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We show that the heterotic supersymmetry (Killing spinor equations) and the anomaly cancellation imply
the heterotic equations of motion in dimensions five, six, seven, eight if and only if the connection on the
tangent bundle is an instanton. For heterotic compactifications in dimension six this reduces the choice
of that connection to the unique SU(3) instanton on a manifold with stable tangent bundle of degree
zero.
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1. Introduction. Field and Killing-spinor equations

The bosonic fields of the ten-dimensional supergravity which
arises as low energy effective theory of the heterotic string are the
spacetime metric g , the NS three-form field strength H , the dilaton
φ and the gauge connection A with curvature F A . The bosonic ge-
ometry considered in this Letter is of the form R1,9−d × Md where
the bosonic fields are non-trivial only on Md , d � 8. One consid-
ers the two connections ∇± = ∇ g ± 1

2 H , where ∇ g is the Levi-
Civita connection of the Riemannian metric g . Both connections
preserve the metric, ∇± g = 0 and have totally skew-symmetric
torsion T ±

i jk = gsk(T ±)s
i j = ±Hijk , respectively.

The bosonic part of the ten-dimensional supergravity action in
the string frame is [1]

S = 1

2k2

∫
d10x

√−ge−2φ

[
Scalg + 4

(∇ gφ
)2 − 1

2
|H|2

− α′

4

(
Tr

∣∣F A
∣∣2 − Tr |R|2)

]
, (1.1)

where R is the curvature of a connection ∇ on the tangent bundle
and F A is the curvature of a connection A on a vector bundle E .

The string frame field equations (the equations of motion in-
duced from the action (1.1)) of the heterotic string up to two-loops
[2] in sigma model perturbation theory are (we use the notations
in [3])
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i

(
e−2φ

(
F A)i

j

) = 0. (1.2)

The field equation of the dilaton φ is implied from the first two
equations above.

A heterotic geometry will preserve supersymmetry if and only
if, in 10 dimensions, there exists at least one Majorana–Weyl
spinor ε such that the supersymmetry variations of the fermionic
fields vanish, i.e. the following Killing-spinor equations hold [4]

δλ = ∇mε =
(

∇ g
m + 1

4
HmnpΓ np

)
ε = ∇+ε = 0;

δΨ =
(

Γ m∂mφ − 1

12
HmnpΓ mnp

)
· ε =

(
dφ − 1

2
H

)
· ε = 0;

δξ = F A
mnΓ

mnε = F A · ε = 0, (1.3)

where λ, Ψ , ξ are the gravitino, the dilatino and the gaugino fields,
respectively and · means Clifford action of forms on spinors.

The instanton equation, the last equation in (1.3) means that
the curvature 2-form F A is contained in the Lie algebra of the Lie
group which is the stabilizer of the spinor ε . It is known that in
dimension 5, 6, 7 and 8 the stabilizer is the group SU(2), SU(3),
G2 and Spin(7), respectively. An instanton (a solution to the last
equation in (1.3)) in dimension 5, 6, 7 and 8 is a connection with
curvature 2-from which is contained in the lie algebra su(2), su(3),
g2 and spin(7), respectively [5,4,6–10].

brought to you by CORE

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82425695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:ivanovsp@fmi.uni-sofia.bg
http://dx.doi.org/10.1016/j.physletb.2010.01.050
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


S. Ivanov / Physics Letters B 685 (2010) 190–196 191
The Green–Schwarz anomaly cancellation mechanism requires
that the three-form Bianchi identity receives an α′ correction of
the form

dH = α′

4

(
Tr(R ∧ R) − Tr

(
F A ∧ F A))

. (1.4)

A class of heterotic-string backgrounds for which the Bianchi
identity of the three-form H receives a correction of type (1.4)
are those with (2,0) world-volume supersymmetry. Such mod-
els were considered in [11]. The target-space geometry of (2,0)-
supersymmetric sigma models has been extensively investigated in
[11,4,12]. Recently, there is revived interest in these models [13–
15,9,3] as string backgrounds and in connection to heterotic-string
compactifications with fluxes [16–23].

In writing (1.4) there is a subtlety to the choice of connec-
tion ∇ on Md since anomalies can be cancelled independently of
the choice [24]. Different connections correspond to different reg-
ularization schemes in the two-dimensional worldsheet non-linear
sigma model. Hence the background fields given for the particular
choice of ∇ must be related to those for a different choice by a
field redefinition [25]. Connections on Md proposed to investigate
the anomaly cancellation (1.4) are ∇ g [4,9], ∇+ [14], ∇− [1,16,3,
26], Chern connection ∇c when d = 6 [4,20–23].

It is known [27,15] ([3] for dimension d = 6), that the equations
of motion of type I supergravity (1.2) with R = 0 are automatically
satisfied if one imposes, in addition to the preserving supersym-
metry equations (1.3), the three-form Bianchi identity (1.4) taken
with respect to a flat connection on TM, R = 0.

