The Unimodular Lattices of Dimension up to 23 and the Minkowski-Siegel Mass Constants

J. H. Conway and N. J. A. Sloane

Abstract

In an earlier paper we enumerated the integral lattices of determinant one and dimension not exceeding 20 . The present paper extends this enumeration to dimension 23 , finding 40 lattices of dimension 21, 68 of dimension 22, and 117 of dimension 23 . We also give explicit formulae for the Minkowski-Siegel mass constants for unimodular lattices (apparently not stated correctly elsewhere in the literature) and an exact table of the mass constants up to 32 dimensions, which provided a valuable check on our enumeration.

1. Introduction

The norm of a vector x is its squared length $x . x$, and is written $N(x)$. An integral lattice Λ in real n-dimensional Euclidean space \mathbb{R}^{n} is said to be unimodular if it has determinant ± 1, and an integral unimodular lattice is even, or of genus II, if the norm of every lattice vector is an even integer; otherwise it is odd, or of genus I. Even unimodular lattices exist only in dimensions which are multiples of eight, whereas odd lattices exist in all dimensions greater than zero. The history of the enumeration of integral unimodular lattices is described briefly in our earlier paper [9]. It is worth mentioning, however, that some of the recent interest in these lattices is due to their connections, as yet not fully understood, with the Leech lattice and with hyperbolic geometry (see [6, 10-12, 15, 28, 29] and Section 2.1 below). The even unimodular lattices in dimension 24 were found by Niemeier in 1968 [16], and in [9] we enumerated the odd lattices in up to 20 dimensions. In the present paper we complete the enumeration of the odd lattices in dimensions below 24 by deriving them from Niemeier's lattices. We shall prove the following theorem.

Theorem 1: The Classification. The unimodular lattices of dimension not exceeding 23 and containing no vectors of norm 1 are those shown in Table 1.

TAble 1
The unimodular lattices of dimension $\leqslant 23$ and containing no vectors of norm 1 . All are odd (or of genus I) except for four lattices: the empty lattice, E_{8}, E_{8}^{2}, and D_{16}, which are even (or of genus II). The notation is explained in Section 2.8

dim	N	w	V	$c(w)$	$g_{1} g_{2}$	t_{2}
0	D_{24}	-	\varnothing	1	1	0
1	$D_{16} E_{8}$	\cdot	-0	E_{8}	1	1
12	D_{12}^{2}	-0	D_{12}	2	1	240
14	$D_{10} E_{7}^{2}$	-00	E_{7}^{2}	1	2	264
15	$A_{15} D_{9}$	$0-$	A_{15}	1	2	252

TAble 1 (cont.)

