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We give examples for existence and non-existence of categorical quotients for
algebraic group actions in the categories of algebraic varieties and prevarieties. All
our examples are subtorus actions on toric varieties. � 2000 Academic Press

INTRODUCTION

For group actions in the category of algebraic varieties, various notions
of quotients have been introduced. Among these, the categorical quotient is
a basic concept; here one only requires universality with respect to
invariant morphisms. In practice, it is a delicate problem whether or not a
given action admits a categorical quotient. A possible way to obtain
existence statements is to treat the problem in a suitably modified cate-
gory. For example, if a finite group acts on a variety, then this action in
general admits no algebraic variety as orbit space but in the category of
algebraic spaces it has a geometric quotient.

In this note we investigate the effect of allowing non-separated quotient
spaces on the existence of categorical quotients. Our aim is to show by
means of examples that concerning categorical quotients the separated
and the non-separated case behave surprisingly independent from each
other. We work with the following terminology. Let G be a complex
algebraic group, let � denote any subcategory of the category of complex
algebraic prevarieties containing G, and assume that G acts �-morphi-

Ž .cally on an object X of �. Then we will call a morphism p � Mor X, Y�

a �-quotient for the action of G on X if for every G-invariant morphism
˜Ž . Ž .f � Mor X, Z there is a unique morphism f � Mor Y, Z with f �� �

f̃ � p.
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We consider actions of subtori on complex toric varieties. In this setting,
it makes sense to ask for quotients in the categories AV of complex
algebraic varieties, PV of complex algebraic prevarieties, TV of complex

� �toric varieties, and TP of complex toric prevarieties. In 1, 2 we have
shown that TV- and TP-quotients always exist. For AV- and PV-quotients

Žit is well known that these notions need not coincide if both exist see
.Example 4.5 . Concerning existence and non-existence we here give the

following results and examples:

Ž .i If H is a subtorus of the big torus T of a toric variety X with
Ž .dim T�H � 2, then the TV-quotient for the action of H on X is also an

Ž .AV-quotient see Section 4 .
Ž . � Žii A � -action without AV-quotient but with PV-quotient see

.Section 5 .
Ž . �iii A � -action admitting neither an AV-quotient nor a PV-quo-
Ž .tient see Section 6 .
Ž . � Živ A � -action with AV-quotient and without PV-quotient see

.Section 7 .

Ž . Ž .The examples ii and iii in fact do not even admit a quotient in the
Ž .categories of algebraic or analytic spaces. The existence result i is proved

in a slightly more general framework. Let X be a toric prevariety and let
H be a subtorus of the acting torus T of X. We call a regular map q:
X � Y an H-in�ariant separation of X, if Y is a variety, q is H-invariant,
and every H-invariant regular map from X to a variety Z factors uniquely
through q. We prove:

Ž .THEOREM. If dim T�H � 2, then there exists an H-in�ariant separation
of X.

The present note is organized as follows. Sections 1�3 are devoted to
obtaining some general criteria for existence and non-existence of H-in-
variant separations and categorical quotients. The main result and the
examples are presented in Sections 4�7. Throughout the note we make use

� �of the basic concepts introduced in 1, 2, 4 .

Notation

We fix some notation. Let N be a lattice, i.e., a free �-module of finite
Ž .rank. The dual lattice is M � Hom N, � . The canonical pairing is de-

noted by

² :M � N � �, u , � � u � � u , � .Ž . Ž .
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Let N � � � N denote the real vector space associated to N. More-� �

over, for a homomorphism F: N � N � of lattices, denote by F its�

extension to the real vector spaces associated to N and N �.
When we speak of a cone in N we always think of a convex rational

polyhedral cone in N . For two cones � , � in N we write � 	 � if � is a�

face of � . The relative interior of a cone � 
 N is denoted by � �. The�

dual cone of a cone � in N is the cone

� ² :� � u � M ; � u , � � 0 .� 4� � �

A fan in N is a finite set � of strictly convex cones in N such that
� , � � � � implies � 
 � � 	 � and � � � implies that also every face of

Ž .� lies in �. For example, for any given cone � the set � � of its faces
forms a fan in N. For two fans �, �

� we will use the notation � 	 �
� if � is

a subfan of �
�.

Ž .A system of fans in N is a finite family SS � � of fans in N suchi j i, j� I

that � � � and � 
 � 	 � holds for any i, j, k � I. In particular,i j ji i j jk ik
Ž .one has � 	 � 
 � for all i, j � I. A system � of fans isi j i i j j i j i, j� I

called affine, if for every i � I the fan � is the fan of faces of a singlei i

Ž . Ž .cone � i . The set of labelled cones of a system SS � � of fans isi j i, j� I

� SS � � , i ; i � I , � � � .� 4Ž . Ž . i i

Ž .For a system SS � � of fans in a lattice, we define its support to bei j i, j� I
the set

� �SS � � .�
Ž . Ž .� , i �� SS

� �In 2 we showed that every affine system SS of fans defines a toric
prevariety X . Moreover, we introduced the concept of a map of systemsSS

of fans and proved that the assignment SS � X is an equivalence ofSS

categories.