According to no-go (vanishing) theorems (a consequence of the
equations of motion [28,27]; a consequence of the supersymme-
try [29,30] for SU(n)-case and [9] for the general case) there are
no compact solutions with non-zero flux and non-constant dilaton
satisfying simultaneously the supersymmetry equations (1.3) and
the three-form Bianchi identity (1.4) if one takes flat connection
on TM, more precisely a connection satisfying Tr(R ∧ R) = 0. There-
fore, in the compact case one necessarily has to have a non-zero
term Tr(R ∧ R). However, under the presence of a non-zero curva-
ture 4-form Tr(R ∧ R) the solution of the supersymmetry equations
(1.3) and the anomaly cancellation condition (1.4) obeys the sec-
ond and the third equations of motion but does not always satisfy
the Einstein equation of motion (the first equation in (1.2)) [3].
A quadratic expression for R which is necessary and sufficient
condition in order that (1.3) and (1.4) imply (1.2) in dimension
five, six, seven and eight are presented in [31–33]. In particular,
if R is an instanton the supersymmetry equations together with
the anomaly cancellation condition imply the equations of mo-
tion.

In this note we show that the converse statement holds. The
main goal of the Letter is to prove

Theorem 1.1. The heterotic supersymmetry equations (1.3) together
with the anomaly cancellation (1.4) imply the heterotic equations of mo-
tion (1.2) on a manifold in dimensions five, six, seven and eight if and
only if the connection on the tangent bundle in (1.4) is an SU(2), SU(3),
G2 and Spin(7) instanton in dimension five, six, seven and eight, respec-
tively.

In the compact case in dimension six, it is shown in [32, The-
orem 1.1b] that the no-go theorems in [29,30] force the flux H to
vanish and the dilaton φ to be a constant for any compact solution
to the heterotic supersymmetry (1.3) such that the (−)-connection
on the tangent bundle is an SU(3)-instanton, i.e. such a solution
is a Calabi–Yau manifold. This result combined with Theorem 1.1
leads to
Corollary 1.2. In dimension six, a compact solution to the heterotic su-
persymmetry equations (1.3) satisfying anomaly cancellation (1.4) taken
with respect to the (−)-connection imply the heterotic equations of mo-
tion (1.2) if and only if the flux H is zero, i.e. the solution is a Calabi–Yau
manifold.

Remark 1.3. Theorem 1.1 states that the heterotic equations of mo-
tion (1.2) are consequences of the heterotic supersymmetry (1.3)
and the anomaly cancellation (1.4) if and only if the connection
on the tangent bundle is of instanton type. On a compact solution
to the gravitino and dilatino Killing spinor equations in dimension
six, i.e. on a compact conformally balanced hermitian six-manifold
with a holomorphic complex volume form [4] if there exists an
SU(3)-instanton it is unique. Indeed, the non-Kähler version of the
Donaldson–Uhlenbeck–Yau theorem [34,35] established by Li–Yau
[36] asserts via the Kobayashi–Hitchin correspondence that there
exists a unique SU(3)-instanton (Yang–Mills connection) if and
only if the holomorphic tangent bundle is stable of degree zero.
Thus, Theorem 1.1 shows that the choice of the connection taken
on the tangent bundle in (1.3) for compact supersymmetric het-
erotic solutions to (1.2) in dimension six is fixed with the unique
SU(3)-instanton.

This suggests that in order to find compact heterotic super-
symmetric solutions to the equations of motion (1.2) in dimension
six one needs to start with a conformally balanced hermitian six
manifold admitting holomorphic complex volume form with stable
tangent bundle of degree zero and take the corresponding unique
SU(3)-instanton in (1.4) and (1.1).

Six-dimensional compact supersymmetric solutions with non-
zero flux H and constant dilaton of this kind are presented in [32].

In the context of perturbation theory the curvature R− of the
(−)-connection is a one-loop-instanton due to the well-known
identity R+

i jkl − R−
kli j = 1

2 dTijkl , the first equation in (1.3) and (1.4)
taken with respect to the (−)-connection. We thank the referee
reminding this point to us. In this case, according to Theorem 1.1,
the supersymmetry (1.3) together with the anomaly cancellation
(1.4) imply the heterotic equations of motion (1.2) up to two-loops.
In fact the SU(3) case in dimension six has originally been dealt
in [3]. The G2 case in dimension seven has been investigated in
[37, Section 6] when the anomaly cancellation has no zeroth or-
der terms in α′ . Compact up to two-loops solutions in dimension
six with non-zero flux H and non-constant dilaton involving the
(−)-connection are constructed in [38].

If the anomaly cancellation has zeroth order term in α′ (for
example in heterotic near horizons associated with AdS3 investi-
gated in the very recent paper [39]) then R− is no longer one-
loop instanton. In particular, in dimension six, Corollary 1.2 and
Remark 1.3 is applicable suggesting a possible lines for further in-
vestigations.

One can take the anomaly contribution which appears at or-
der α′ as exact. Suppose that (1.4) is exact in the first order in α′ .
Then, in dimension six Corollary 1.2 applies and arguments in Re-
mark 1.3 could be helpful in further developments.