dim	N	w	V	$c(w)$	$g_{1} g_{2}$	t_{2}
16	E_{8}^{3}	-00	E_{8}^{2}	3	2	480
16	$D_{16} E_{8}$	$0-$	D_{16}	1	1	480
16	D_{8}^{3}	-00	D_{8}^{2}	3	2	224
17	$A_{11} D_{7} E_{6}$	0-0	$A_{11} E_{6}$	1	2	204
18	$A_{17} E_{7}$	$0-$	$\boldsymbol{A}_{17} \mathrm{~A}_{1}$	1	2	308
18	$D_{10} E_{7}^{2}$	0-0	$D_{10} E_{7} A_{1}$	2	1	308
18	D_{6}^{4}	-000	D_{6}^{3}	4	6	180
18	$A_{9}^{2} D_{6}$	00-	A_{9}^{2}	1	4	180
19	E_{6}^{4}	-000	$E_{6}^{3} O_{1}$	4	12	216
19	$A_{11} D_{7} E_{6}$	00-	$A_{11} D_{7} O_{1}$	1	2	216
19	$A_{7}^{2} D_{5}^{2}$	00-0	$A_{7}^{2} D_{5}$	2	4	152
20	D_{24}	+	D_{20}	1	1	760
20	$D_{16} E_{8}$	+0	$D_{12} E_{8}$	1	1	504
20	D_{12}^{2}	+0	$D_{12} D_{8}$	2	1	376
20	$D_{10} E_{7}^{2}$	+00	$E_{7}^{2} D_{6}$	1	2	312
20	$A_{15} D^{3}$	0+	$A_{15} D_{5}$	1	2	280
20	D_{8}^{3}	+00	$D_{8}^{2} D_{4}$	3	2	248
20	$A_{11} D_{7} E_{6}$	0+0	$A_{11} E_{6} A_{3}$	1	2	216
20	D_{6}^{4}	+000	$D_{6}^{3} A_{1}^{2}$	4	6	184
20	$A_{9}^{2} D_{6}$	00+	$A_{9}^{2} A_{1}^{2}$	1	4	184
20	$A_{7}^{2} D_{5}^{2}$	$00+0$	$\mathrm{A}_{7}^{2} \mathrm{D}_{5} \mathrm{O}_{1}$	2	4	152
20	D_{4}^{6}	$+0^{5}$, D_{4}^{5}	6	120	120
20	$A_{5}^{4} D_{4}$	$0^{4}+$	A_{5}^{4}	1	16	120
21	A_{24}	+	$\mathrm{A}_{20} \mathrm{O}_{1}$	1	2	420
21	$A_{17} E_{7}$	+0	$A_{13} E_{7} O_{1}$	1	2	308
21	$A_{15} D_{9}$	+0	$A_{11} D_{9} O_{1}$	1	2	276
21	A_{12}^{2}	+0	$A_{12} \mathrm{~A}_{8} \mathrm{O}_{1}$	2	2	228
21	$A_{11} D_{7} E_{6}$	+00	$\mathrm{D}_{7} \mathrm{~A}_{7} \mathrm{E}_{6} \mathrm{O}_{1}$	1	2	212
21	$A_{9}^{2} D_{6}$	+00	$\mathrm{A}_{9} \mathrm{D}_{6} \mathrm{~A}_{5} \mathrm{O}_{1}$	2	2	180
21	A^{3}	+00	$\mathrm{A}_{8}^{3} \mathrm{~A}_{4} \mathrm{O}_{1}$	3	4	164
21	$A_{7}^{2} D_{5}^{2}$	+000	$\mathrm{A}_{7} \mathrm{D}_{5}^{2} \mathrm{~A}_{3} \mathrm{O}_{1}$	2	4	148
21	A_{6}^{4}	+000	$\mathrm{A}_{6} \mathrm{~A}_{2} \mathrm{O}_{1}$	4	6	132
21	$A_{5}^{4} D_{4}$	+0000	$A_{5}^{3} D_{4} A_{1} O_{1}$	4	12	116
21	\boldsymbol{A}_{4}^{6}	$+0^{5}$	$A_{4}^{5} O_{1}$	6	40	100
21	A^{8}	$+0^{7}$	\boldsymbol{A}_{3}^{7}	8	336	84
22	$D_{16} E_{8}$	**	$D_{14} E_{7} A_{1}$	1	1	492
22	E_{8}^{3}	**0	$E_{8} E_{7}^{2}$	3	2	492
22	D_{12}^{2}	**	$D_{10}^{2} A_{1}^{2}$	1	2	364
22	$A_{17} E_{7}$	**	$A_{15} D_{6} \mathrm{O}_{1}$	1	2	300
22	$D_{10} E_{7}^{2}$	0**	$D_{10} D_{6}^{2}$	1	2	300
22	$D_{10} E_{7}^{2}$	**0	$D_{8} E_{7} D_{6} A_{1}$	2	1	300
22	$\mathrm{A}_{15} \mathrm{D}^{\text {a }}$	**	$A_{13} D_{7} A_{1} O_{1}$	1	2	268
22	D_{8}^{3}	**0	$D_{8} D_{6}^{2} A_{1}^{2}$	3	2	236
22	A_{12}^{2}	**	$\mathrm{A}_{10}^{2} \mathrm{O}_{2}$	1	4	220
22	E_{6}^{4}	**00	$E_{6}^{2} A_{5}^{2}$	6	8	204
22	$A_{11} D_{7} E_{6}$	0**	$A_{11} D_{5} A_{5} A_{1}$	1	2	204
22	$A_{11} D_{7} E_{6}$	*0*	$A_{9} D_{7} A_{5} O_{1}$	1	2	204
22	$A_{11} D_{7} E_{6}$	**0	$A_{9} E_{6} D_{5} A_{1} O_{1}$	1	2	204
22	D_{6}^{4}	**00	$D_{6}^{2} D_{4}^{2} A_{1}^{2}$	6	4	172
22	$A_{9}^{2} D_{6}$	**0	$A_{7}^{2} D_{6} O_{2}$	1	4	172