1. FACTORIZATION OF REGULAR MAPS

In this section we prove a criterion for the existence of a factorization of
a regular map. The result may be of interest independent from its

Ž .application in our proof of Theorem 4.1. By a pre- �ariety we mean
Ž .throughout this paper an algebraic pre- variety over the field � of

complex numbers. Recall that any prevariety carries in a natural manner
the structure of a possibly non-Hausdorff complex analytic space.
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Let X denote a prevariety. By a local cur�e in x � X we mean a
holomorphic mapping germ � : � � X arising from an algebraic curve;0 x

� Ž . �i.e., there is an algebraic curve X in X through x with � � 
 X . Let0 x
p: X � Y be a regular map of prevarieties. We say that a local curve � in˜
x � X is a weak p-lifting of a local curve � in y � Y if there is a
non-constant holomorphic mapping germ � : � � � and a commutative0 0
diagram

�̃ �

� X0 x

� p� �� �
� Y0 y

We call the map p weakly proper, if any local curve in Y admits a weak
p-lifting. Note that a weakly proper map is necessarily surjective. More-
over, every proper regular map is weakly proper. For a related notion in

� �the context of algebraic spaces see 5, Sect. 3 .

1.1. PROPOSITION. Let p: X � Y be a weakly proper regular map of
pre�arieties, assume that Y is normal, and let f : X � Z be a regular map into
a �ariety. If f is constant on the fibres of p, then there is a unique regular map
˜ ˜f : Y � Z such that f � f � p.

˜Proof. By assumption f exists as a uniquely determined map of sets.
˜We have to show that f is regular. Since Y was assumed to be normal, it

˜suffices to show that the graph 	 of f is closed with respect to the Zariski
topology in Y � Z. Note that

	 � p x , f x ; x � X .� 4Ž . Ž .Ž .
Hence 	 is a constructible subset of Y � Z. In particular the Zariski
closure 	 of 	 in Y � Z coincides with the metric closure of 	 and there

0 Ž .is a dense subset 	 
 	 which is Zariski open in 	. Now, let y, z be a
point of 	 
 Y � Z.

0Since 	�	 is nowhere dense and Zariski closed, we can choose an
open disc U 
 � around 0 and a holomorphic curve � : U � 	 such that

Ž . Ž . Ž .the Zariski-closure of � U is an algebraic curve, � 0 � y, z holds, and
�1Ž . Ž � �.the complement of U � � 	 in U is discrete and closed see, e.g., 6 .1

Since p is weakly proper, we find an open neighborhood V of 0 � �, a
regular curve � : V � X, and a non-constant regular map � : V � U such˜
that

� 0 � 0, p�� � pr �� � � .Ž . ˜ Y

�1Ž .Since � is non-constant, � U has a closed discrete complement in V.1
�1Ž .For any s � � U we have1

� � s � p � s , f � s .Ž . Ž . Ž .Ž . Ž . Ž .Ž .˜ ˜
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Thus, for continuity reasons, we obtain

y , z � � � 0 � p � 0 , f � 0 � 	.Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž .˜ ˜

Ž �For open surjections p the above result is well known see, e.g., 3,
�.II.6.2 . We will apply Proposition 1.1. in the following situation. Let SS be

a system of fans in a lattice N �, let � be a fan in a lattice N, and assume
that P: N � � N is surjective and defines a map of systems of fans from SS

to �. Denote by p: X � X the toric morphism associated to P. Then weSS �

obtain the following characterization of weak properness:

Ž � �. � �1.2. PROPOSITION. The map p is weakly proper if and only if P SS � � .�

For the proof we formulate some auxiliary results. Let T be the acting
torus of X and denote by x the base point of X . Call a local curve in� 0 �

X generic if its image intersects the open orbit T 
 x . For any � � N, we� 0
denote by � : �� � T the associated one-parameter subgroup.�

1.3. LEMMA. Let � be a generic local cur�e in X . Then there exists a local�

� �cur�e � in t � T and a point � � � 
 N such that near 0 we ha�e
Ž . Ž . Ž .� s � � s � s 
 x .� 0

n Ž � .nProof. We may assume that N � � and hence T � � . Let � be
�1Ž .defined on some open disc U 
 � around 0. Set V � � T 
 x . Then0

U �V is a proper analytic subset of U and hence it is discrete and closed.
� 4Thus, after shrinking U, we may assume that either U � V or U � V � 0

holds. On V there is a representation

� s � g s , . . . , g s 
 xŽ . Ž . Ž .Ž .1 n 0

� Ž .with holomorphic functions g � OO V . Using Laurent series expansion,i an
Ž . � i Ž . � Ž .we obtain g s � s � s with an integer � and a function � � OO U .i i i i an

Ž . Ž .Let � � � , . . . , � and � � � , . . . , � . Then1 n 1 n

�1lim � s 
 x � � 0 
 � 0 .Ž . Ž . Ž .� 0
s�0

� �Consequently, the point � lies in � and the desired decomposition of � is
Ž . Ž .given by � � � s � s 
 x .� 0

Now, let � , . . . , � be fans in lattices N � and let surjective P : N � � N1 r i i i
be given that are maps of the fans � and �. Let p : X � X be thei i � �i

associated toric morphisms.

