handbooks in Operations Research
and Management Science Volume 8: Network Routing, North-Holland, Amsterdam, 1995, pp. 35–139.

[8] Y. Karuno, H. Nagamochi, A 2-approximation algorithm for the multi-vehicle scheduling on a path with
release and handling times, in: Proc. ESA’01, Lecture Notes in Computer Science, Vol. 2161, Springer,
Berlin, 2001, pp. 218–229.

[9] Y. Karuno, H. Nagamochi, A polynomial time approximation scheme for the multi-vehicle scheduling
on a path with release and handling times, in: Proc. ISAAC’01, Lecture Notes in Computer Science,
Vol. 2223, Springer, Berlin, 2001, pp. 36–47.

[10] Y. Karuno, H. Nagamochi, T. Ibaraki, Vehicle scheduling on a tree to minimize maximum lateness,
J. Oper. Res. Soc. Japan 39 (1996) 345–355.

[11] Y. Karuno, H. Nagamochi, T. Ibaraki, Vehicle scheduling on a tree with release and handling times,
Ann. Oper. Res. 69 (1997) 193–207.

[12] H. Nagamochi, K. Mochizuki, T. Ibaraki, Complexity of the single vehicle scheduling problem on
graphs, Inform. Systems Oper. Res. 35 (1997) 256–276.

[13] H. Psaraftis, M. Solomon, T. Magnanti, T. Kim, Routing and scheduling on a shoreline with release
times, Manage. Sci. 36 (1990) 212–223.

[14] J.N. Tsitsiklis, Special cases of traveling salesman and repairman problems with time windows, Networks
22 (1992) 263–282.

	A faster 2-approximation algorithm for the minmax p-traveling salesmen problem on a tree
	Introduction
	Decomposing a tree
	Computing a lower bound
	Approximation algorithm
	Application to multi-vehicle scheduling in trees
	Concluding remarks
	Acknowledgements
	References