Conventions: We choose a local orthonormal frame e1, . . . , ed ,
identifying it with the dual basis via the metric and write ei1 i2...ip

for the monomial ei1 ∧ ei2 ∧ · · · ∧ eip .
We rise and lower the indices with the metric and use the sum-

mation convention on repeated indices. For example, BijkC i jk =
B jk

i C i
jk = BijkCi jk = ∑n

i jk=1 BijkCi jk .

For a p-form β we have the convention β = 1
p!βi1 i2...ip ei1i2...ip .

The tensor norm is denoted with ‖.‖2. For example ‖B‖2 =
Bijk Bi jk = B jk Bi = Bijk Bi jk .
i jk
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The curvature 2-forms Rij of a connection ∇ are defined by
Rij = [∇i,∇ j] − ∇[i, j] , Rijkl = Rs

i jk gls .
The 4-form Tr(R ∧ R) reads Tr(R ∧ R)i jkl = 2(Rijab Rklab +

R jkab Rilab + Rkiab R jlab).
The Hodge star operator on a d-dimensional manifold is de-

noted by ∗d .

2. Geometry of the heterotic supersymmetry

Geometrically, the vanishing of the gravitino variation is equiv-
alent to the existence of a non-trivial real spinor parallel with
respect to the metric connection ∇+ with totally skew-symmetric
torsion T = H . The presence of ∇+-parallel spinor leads to re-
striction of the holonomy group Hol(∇+) of the torsion connection
∇+ . Namely, Hol(∇+) has to be contained in SU(2), d = 5 [40,41,
31], SU(3), d = 6 [4,29,30,9,42,14,17,18], the exceptional group G2,
d = 7 [40,13,9,43], the Lie group Spin(7), d = 8 [13,44,9]. A de-
tailed analysis of the induced geometries is carried out in [9] and
all possible geometries (including non-compact stabilizers) are in-
vestigated in [45–48].

A consequence of the gravitino and dilatino Killing spinor equa-
tions is an expression of the Ricci tensor Ric+

mn = R+
imnj gi j of the

(+)-connection, and therefore an expression of the Ricci tensor
Ricg of the Levi-Civita connection, in terms of the suitable trace
of the torsion three-form T = H (the Lee form) and the exterior
derivative of the torsion form dT = dH (see [40] for dimensions 5
and 7, [29] for dimension 6 (more precisely for any even dimen-
sion) and [44] for dimension 8 as well as [31–33]).

We recall that the Ricci tensors of ∇ g and ∇+ are connected
by (see e.g. [40,33])

Ricg
mn = 1

2

(
Ric+

mn + Ric+
nm

) + 1

4
Tmpq T pq

n ,

Ric+
mn − Ric+

nm = (δT )mn = −(∗dd ∗d T )mn. (2.1)

2.1. Dimension five. Proof of Theorem 1.1 in d = 5

The existence of ∇+-parallel spinor in dimension 5 determines
an almost contact metric structure whose properties as well as
solutions to gravitino and dilatino Killing-spinor equations are in-
vestigated in [40,41,31].

We recall that an almost contact metric structure consists of
an odd-dimensional manifold M2k+1 equipped with a Riemannian
metric g , vector field ξ of length one, its dual 1-form η as well
as an endomorphism ψ of the tangent bundle such that ψ(ξ) = 0,
ψ2 = −id+η⊗ξ , g(ψ.,ψ.) = g(.,.)−η⊗η. In local coordinates we
also have ψ i

jξ
j = 0, ψ i

sψ
s
j = −δi

j + η jξ
i , gstψ

s
i ψ

t
j = gij − ηiη j . The

Reeb vector field ξ is determined by the equations η(ξ) = ηsξ
s = 1,

(ξ�dη)i = dηsi ξ
s = 0, where � denotes the interior multiplication.

The fundamental form F is defined by F (.,.) = g(.,ψ.), Fij = gisψ
s
j

and the Nijenhuis tensor N of an almost contact metric structure
is given by N = [ψ.,ψ.] + ψ2[.,.] − ψ[ψ.,.] − ψ[.,ψ.] + dη ⊗ ξ .

An almost contact metric structure is called normal if N = 0;
contact if dη = 2F ; quasi-Sasaki if N = dF = 0; Sasaki if N = 0,
dη = 2F . The Reeb vector field ξ is Killing in the last two
cases [49].