� � Ž � �.1.4. LEMMA. Let � be a generic local cur�e in X . If � � P �� � 1
Ž � �.� 


 � P � , then, for some i, there is a weak p -lifting of � .� r i
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� �Proof. Choose � and � � N 
 � as in Lemma 1.3. By assumption, for
� � � Ž �.some i, there is a � � � such that P � � l� with a positive integer l.i i

Moreover, since P is surjective, we have a splittingi

�� �

Ž .T T � ker 
i i

� pr
 Ti �
T

where T � is the acting torus of X and 
 : T � � T is the homomorphismi � i ii ˜associated to p . In particular, there is a lifting � with respect to 
 of thei i

Ž l. �local curve s � � s in t � T. Now, let x be the base point of X . Then0 � i

the desired weak p -lifting of � is given byi

˜ � l
�� s � � s � s 
 x , � s � s .Ž . Ž . Ž . Ž .˜ � 0

Finally, we need an elementary statement from convex geometry. Let �
denote a strictly convex polyhedral cone in some real vector space, let � be

Ž .a face of � , and let P: V � V�lin � be the projection.

Ž .1.5. LEMMA. If � � � � 


 � � with polyhedral cones � , then P � is1 r i
Ž .the union of all P � , where � � 
 � � �.i i

� 4Proof. We prove the assertion by induction on r. For r � 1 or � � 0
there is nothing to show, so assume that r � 1 and � is not trivial. Suppose

Ž . Ž .that for some j and some � � � we had P � � P � for all � meetingj i i
� �. Then � does not lie in � . Hence there is a linear form u � � � withj
Ž . Ž .u � � 0 and u w 	 0 for some w � � �. Fix a large n � � such that
Ž .u � � nw 	 0. Now consider the cone

� � � � 
 � � N ; u � � 0 .� 4Ž .�

Note that � � contains � � nw and is covered by less than r of the cones
� � � � 
 � . Moreover, � � � � � 
 � is a face of � � and has the samei i

� Ž � .dimension as � . The induction hypothesis provides an i and a w � lin �
Ž . � � � Ž �.� lin � such that � � nw � w � � and � � � 
 � � 
 � �.i i

Proof of Proposition 1.2. First assume that p is weakly proper. Clearly
Ž � �. � �P SS 
 � . To obtain the reverse inclusion, assume that there are�

� � Ž � �.points � � � � P SS . Then we even find such a � lying in N. For this � ,�

Ž .the curve � s 
 x admits no weak p-lifting, contradicting our assumption� 0
on p.

Ž � �. � �Now, assume that P SS equals � . Let U 
 � be an open disc around�

zero and let � : U � X be a holomorphic curve such that the Zariski-�

Ž .closure of � U is an algebraic curve. Then there is a unique T-orbit T 
 x�
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Ž .of minimal dimension such that � U is contained in V � T 
 x . Note that� �

V is itself a toric variety.�
�1Ž .We will use the fact that p V is a union of toric varieties to apply�

Lemma 1.4. Let x � V , i.e., � is a cone of � with � 	 � . By our� �

Ž . Ž . Ž .assumption, we have � � P � � 


 � P � with certain � , k �� 1 � s i i
Ž . Ž .� SS . By suitable ordering we achieve that P � meets � � if and only if� i

i � r with some r � s. Now, the above Lemma 1.5 implies

r

� � lin � � P � � lin � 
 N �lin � .Ž . Ž . Ž . Ž .� � i �

i�1

�1Ž .Set � � P � 
 � and consider the orbit closures V in X . Note thati � i � �i i
Ž . Ž .p x � x since P � 
 � � � �. Therefore p induces toric morphisms� � � ii

p : V � V . Applying this procedure to all the other � � � with � 	 � ,i � �i �1Ž .we obtain a family of locally closed toric varieties V 
 p V and toric� �j

� �morphisms V � V . According to 1, Example 2.7 these toric morphisms� �j

satisfy the assumptions of Lemma 1.4.

2. TWO CONES

In this section we consider the special case of a toric prevariety X
arising from an affine system SS of fans in a lattice N with two maximal

Ž . Ž .cones � 1 and � 2 . Let L be a primitive sublattice of N. Throughout
this section we assume that the projection P: N � N�L satisfies

P � 1 � 
 P � 2 � � �. �Ž . Ž . Ž .Ž . Ž .� �

Let H be the subtorus of the big torus T of X corresponding to L 
 N
Žand suppose that f : X � Z is an H-invariant regular map to a not

.necessarily toric variety Z. A first simple observation is

2.1. LEMMA. Let t � T. Then we ha�e:

Ž . �i There are regular cur�es C , C : � � X and C: � � H with1 2
Ž . Ž . Ž . � Ž .C s � C s C s for all s � � and C 0 � t 
 x .1 2 i �� Ž i., i �

Ž . Ž . Ž .ii f t 
 x � f t 
 x . In particular, f is constant on the� � Ž1., 1� � � Ž2., 2�
orbit T �


 x , where T � � T T .�� Ž1., 1� x x �� � Ž1., 1� � � Ž2., 2

Ž . Ž .Proof. By assumption � , there are w � � i � 
 N such that w � �i 1 L
� w holds for some � � L. Let � and � denote the one-parameter2 L w �i L
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subgroups of T corresponding to these lattice vectors. The curves

C : �� � X , s � t 
 � s 
 xŽ .i w 0i

Ž .can be extended regularly to � by setting C 0 � t 
 x . Together withi � � Ž i., i �
� Ž . Ž .the curve C: � � H, s � � s the C satisfy i .� iL

Ž . Ž .In order to check ii note that according to i the points x and� � Ž1., 1�
x cannot be separated by H-stable complex open neighborhoods.� � Ž2., 2�
Since f is continuous with respect to the complex topology and Z is
hausdorff, the claim follows.