An almost contact metric structure admits a linear connec-
tion ∇+ with torsion 3-form preserving the structure, i.e. ∇+ g =
∇+ξ = ∇+ψ = 0, if and only if the Nijenhuis tensor is totally
skew-symmetric, and the vector field ξ is a Killing vector field [40].
In fact, if the Nijenhuis tensor is totally skew-symmetric then ξ is
a Killing vector field exactly when [41, Proposition 3.1], [31]

(ξ�dF )i j = dFsi j ξ
s = 0 ⇔ (ξ�N)i j = Nsijξ

s = 0. (2.2)
In this case the torsion connection is unique. The torsion T of ∇+
is expressed by [40,41,31] T = η ∧ dη + dψ F + N , where dψ F =
−dF (ψ.,ψ.,ψ), (dψ F )i jk = −dFstrψ

s
i ψ

t
jψ

r
k . In particular one has

dηi j = (ξ�T )i j = Tsi jξ
s , (ξ�dη)i = Tstiξ

sξ t = 0, dη(.,.) = dη(ψ.,ψ.),
dηi j = dηst ψ s

i ψ
t
j .

Since ∇+ξ = 0 the restricted holonomy group Hol(∇+) of ∇+
contains in U (k) and Hol(∇+) ⊂ SU(k) is equivalent to the follow-
ing curvature condition found in [40, Proposition 9.1]

R+
i jkl F kl = 0 ⇔ R+

ki jk = Ric+
i j = −∇+

i θ5
j − 1

4
ψ s

j dTislm F lm,

θ5
i = 1

2
ψ s

i Tskl F kl = 1

2
dFikl F

kl, (2.3)

where θ5 is the Lee form defined in [41]. Consequently, θ5(ξ) = 0.
In dimension five the Nijenhuis tensor is totally skew-symmetric

exactly when it vanishes [50]. In this case ξ is a Killing vector field
[49], the Lee form determines completely the three form dF due
to (2.2), dF = θ5 ∧ F . The dilatino equation admits a solution if and
only if ([41], Proposition 5.5)

2 dφ = θ5, ∗Hdη = −dη, (2.4)

where ∗H denote the Hodge operator acting in the four-dimensional
orthogonal complement H of the vector ξ , H = Kerη. In particular,
there is no solution on any Sasaki 5-manifold.

The torsion (the NS three-form H) of a solution to gravitino
and dilatino Killing spinor equations in dimension five is given by
[40,31]

H = T = η ∧ dη + 2dψφ ∧ F . (2.5)

An equivalent formulation is presented in [31]. The gravitino
Killing spinor equation defines a reduction of the structure group
SO(5) to SU(2) which is described in terms of forms by Conti
and Salamon in [51] (see also [52]) as follows: an SU(2)-structure
on five-dimensional manifold M5 is (η,ω1,ω2,ω3), where η is a
1-form and ω1,ω2,ω3 are 2-forms on M satisfying ωq ∧ωr = δqr v ,
q, r = 1,2,3, v ∧ η �= 0, for some 4-form v , and X�ω1 = Y �ω2 ⇒
ω3(X, Y ) � 0.

The gravitino and dilatino Killing-spinor equations have a solu-
tion exactly when there exists an SU(2)-structure (η,ω1,ω2,ω3)
satisfying [31] dωp = θ5 ∧ ωp , θ5(ξ) = 0, θ5 = 2 dφ, ∗H dη = −dη.
This means that the ‘conformal’ structure η̄ = η, ω̄p = e−2φωp is
quasi Sasaki with ∗Hdη = −dη.

In addition to these equations, the vanishing of the gaugino
variation requires the 2-form F A to be of instanton type [5,4,6–10].
In dimension five, an SU(2)-instanton is a connection A with cur-
vature two form F A ∈ su(2). The SU(2)-instanton condition reads

(
ξ�F A)

n = ξ s F A
sn = 0, F A(ei,ψei) = F A

st F st = 0,

ψ s
mψ t

n F A
mn − F A

st = 0. (2.6)

2.1.1. Theorem 1.1 in dimension 5

Proof. We have to investigate only the Einstein equation of mo-
tion in dimension 5. First we observe that ddψφ(ξ, X) = −ξψ Xφ +
ψ[ξ, X]φ = 0, where we applied to the dilaton φ the identity
0 = (Lξψ)X = [ξ,ψ X] − ψ[ξ, X], L is the Lie derivative, valid
on any normal almost contact manifold [49], and use ξ(φ) = 0.
Then we calculate from (2.5) that ψ s

j dTislm F lm = −4 dηsi dηsj +
[(2ddψφ)st F st − 8‖dφ‖2]gij which implies ψ s

j dTislm F lm =
ψ s

i dT jslm F lm . Use the latter identity, substitute (2.4) into the sec-
ond equation of (2.3) and the obtained equality insert into (2.1)
using 2∇ g = 2∇+ − T to get [31]
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Ricg
i j = −2∇ g

i dφ j − 1

4
ψ s

j dTislm F lm + 1

4
Tmpq T pq

n . (2.7)

Substitute (1.4) into (2.7), use (2.6) and compare the result with
the first equation in (1.2) to conclude that the supersymmetry
equations (1.3) together with the anomaly cancellation (1.4) imply
the first equation in (1.2) if and only if the next equality holds [31]

Rmstr Rstr
n = 1

2
[Rmsi j Rtri j + Rmti j Rrsi j + Rmri j Rsti j]F trψ s

n. (2.8)

Multiplying (2.8) with ξmξn we obtain ‖ξm Rmijk‖2 = 0. Hence,
ξ�R = 0 which implies the first equation in (2.6). Thus, the cur-
vature 2-form Rij is defined on H. The restriction of ψ on H, ψ |H
is an almost complex structure on H. The curvature two-form Rij
decomposes into two orthogonal parts R ′ and R ′′ under the action
of ψ as follows

R ′
i j = 1

2

(
Rij + ψ s

i ψ
t
j Rst

)
, R ′′

i j = 1

2

(
Rij − ψ s

i ψ
t
j Rst

)
,

ψ s
i ψ

t
j R ′

st = R ′
i j, ψ s

i ψ
t
j R ′′

st = −R ′′
i j. (2.9)

An application of (2.9) to (2.8) yields

2
(∥∥R ′∥∥2 + ∥∥R ′′∥∥2) = 2Rmstr Rstr

m

= −∥∥Rmstr F ms
∥∥2 + 2

∥∥R ′∥∥2 − 2
∥∥R ′′∥∥2

.

Consequently, ‖Rmstr F ms‖2 +4‖R ′′‖2 = 0 which is equivalent to the
second and the third equalities in (2.6). Hence, R is an SU(2)-
instanton. �
2.2. Dimension six. Proof of Theorem 1.1 in d = 6

The necessary and sufficient condition for the existence of solu-
tions to the first two equations in (1.3) in an even dimension were
derived by Strominger [4] and investigated by many authors since
then. Solutions are complex conformally balanced manifold with
non-vanishing holomorphic volume form satisfying an additional
condition.

In dimension six any solution to the gravitino Killing spinor
equation reduces the holonomy group Hol(∇+) ⊂ SU(3). This de-
fines an almost hermitian structure (g, J ) with non-vanishing
complex volume form [4] which is preserved by the torsion con-
nection. We adopt for the Kähler form Ωi j = gis J s

j . The Lee form

θ6 is defined by θ6
i = −(∗6d ∗6 Ω)s J s

i = 1
2 dΩistΩ

st .
An almost hermitian structure admits a (unique) linear connec-

tion ∇+ with torsion 3-form preserving the structure, i.e. ∇+ g =
∇+ J = 0, if and only if the Nijenhuis tensor is totally skew-
symmetric [40].

In addition, the dilatino equation forces the almost complex
structure to be integrable and the Lee form to be exact determined
by the dilaton. The torsion (the NS three-form H) is given by [4]

Hijk = Tijk = − J s
i J t

j J r
kdΩstr, θ6

i = 2 dφi = 1

2
Jk

i TkstΩ
st .

(2.10)

Since ∇+ g = ∇+ J = 0 the restricted holonomy group Hol(∇+)

of ∇+ contains in U (k) and Hol(∇+) ⊂ SU(k) is equivalent to the
next curvature condition found in [29, Proposition 3.1]

R+
i jklΩ

kl = 0 ⇔ Ric+
i j = −∇+

i θ6
j − 1

4
J s

j dTislmΩ lm. (2.11)

In addition to these equations, the vanishing of the gaugino
variation requires the 2-form F A to be of instanton type. In dimen-
sion six, an SU(3)-instanton (or a hermitian-Yang-Mils connection)
is a connection A with curvature two form F A ∈ su(3). The SU(3)-
instanton condition is

F A(ei, J ei) = F A
stΩ

st = 0, J s
m J t

n F A
mn − F A

st = 0. (2.12)

In complex coordinates the condition (2.12) reads F A
μν =

F A
μ̄ν̄ = 0, F A

μν̄Ωμν̄ = 0 which is the well-known Donaldson–Uh-
lenbeck–Yau instanton.

2.2.1. Theorem 1.1 in dimension 6

Proof. We need to investigate the Einstein equation of motion in
dimension 6. Substitute the second equation of (2.10) into (2.11)
and the obtained equality insert into (2.1) and use 2∇ g = ∇+ − T
to get [29]

Ricg
i j = −2∇ g

i dφ j − 1

4
J s

j dTislmΩ lm + 1

4
Tmpq T pq

n , (2.13)

where we used that on a complex manifold dT = 2
√−1∂∂̄Ω is a

(2,2)-form and therefore J s
j dTislmΩlm is symmetric in i and j.

Substitute (1.4) into (2.13), use (2.12) and compare the result
with the first equation in (1.2) to conclude that the supersymmetry
equations (1.3) together with the anomaly cancellation (1.4) imply
the first equation in (1.2) if and only if the next equality holds [32]

Rmstr Rstr
n = 1

2
[Rmsi j Rtri j + Rmti j Rrsi j + Rmri j Rsti j]Ω tr J s

n. (2.14)

The two-form Rij decomposes into two orthogonal parts R ′ and R ′′
under the action of J as follows

R ′
i j = 1

2

(
Rij + J s

i J t
j Rst

)
, R ′′

i j = 1

2

(
Rij − J s

i J t
j Rst

)
,

J s
i J t

j R ′
st = R ′

i j, J s
i J t

j R ′′
st = −R ′′

i j . (2.15)

We derive from (2.14) and (2.15) that

2
(∥∥R ′∥∥2 + ∥∥R ′′∥∥2) = 2Rmstr Rstr

m

= −∥∥RmstrΩ
ms

∥∥2 + 2
∥∥R ′∥∥2 − 2

∥∥R ′′∥∥2
.