Ž .Note that in the proof of assertion ii , we only used that f is H-in-
variant and continuous with respect to the complex topology. Hence the
statement holds also for holomorphic f.

Ž .2.2. PROPOSITION. Assume that there are faces � 	 � i and � � � � 
 Ni i i
Ž . Ž . Ž Ž � . .such that the cone generated by P � and P � is a line. Then f � � 
 x1 2 � i

Ž .� f x for i � 1, 2 and for all x � X.

Proof. Since X is covered by affine T-stable open subspaces, it suffices
Ž Ž .to show that with some nonempty open subset V of T we have f � s 
 t 
� i

. Ž . �x � f t 
 x for all s � � and all t contained in V.0 0
By appropriate scaling we achieve that � � � � L holds. Assumption1 2

Ž . Ž .� provides w � � i � 
 N such that w � w � L. Let X denote thei 1 2 i
Ž .affine chart of X corresponding to � i . We now want to define toric

morphisms � : � � � � T � X .i i
We consider the lattice homomorphisms: F : �2 � N � N, defined byi
Ž . Ž . Ž .F e � � , F e � w , and F � � � for all � � N. The correspondingi 1 i i 2 i i

toric morphisms are the maps

� : � � � � T � X ,i i

�t 
 � s 
 � r 
 x if r � 0 � s,Ž . Ž .� w 0i i�t 
 � r 
 x if r � 0, s � 0,Ž .s, r , t �Ž . w �� , i �i i�t 
 x if r � 0.� � Ž i. , i �

We use the regular maps � to define a regular map � : � � � � T �i 1
Z. First notice that H-invariance of f yields for all s � �� , r � �, and
t � T the identity

f � s, r , t � f t 
 � s 
 � r 
 xŽ . Ž . Ž .Ž . Ž .1 � w 01 1

� f t 
 � 1�s 
 � r 
 x � f � 1�s, r , t .Ž . Ž . Ž .Ž .Ž .� w 0 22 2
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So the rational map � � � � T � Z given by1

� �s , s , r , t � f � s �s , r , tŽ .Ž .Ž .0 1 1 1 0

�1Ž . Ž .extends to a morphism � . The fibre � z of z � � 0, 0, e containsT
�Ž .4� � 0, e , where e denotes the neutral element of T.1 T T

Now choose an open affine neighborhood W of z in Z and set
�1Ž .Y � � � � � T �� W . Consider the projection pr: � � � � T � �1 1

Ž .� T. Since � is complete, pr Y is closed in � � T. Moreover, we have1
Ž . Ž . Ž .pr z � pr Y . Thus for W � � � T �pr Y we have0

��1 z 
 � � W � � � � � T �pr�1 pr Y 
 ��1 W .Ž . Ž . Ž .Ž .1 0 1

� 4Since we chose W to be affine, � maps � � w to a point for every1
Ž . �w � W . In particular, for every point r, t � W 
 � � T we have0 0

f � r 
 � s 
 t 
 x � f � r 
 t 
 xŽ . Ž . Ž .Ž . Ž .w � 0 w 01 1 1

for all s � ��. So f is constant on orbits of the one-parameter subgroup
� on a dense subset of T 
 x 
 X and hence this is true everywhere.� 0 i1

Since � � � � L, this also holds for � .1 2 � 2

3. A CRITERION FOR THE EXISTENCE OF AN
INVARIANT SEPARATION

Ž .Let SS � � denote a system of fans in a lattice N and let L be ai j i, j� I
˜sublattice of N. Suppose that the projection P: N � N�L � N fulfills the

following conditions:

Ž . Ž Ž ..i � � � P � i is a strictly convex cone.i� I �

Ž . Ž . Ž � �. Ž .ii For every face 
 	 � and any two � , i , � , i � � SS with
Ž . Ž �.P � � � P � � 
 
�, there is a chain� �

� , i � � , i , . . . , � , i � � � , i�Ž . Ž .Ž . Ž .i 1 i r1 r

Ž . Ž . Ž .in � SS such that each P � � is contained in 
 and P � � 
� i � ik k
Ž .P � � � �.� i k� 1

˜ ˜Ž . Ž . Ž . Ž .3.1. Remark. If dim N � 1 then i implies ii . If dim N � 2, then ii
Ž Ž ..is equivalent to � � � � P � i �.dimŽP Ž� Ž i..�2 ��

The projection P defines a map of systems of fans from SS to the fan of
faces of � . Moreover, denoting by H the subtorus of T that corresponds to
L, we have

3.2. PROPOSITION. The toric morphism p: X � X defined by P is anSS �

H-in�ariant separation.
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Proof. By Propositions 1.1 and 1.2 it suffices to show that every
H-invariant morphism f : X � Z to a variety is constant on the fibres ofSS

˜p. So let 
 : T � T denote the homomorphism of the acting tori associated
˜to p. Then the p-fibre of a point t 
 x � X is
 �

�1 �1 ˜˜ ˜p t 
 x � 
 t 
 T 
 xŽ . � ž /
 x � � , i �


Ž .P � �

��

Ž � �. �see 2, Proposition 3.5 . Let T denote the subtorus of T , generated by all
Ž . �isotropy groups T , where P � � 
 
�, i.e., T corresponds to thex �� � , i �

Ž .maximal sublattice in the vector subspace spanned by the lin � . Then
� �1 ˜Ž .T 
 H � 
 T .x


Ž . Ž � �. Ž . Ž . Ž � .Now, for � , i and � , i � � SS with P � � � P � � 
 
�, the� �

Ž . Ž . Ž .� �chain condition ii implies by Lemma 2.1 that f t 
 x � f t 
 x for� � , i � �� , i �
all t, and hence that f is constant on T �


 t 
 x . That shows that f is� � , i �
�1Ž .˜constant on the fibre p t 
 x .


4. CODIMENSION TWO

Let X be a toric prevariety and let H be a subtorus of the acting torus
ˆT of X. Denote by H the maximal subtorus of T such that every

ˆH-invariant regular map from X to a variety Z is invariant by H. In this
section we prove

ˆ4.1. THEOREM. If H is of codimension at most two in T , there exists an
H-in�ariant separation for X.

4.2. COROLLARY. E�ery toric presurface admits a separation.

4.3. COROLLARY. If X is a toric �ariety and H is of codimension at most
two in T , then the TV-quotient is also an AV-quotient.

As we shall see in Section 7, a PV-quotient need not exist even in small
codimension, and even if it exists, the AV-quotient and the PV-quotient

Ž .may be different see Example 4.5 .
ˆFor the proof of Theorem 4.1, we may assume that H � H. In particu-

lar, H itself is of codimension at most two in T. Moreover, we may assume
that X � X for some affine system of fans SS in a lattice N.SS

Let L denote the sublattice of N that corresponds to H and let P:
˜N � N�L � N be the projection. Define an equivalence relation on the

index set I by

i � j: � � i � i , . . . , i � j with P � i � 
 P � i � � �.Ž . Ž .Ž . Ž .1 r � k � k�1
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4.4. LEMMA. For each equi�alence class E 
 I the set

� � P � iŽ .Ž .�E �

��E

is a strictly con�ex cone.

Proof. Maximality of H and Proposition 2.2 imply that every cone
Ž Ž ..P � i is strictly convex. In particular the assertion is verified in the case�

˜Ž .dim T�H � 1. Now suppose that N is of dimension two and there is an
equivalence class E such that � is not strictly convex. Then we findE
subsets E , E of E such that each1 2

� � P �Ž .�k �

��Ek

is strictly convex, � � 
 � � � � and � � � is not strictly convex. Let X1 2 1 2 k
Ž .be the open T-stable subspace of X defined by the cones � i withSS

Ž Ž ..P � i 
 � . According to Proposition 3.2, the map P defines H-in-� k
variant separations p : X � X , k � 1, 2.k k � k

�Now let f : X � Z be any H-invariant regular map. Set f � f . ThenXk k

we obtain the following commutative diagram of regular maps,

f � f1 T 2 �

X � X Z�1 T 2

˜�
fp � p1 T 2

XX �˜ �� T 21

˜ ˜Here � indicates gluing along T. Let L 
 N be a line contained inT
˜� � � . Then Proposition 2.2 yields that f is invariant with respect to the1 2

˜ ˜ ˜ ˜action of the subtorus H 
 T corresponding to L. Now let 
 : T � T
denote the homomorphism of the acting tori determined by p. Then

�1 ˜Ž .f � f and hence f is invariant by 
 H . This contradicts the maximal-1 T 2
ity of H.

Proof of Theorem 4.1. By construction, the cones � , where E runsE
˜through the equivalence classes of � , form a fan � in N. Moreover, the

projection P determines a map of systems of fans from SS to �. It follows
directly from Proposition 3.2 that the associated toric morphism p is an
H-invariant separation of X.

4.5. EXAMPLE. A ��-action with AV- and PV-quotients different from
2 � 4each other. Let X � � � 0 and consider the action of

2� ��1H � t , t ; t � � 
 �� 4Ž . Ž .
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on X. Then the AV-quotient for this action is by Corollary 4.3 just the
map

X � �, z , w � zw.Ž .
On the other hand, the PV-quotient is given by the following map from X
onto the line � with doubled zero00

zw if zw � 0,��0 if w � 0,z , w � 1Ž . �0 if z � 0.2

4.6. EXAMPLE. An AV-quotient without base-change property. Let � be
the fan in �3 that has the maximal cones

� � cone �e , e , e � e � e , � � cone e , e , e � e � e .Ž . Ž .1 1 2 1 2 3 2 1 2 1 2 3

3 2 Ž . Ž .Consider the projection P : � � � , u, � , w � u, � . Let H be the0
subtorus of the acting torus of X corresponding to the kernel of P . Then� 0

�the TV-quotient p: X � X H for the action of H arises from the map� � tor
3 Ž .P: � � �, u, � , w � � from � to the fan of faces of � .� 0

�In particular, X H � � is of dimension one. According to Corollary� tor
� �4.3, p is also an AV-quotient. But for the acting torus � of X H, the� tor

�1Ž � .open set p � has, again by Corollary 4.3, a two-dimensional AV-quo-
tient.