Hence, |RmstrΩ
ms‖2 + 4‖R ′′‖2 = 0 which is precisely the SU(3)-

instanton condition (2.12) for R . �
Remark 2.1. Note that Theorem 1.1, Corollary 1.2 and Remark 1.3
are valid for any even dimension.

2.3. Dimension seven. Proof of Theorem 1.1 in d = 7

The existence of ∇+-parallel spinor in dimension 7 determines
a G2 structure whose properties as well as solutions to gravitino
and dilatino Killing-spinor equations are investigated in [40,13,43,
15,9,33].

We briefly recall the notion of a G2 structure. Consider the
three-form Θ on R

7 given by

Θ = e127 − e236 + e347 + e567 − e146 − e245 + e135.

The subgroup of GL(7,R) fixing Θ is the Lie group G2 of dimen-
sion 14. The 3-form Θ corresponds to a real spinor and therefore,
G2 can be identified as the isotropy group of a non-trivial real
spinor.

The Hodge star operator supplies the 4-form ∗7Θ given by

∗7Θ = e3456 + e1457 + e1256 + e1234 + e2357 + e1367 − e2467.

We have the well-known formula (see e.g. [53,9,54,55])
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∗7Θi jpq ∗7 Θklpq = 4δikδ jl − 4δilδ jk + 2 ∗7 Θi jkl. (2.16)

A seven-dimensional Riemannian manifold M is called a G2-mani-
fold if its structure group reduces to the exceptional Lie group G2.
The existence of a G2-structure is equivalent to the existence of
a global non-degenerate three-form which can be locally written
as (2.16).

If ∇ gΘ = 0 then the Riemannian holonomy group is contained
in G2. It was shown by Gray [56] (see also [57–59]) that this con-
dition is equivalent to dΘ = d ∗ Θ = 0. The Lee form θ7 is defined
by [60] θ7 = − 1

3 ∗7 (∗7 dΘ ∧ Θ) = 1
3 ∗7 (∗7d ∗7 Θ ∧ ∗7Θ).

The precise conditions to have a solution to the gravitino Killing
spinor equation in dimension 7 were found in [40]. Namely, there
exists a non-trivial parallel spinor with respect to a G2-connection
with torsion 3-form T if and only if there exists a G2-structure
Θ satisfying d ∗7 Θ = θ7 ∧ ∗7Θ . In this case, the torsion con-
nection ∇+ is unique and the torsion 3-form T is given by T =
1
6 (dΘ,∗7Θ)Θ −∗7 dΘ +∗7(θ

7 ∧Θ). Applying Theorem 4.8 in [40]
and the identity ∗7(θ

7 ∧ Θ) = −(θ7� ∗7 Θ) we can write

θ7
s = − 1

18

(
(∗7 dΘ)i jk ∗7 Θsi jk

)
, Tijk ∗7 Θsi jk = −6θ7

s . (2.17)

The necessary conditions to have a solution to the system of di-
latino and gravitino Killing spinor equations were derived in [13,
40,43], and the sufficiency was proved in [40,43]. The general re-
sult [40,43] states that there exists a non-trivial solution to both
dilatino and gravitino Killing spinor equations in dimension 7 if
and only if there exists a G2-structure Θ satisfying the equa-
tions d ∗7 Θ = θ7 ∧ ∗7Θ , dΘ ∧ Θ = 0, θ7 = 2 dφ, i.e. the con-

formal G2-structure (Θ̄ = e− 3
2 φΘ, ḡ = e−φ g) obeys the equations

d∗̄Θ̄ = dΘ̄ ∧ Θ̄ = 0.
The flux H of a solution to the gravitino and dilatino killing

spinor equations is [13,40,43]

H = T = − ∗7 dΘ + 2 ∗7 (dφ ∧ Θ). (2.18)

The Ricci tensor of the torsion connection was calculated in [40]
(see also [33])

Ric+
mn = 1

12
dTmjkl ∗7 Θnjkl + 1

6
∇+

m T jkl ∗7 Θnjkl. (2.19)

Using the special expression of the torsion (2.18) and (2.17),
Eq. (2.19) takes the form

Ric+
mn = 1

12
dTmjkl ∗7 Θnjkl − 2∇+

m dφn

= 1

12
dTmjkl ∗7 Θnjkl − 2∇ g

m dφn + dφs T s
mn. (2.20)

In addition to these equations, the vanishing of the gaugino vari-
ation requires the 2-form F A to be of instanton type [5,4,6–10].
A G2-instanton in dimension seven is a G2-connection A with cur-
vature F A ∈ g2. The latter can be expressed in any of the next two
equivalent ways