5. A ��-ACTION WITHOUT AV-QUOTIENT BUT WITH
PV-QUOTIENT

2 Ž � .2 Ž � .2 2We consider the open toric subvariety X � � � � � � � �

of �4 and the action of the one-dimensional subtorus

4� ��1H � t , t , 1, t ; t � � 
 � .� 4Ž . Ž .
Ž .5.1. PROPOSITION. i There is a PV-quotient for the action of H on X.

Ž .ii The action of H on X admits no AV-quotient.

Proof. Note that X arises from the fan � in �4 that has � �1
Ž . Ž . 4 3cone e , e and � � cone e , e as its maximal cones. Let F: � � �1 2 2 3 4

denote the lattice homomorphism defined by

F e � e , F e � e , F e � e , F e � e � e .Ž . Ž . Ž . Ž .1 1 2 2 3 3 4 1 2

Ž . Ž . 3To prove i , set � � F � and define a system SS of fans in � byi � i
Ž . �� 44 Ž .� � � � , where i � 1, 2 and � � � � 0 see Fig. 1 .i i i 12 21
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FIGURE 1

� �According to 2, Theorem 6.7 , the toric morphism X � X defined bySS

F is a good prequotient for the action of H on X. In particular, it is a
PV-quotient.

Ž .We prove ii . Assume that there exists an AV-quotient p: X � Y for
the action of H on X. We lead this to a contradiction by presenting an
H-invariant map that does not factor through p. Consider

f : X � �3 , x , x , x , x � x x , x x , x .Ž . Ž .1 2 3 4 1 4 2 4 3

Note that
3 � 4 � � 4 � � 4 � 4f X � � � 0 � � � 0 � � � 0 � 0 .Ž . Ž .

Ž . 3In particular, f X is not open in � . We describe f in terms of fans. Let
Ž . 3 3� � cone e , e , e 
 � . Then f is just the toric morphism X � X � �1 2 3 �

� �defined by the lattice homomorphism F. Thus it follows from 1 that f is
the TV-quotient for the action of H on X.

˜By its universal property, p is surjective and there is a regular map f :
˜ ˜Y � X such that f � f � p. We claim that all fibres of f are of dimension�

Ž . 3zero. To see this let 
 � cone e � � and note that surjectivity of p3
implies

�̃1 �̃1 �̃1Y � f X � f X � f x .Ž .Ž .Ž .� 
 �1

� � �By 1, Example 3.1 , the map f � f : X � X is an algebraicX1 � �� 1 11

quotient for the action of H on X . Hence we obtain a regular map g :�1

X � Y and a commutative diagram�1

f �

X 
 X X� �

�

1

pf1 f̃�

�

g �

X Y�1
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˜Note that f � g is necessarily an isomorphism and hence g is an open
Ž � .4 Ž .embedding. Let T � � be the acting torus of p and set 
 � cone e4 4

4 � �
 � . By surjectivity of p and 2, Fibre Formula 3.5 , we have

�̃1 �1f X � p f X � p X � T 
 x � p X � g X .Ž . Ž . Ž . Ž . Ž .Ž .� � � 
 � �1 1 1 4 1 1

˜Ž .Here the third equality is a consequence of Lemma 2.1 ii . So f is injective
�̃1 ˜ �̃1Ž . Ž .on f X . A similar argument shows that f is injective on f X . To� 
1 �̃1Ž .verify the claim, we still have to consider the fibre f x . Again by�

Ž .Lemma 2.1 ii one has

�1f̃ x � p T 
 x 
 p T 
 x 
 p T 
 x � p T 
 xŽ . Ž . Ž . Ž .Ž .� � 
 
 �2 4 4 1

�1˜� f T 
 x .Ž .1 � 1

�̃1Ž .Here T denotes the acting torus of X . Since the closure of f T 
 x is1 � 1 �
�1˜ Ž .contained in f T 
 x , the above inclusion yields1 �

�1 �1 �1 �1˜ ˜ ˜ ˜f T 
 x � f T 
 x � f x � f T 
 x ,Ž .Ž . Ž .Ž .1 � 1 � � 1 �1 1 1

�̃1 �̃1Ž . Ž .i.e., f x is contained in the closure of f T 
 x . Moreover, we know� 1 � 1�̃1 �̃1Ž . Ž . Ž .that f T 
 x � g T 
 x is locally closed of dimension one. Thus f x� � �1 1

is of dimension zero and our claim is proved.
˜To conclude the proof, observe that by Zariski’s Main Theorem, f is an

Ž .open embedding. This contradicts the fact that f X is not open in X .�

In fact the arguments used in our proof are chosen to work also in the
Ž � �.category of analytic spaces for the existence of g use 7 . Thus we obtain:

5.2. PROPOSITION. The action of H on X does not admit categorical
quotients in the categories of analytic and algebraic spaces.

6. A ��-ACTION ADMITTING NEITHER AN
AV-QUOTIENT NOR A PV-QUOTIENT

Let X denote the smooth four-dimensional toric variety obtained by
gluing the two affine charts X � �4 and X � �3 � �� along the1 2

Ž � .2common subset � � � , using the gluing map

t , t , t , t � t t 2 , t�1 , t , t .Ž . Ž .1 2 3 4 1 2 2 3 4

Ž � .4Let T � � denote the acting torus of X. We consider the action of
the one-dimensional subtorus H 
 T on X, where

H � t�2 , 1, t , t ; t � �� .� 4Ž .
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6.1. PROPOSITION. There is neither an AV-quotient nor a PV-quotient for
the action of H on X.

Proof. We will consider the TV-quotient f : X � X � for the action of
H on X, which will turn out to be non-surjective. The assumption that f
factors through a surjective H-invariant regular map onto a complex
prevariety will then lead to a contradiction.

As before, we first describe the situation in terms of fans. Let e , . . . , e1 4
denote the canonical basis vectors of �4 and let � be the fan in �4 with
the maximal cones

� � cone e , e , e , e and � � cone e , 2 e � e , e .Ž . Ž .1 1 2 3 4 2 1 1 2 3

Note that � 
 � is the cone spanned by e and e . The toric variety X1 2 1 3 �

associated to � equals X. In order to describe f , consider the fan �
� in �3

with the maximal cones

� � cone e � e , e � e , e � e ,Ž .1 1 2 1 3 1 3

� � cone e � e , e � e , e � e .Ž .2 1 2 1 3 1 3

Then f : X � X � arises from the map F: �4 � �3 of the fans � and �
�

that, with respect to the canonical bases, is given by the matrix

1 1 1 1
.0 �1 0 0

0 0 1 �1

Ž . Ž .Note that F � � � , whereas F � � � . More precisely, there is� 1 1 � 2 2
� Ž .exactly one cone in � whose relative interior does not intersect F � �� 1

Ž . Ž . Ž .F � , namely the face � of � spanned by 1, 1, 0 and 1, 0, �1 .2 2
� Ž .�Let T denote the acting torus of X . Then we obtain f X � X �� � ��

Ž . �T � 
 x . In particular, f is not surjective and f X is not open in X .� � �

Now, assume that there is an AV- or a PV-quotient for the action of H
on X . Then, in both cases, we have a surjective regular H-invariant map�

˜ �p: X � Y onto a complex prevariety Y and a regular map f : Y � X� �
˜such that the diagram f � f � p.

˜ Ž .Note that f is compatible with the induced set theoretical action of T
on Y, i.e., if � : T � T � denotes the homomorphism of the acting tori

˜ ˜Ž . Ž . Ž .associated to f , then we have f t 
 y � � t 
 f y for all t � T and y � Y.
˜ �We claim that f has finite fibres and is injective over an open set of X .�

�First consider the open affine toric subvariety X of X . By 1, Example� �1

�3.1 , the toric morphism f : X � X defined by F is the algebraic1 � �1 1

quotient for the action of H on X . Thus, there is a regular map g :�1
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X � Y such that the diagram�1

f �

�X 
 X X� � �

�

1

pf1 f̃�

�

g �

X Y�1

˜Ž � �.is commutative see, e.g., 2, Proposition 6.4 . It follows that f � g defines
an automorphism of X . Since p is surjective we have�1

�̃1 �1f X � p f X � p X � g X .Ž . Ž . Ž . Ž .Ž .� � � �1 1 1 1

˜ �̃1 �Ž .Consequently, f is injective on the set f X . Now consider � ��1

Ž . � Ž �.cone e , 2 e � e � � and set � � F � . By looking at the toric mor-3 1 2 �

phism f : X � � X � induced by f , we obtain with similar arguments as2 � �

˜ Ž .�above that f is injective over X see Fig. 2 .�
�̃1Ž .Thus, to obtain our claim it remains to consider the fibre f x . Note� 2� �that according to 2, Fibre Formula 3.5 one has

f�1 x � T 
 x � T 
 x ,Ž .� � �2 2

Ž . Ž . 4where � � cone e , 2 e � e � �. Let 
 � cone e 
 � . We claim that1 1 2 1
Ž .T 
 p x is locally closed of dimension one. This follows from the fact that


Ž . � Ž .T 
 f x and T 
 f x are locally closed of dimension one.1 1 
 


Now note that 
 	 � and 
 	 � . Consequently T 
 x and T 
 x are2 � �2

contained in the closure of the orbit T 
 x . This implies


T 
 p x � T 
 p x 
 T 
 p x .Ž . Ž . Ž .� � 
2

FIG. 2. Intersection of �
� with the plane defined by x � 1 in �3.



EXISTENCE OF CATEGORICAL QUOTIENTS 83

Ž . Ž . Ž . � Ž .Since f x � f x � f x , we obtain that the T -orbits through f x� 
 � �2 2
Ž . � Ž .and f x do not meet T 
 f x . Thus we have even� 


T 
 p x � T 
 p x 
 T 
 p x �T 
 p x .Ž . Ž . Ž . Ž .� � 
 
2

�̃1 �1Ž . Ž Ž ..In other words, f x � p f x consists of finitely many points.� �2 2

˜Thus we verified that f has finite fibres.
Ž .Now, cover Y by open affine charts U , . . . , U and set U � T 
 p x �1 r 0

�̃1 � � ˜ ˜Ž . �f T 
 x . Then each restriction f � f has finite fibres and is injectiveU0 i i

along the nonempty open set U 
 U. Since Y and X � are normal, wei �

˜ ˜Ž . Ž .obtain that the f are open maps. This yields openness of f X � � f Ui i i
and we arrive at a contradiction.