F A
mnΘ

mn
p = 0 ⇔ F A

mn = −1

2
F A

pq(∗7Θ)pq
mn. (2.21)

2.3.1. Theorem 1.1 in dimension 7

Proof. We have to investigate the Einstein equation of motion in
dimension 7. First we show that

dTmjkl ∗7 Θnjkl = dTnjkl ∗7 Θmjkl. (2.22)

Indeed, the second identity in (2.1) and (2.18) yield
Ric+
mn − Ric+

nm = (∗7d ∗7 T )mn = −2
(∗7(dφ ∧ dΘ)

)
mn

= 2
(∗7(dφ ∧ ∗7T )

)
mn = 2 dφs T s

mn (2.23)

which compared with the skew-symmetric part of (2.20) gives
(2.22). In particular, (2.23) gives a proof of the second equality in
(1.2) in dimension seven.

Insert (2.20) into the first equality in (2.1) and use (2.22) to get

Ricg
i j = −2∇ g

i dφ j − 1

12
dTmjkl ∗7 Θnjkl + 1

4
Tmpq T pq

n . (2.24)

Substitute (1.4) into (2.24), use (2.21) and compare the result with
the first equation in (1.2) to conclude that the supersymmetry
equations (1.3) together with the anomaly cancellation (1.4) imply
the first equation in (1.2) if and only if the next equality holds [33]

Rmstr Rstr
n = −1

6
[Rmsi j Rtri j + Rmti j Rrsi j + Rmri j Rsti j] ∗7 Θnstr .

(2.25)

The twenty-one-dimensional space of two forms Λ2(R7) decom-
poses into two parts, a seven-dimensional part Λ2

7 and a fourteen-
dimensional part Λ2

14, Λ2(R7) = Λ2
7 ⊕ Λ2

14. The Lie algebra g2 of
G2 is isomorphic to the two-forms satisfying 7 linear equations,
namely g2 ∼= Λ2

14(R
7) = {β ∈ Λ2(R7)| ∗7 (β ∧ Θ) = −β}. The space

Λ2
14(R

7) can also be described as the subspace of 2-forms β which
annihilate ∗7Θ , i.e. β ∧ ∗7Θ = 0.

For the curvature 2-form R we have the orthogonal splitting
R = R7 ⊕ R14, where

(R7)i j = 1

6
(2Rij + Rkl ∗7 Θi jkl);

(R14)i j = 1

6
(4Rij − Rkl ∗7 Θi jkl). (2.26)

The equality (2.16) and (2.26) imply

(R7)kl ∗7 Θkli j = 4(R7)i j, (R14)kl ∗7 Θkli j = −2(R14)i j . (2.27)

Using (2.27), we get from (2.25) that

6
(‖R7‖2 + |R14‖2) = 6Rmstr Rstr

m = −12‖R7‖2 + 6‖R14‖2. (2.28)

Consequently, (2.28) yields ‖R7‖2 = 0. Compare with the first
equality in (2.26) to conclude that R7 = 0 is equivalent to the
G2-instanton condition (the second equality in (2.21)), i.e. R is a
G2-instanton. �
2.4. Dimension eight. Proof of Theorem 1.1 in d = 8

The existence of ∇+-parallel spinor in dimension 8 determines
a Spin(7) structure whose properties as well as solutions to grav-
itino and dilatino Killing-spinor equations are investigated in [44,
13,9,33].

We briefly recall the notion of a Spin(7) structure. Consider R
8

endowed with an orientation and its standard inner product. Con-
sider the 4-form Φ on R

8 given by

Φ = e0127 − e0236 + e0347 + e0567 − e0146 − e0245 + e0135

+ e3456 + e1457 + e1256 + e1234 + e2357 + e1367 − e2467.

(2.29)

The 4-form Φ is self-dual and the 8-form Φ ∧ Φ coincides with
the volume form of R

8. The subgroup of GL(8,R) which fixes Φ is
isomorphic to the double covering Spin(7) of SO(7). The 4-form Φ

corresponds to a real spinor and therefore, Spin(7) can be identi-
fied as the isotropy group of a non-trivial real spinor.
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We have the well-known formula (see e.g. [9])

Φi jpqΦklpq = 6δikδ jl − 6δilδ jk + 4Φi jkl. (2.30)

A Spin(7)-structure on an 8-manifold M is by definition a re-
duction of the structure group of the tangent bundle to Spin(7).
This can be described geometrically by saying that there exists a
nowhere vanishing global differential 4-form Φ on M which can
be locally written as (2.29).

If ∇ gΦ = 0 then the holonomy of the metric Hol(g) is a sub-
group of Spin(7) and Hol(g) ⊂ Spin(7) if and only if dΦ = 0 [61]
(see also [58,59]). The Lee form θ8 is defined by [62] θ8 = − 1

7 ∗8

(∗8 dΦ ∧ Φ) = 1
7 ∗8 (δΦ ∧ Φ).