7. A ��-ACTION WITH AV-QUOTIENT BUT WITHOUT
PV-QUOTIENT

We consider the smooth three-dimensional toric variety X obtained
3 Ž � .2from gluing two copies of � along the open subset � � � by the map

x , x , x � x x 2 x 2 , x�1 , x�1 .Ž . Ž .1 2 3 1 2 3 2 3

In terms of convex geometry, X is the toric variety arising from the fan �
in �3 that has the maximal cones

� � cone e , e � e , e � e � e ,Ž .1 1 1 2 1 2 3

� � cone e , e � e , e � e � e .Ž .2 1 1 2 1 2 3

˜ ˜Moreover, let X denote the affine toric variety defined by the fan � of
Ž . 2 3 2 Ž .faces of � � cone e � e , e � e in � . Let P: � � � , x, y, z �1 2 1 2

Ž . Ž .x, y denote the projection see Fig. 3 .
˜Ž . Ž .Then P � � � , so P is a map of the fans � and �. Set L � ker P .� i

Ž �Note that P is universal with respect to L-invariant maps of fans see 1,
�. ŽSect. 2 and also with respect to L-invariant maps of systems of fans see

� �.2, Sect. 7 .
Now let H be the one-dimensional subtorus of the acting torus T �

Ž � .3� of X that corresponds to L. Moreover, let X 
 X be the affinei
�open subset corresponding to � . Then Proposition 3.2 and 1, Examplei

�3.1; 2, Sect. 7 yield the following

˜7.1. PROPOSITION. The toric morphism p: X � X associated to P satisfies

Ž .i p is the AV-quotient for the action of H.
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FIGURE 3

Ž .ii p is the TP-quotient for the action of H.
˜Ž . �iii The restriction p � p : X � X is the algebraic quotient.Xi ii

But as we will show below, p does not satisfy the universal property of a
PV-quotient in the category of arbitrary prevarieties. In fact, we even
obtain

7.2. PROPOSITION. The action of H on X admits no PV-quotient.

Proof. Assume that there is a PV-quotient q: X � Y. We claim that Y
is a toric prevariety and q a toric morphism. Note that there is an induced
Ž .set theoretical T-action on Y such that q is equivariant. By the universal
property of q and Proposition 7.1, there are commutative diagrams

X 
 X

�
i

�

p
p qi �� �˜ ˜X Y Xr ri

of T-equivalent regular maps. Since r � r � id holds, each r is injective,˜i X i
so Zariski’s Main Theorem implies that the r are open embeddings. Sincei
X is covered by the X and q is surjective, we obtain that Y is covered byi
the T-stable affine open subspaces

˜Y � r X � q X .Ž .Ž .i i i

In particular it follows that the induced T-action on Y is regular. So Y is a
toric prevariety and q is a toric morphism. This readily implies that q
satisfies the universal property of a TP-quotient for the action of H on X.
According to Proposition 7.1, we may assume q � p.
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In order to show that p is not a PV-quotient we construct a map f :
X � Z of prevarieties that does not factor through p. Consider the maps
p defined above and the distinguished points.i

x � x � X , x � x � X ,1 
 1 2 
 21 2

Ž . Ž .where 
 � � e � e and 
 � � e � e � e . Note that the1 � 0 1 2 2 � 0 1 2 3
Ž . Ž . Ž .point z � p x � p x does not lie in p X 
 X . Consequently the1 2 1 2

maps p glue together to a regular mapi

˜ ˜f : X � X � X � X � X � Z˜1 X 
 X 2 X �� z41 2

of prevarieties. Since f separates the points x and x , there is no1 2
set-theoretical factorization of f through p.

REFERENCES

1. A. A’Campo-Neuen and J. Hausen, Quotients of toric varieties by the action of a subtorus,
Ž .Tohoku Math. J. 51 1999 , 1�12.ˆ

2. A. A’Campo-Neuen and J. Hausen, Toric prevarieties and subtorus actions, preprint,
math.AG�9912229.

3. A. Borel, ‘‘Linear Algebraic Groups,’’ 2nd ed., Springer-Verlag, New York, 1991.
4. W. Fulton, ‘‘Introduction to Toric Varieties,’’ Princeton Univ. Press, Princeton, NJ, 1993.

Ž .5. J. Kollar, Quotients spaces modulo algebraic groups, Ann. of Math. 145 1997 , 33�79.
6. H. Kraft, ‘‘Geometrische Methoden der Invariatentheorie,’’ Vieweg, Braunschweig, 1984.

Ž .7. D. M. Snow, Reductive group actions on Stein spaces, Math. Ann. 259 1982 , 79�97.


	INTRODUCTION
	1. FACTORIZATION OF REGULAR MAPS
	2. TWO CONES
	3. A CRITERION FOR THE EXISTENCE OF ANNVARIANT SEPARATION
	4. CODIMENSION TWO
	5. A  C* -ACTION WITHOUT AV-QUOTIENT BUT WITH PV-QUOTIENT
	FIGURE 1

	6. A C*-ACTION ADMITTING NEITHER AN AV-QUOTIENT NOR A PV-QUOTIENT
	FIG. 2.

	7. A  C*-ACTION WITH AV-QUOTIENT BUT WITHOUT PV-QUOTIENT
	FIGURE  3

	REFERENCES