It is shown in [44] that the gravitino Killing spinor equation
always has a solution in dimension 8, i.e. any Spin(7)-structure
admits a unique Spin(7)-connection with totally skew-symmetric
torsion T = ∗8 dΦ − 7

6 ∗8 (θ8 ∧ Φ). Applying [44, Corollary 6.18]
and the identity ∗8(θ

8 ∧ Φ) = (θ8�Φ) we can also write

θ8
s = 1

42

(
(∗8 dΦ)i jkΦsi jk

) = − 1

42
(δΦi jkΦsi jk),

TijkΦsi jk = −7θ8
s . (2.31)

The necessary conditions to have a solution to the system of di-
latino and gravitino Killing spinor equations were derived in [13,
44], and the sufficiency was proved in [44]. The general result
[44] states that there exists a non-trivial solution to both dilatino
and gravitino Killing spinor equations in dimension 8 if and only
if there exists a Spin(7)-structure (Φ, g) with an exact Lee form
which is equivalent to the statement that the conformal Spin(7)-

structure (Φ̄ = e− 12
7 φΦ, ḡ = e− 6

7 φ g) has zero Lee form, θ̄8 = 0.
The torsion 3-form (the flux H) and the Lee form of a solu-

tion to the gravitino and dilatino equations in dimension eight are
given by [13,44]

H = T = ∗8 dΦ − 2 ∗8 (dφ ∧ Φ), θ8 = 12

7
dφ. (2.32)

The Ricci tensor of the torsion connection is calculated in [44] (see
also [33])

Ric+
mn = 1

12
dTmjkl Φnjkl + 1

6
∇+

m T jklΦnjkl. (2.33)

Using the special expression of the torsion (2.32) and (2.31),
Eq. (2.33) takes the form

Ric+
mn = 1

12
dTmjkl Φnjkl − 2∇+

m dφn

= 1

12
dTmjkl Φnjkl − 2∇ g

m dφn + dφs T s
mn. (2.34)

In addition to these equations, the vanishing of the gaugino
variation requires the 2-form F A to be of instanton type [5,4,6–10].
A Spin(7)-instanton in dimension eight is a Spin(7)-connection A
with curvature 2-form F A ∈ spin(7). The latter is equivalent to

F A
mn = −1

2
F A

pqΦ
pq

mn. (2.35)

2.4.1. Theorem 1.1 in dimension 8

Proof. It is sufficient to investigate only the Einstein equation of
motion. First we show that

dTmjkl Φnjkl = dTnjkl Φmjkl. (2.36)

Indeed, the second identity in (2.1) and (2.32) yield
Ric+
mn − Ric+

nm = (∗8d ∗8 T )mn = 2
(∗8(dφ ∧ dΘ)

)
mn

= 2
(∗8(dφ ∧ ∗8T )

)
mn = 2 dφs T s

mn (2.37)

which compared with the skew-symmetric part of (2.34) gives
(2.36). In particular, (2.37) supplies a proof of the second equal-
ity in (1.2) in dimension eight.

Substitute (2.34) into (2.1) and use (2.36) to get

Ricg
i j = −2∇ g

i dφ j − 1

12
dTmjklΦnjkl + 1

4
Tmpq T pq

n . (2.38)

Insert (1.4) into (2.38), use (2.35) and compare the result with the
first equation in (1.2) to conclude that the supersymmetry equa-
tions (1.3) together with the anomaly cancellation (1.4) imply the
first equation in (1.2) in dimension eight if and only if the next
equality holds [33]

Rmstr Rstr
n = −1

6
[Rmsi j Rtri j + Rmti j Rrsi j + Rmri j Rsti j]Φnstr . (2.39)

The twenty-eight-dimensional space of two forms Λ2(R8) decom-
poses into two parts, a seven-dimensional part Λ2

7 and a twenty
one-dimensional part Λ2

21, Λ2(R8) = Λ2
7 ⊕ Λ2

21. The Lie algebra
spin(7) of Spin(7) is isomorphic to the two-forms satisfying 7 lin-
ear equations, namely spin(7) ∼= {β ∈ Λ2(R8) | ∗8(β ∧ Φ) = −β}.

For the curvature 2-form R we have the splitting R = R7 ⊕ R21,
where

(R7)i j = 1

8
(2Rij + RklΦi jkl);

(R21)i j = 1

8
(6Rij − RklΦi jkl). (2.40)

The equality (2.30) and (2.40) imply

(R7)klΦkli j = 6(R7)i j, (R21)klΦkli j = −2(R14)i j . (2.41)

Using (2.41), we get from (2.39) that

6
(‖R7‖2 + ‖R14‖2) = 6Rmstr Rstr

m = −18‖R7‖2 + 6‖R14‖2. (2.42)

Consequently, (2.42) yields ‖R7‖2 = 0. Compare with the first
equality in (2.40) to conclude that R7 = 0 is equivalent the Spin(7)-
instanton condition (2.35), i.e. R is a Spin(7)-instanton.
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