Table 1 (cont.)

dim	N	w	V	$c(w)$	$g_{1} g_{2}$	t_{2}
22	$A_{9}^{2} D_{6}$	*0*	$\mathrm{A}_{9} \mathrm{~A}_{7} \mathrm{D}_{4} \mathrm{~A}_{1} \mathrm{O}_{2}$	2	2	172
22	\boldsymbol{A}_{8}^{3}	**0	$\mathrm{A}_{8} \mathrm{~A}_{6}^{2} \mathrm{O}_{2}$	3	4	156
22	$A_{7}^{2} D_{5}^{2}$	00**	$A_{7}^{2} A_{3}^{2} A_{1}^{2}$	1	8	140
22	$A_{7}^{2} D_{5}^{2}$	**00	$D_{5}^{2} \mathrm{~A}_{5}^{2} \mathrm{O}_{2}$	1	8	140
22	$A_{7}^{2} D_{5}^{2}$	*0*0	$A_{7} D_{5} A_{5} A_{3} A_{1} O_{1}$	4	2	140
22	A_{6}^{4}	**00	$\mathrm{A}_{6}^{2} \mathrm{~A}_{4}^{2} \mathrm{O}_{2}$	6	4	124
22	D_{4}^{6}	** 0^{4}	$D_{4}^{4} A_{1}^{6}$	15	144	108
22	$A_{5}^{4} D_{4}$	*000*	$A_{5}^{3} A_{3} A_{1}^{3} O_{1}$	4	12	108
22	$A_{5}^{4} D_{4}$	**000	$A_{5}^{2} D_{4} A_{3}^{2} O_{2}$	6	8	108
22	A_{4}^{6}	$* * 0^{4}$	$\mathrm{A}_{4}^{4} \mathrm{~A}_{2}^{2} \mathrm{O}_{2}$	15	16	92
22	\boldsymbol{A}_{3}^{8}	$* * 0^{6}$	$\mathrm{A}_{3}^{6} \mathrm{~A}_{1}^{2} \mathrm{O}_{2}$	28	96	76
22	A_{2}^{12}	**0 ${ }^{10}$	$\mathrm{A}_{2}^{10} \mathrm{O}_{2}$	66	2880	60
22	A_{1}^{24}	**0 ${ }^{22}$	A_{1}^{22}	276	887040	44
23	$D_{16} E_{8}$	10	$A_{15} E_{8}$	1	2	480
23	\boldsymbol{A}_{24}	5	$A_{19} A_{4}$	2	2	400
23	D_{12}^{2}	12	$D_{11} A_{11} O_{1}$	2	2	352
23	$A_{17} E_{7}$	60	$A_{11} E_{7} A_{5}$	2	2	288
23	$D_{10} E_{7}^{2}$	110	$\mathrm{A}_{9} \mathrm{E}_{7} \mathrm{E}_{6} \mathrm{O}_{1}$	2	2	288
23	$D_{10} E_{7}^{2}$	211	$D_{9} E_{6}^{2} O_{2}$	1	4	288
23	$A_{17} E_{7}$	31	$\mathrm{A}_{14} \mathrm{E}_{6} \mathrm{~A}_{2} \mathrm{O}_{1}$	2	2	288
23	$A_{15} D_{9}$	80	$D_{9} A_{7}^{2}$	1	4	256
23	$A_{15} D_{9}$	21	$A_{13} A_{8} A_{1} O_{1}$	2	2	256
23	$A_{15} D_{9}$	42	$A_{11} D_{8} A_{3} O_{1}$	2	2	256
23	D_{8}^{3}	033	$D_{8} A_{7}^{2} O_{1}$	3	4	224
23	D_{8}^{3}	122	$D_{7}^{2} \mathrm{~A}_{7} \mathrm{O}_{2}$	3	4	224
23	A_{12}^{2}	15	$A_{11} A_{7} A_{4} O_{1}$	4	2	208
23	A_{12}^{2}	32	$A_{10} A_{9} A_{2} A_{1} O_{1}$	4	2	208
23	E_{6}^{4}	0111	$E_{6} D_{5}^{3} \mathrm{O}_{2}$	8	12	192
23	$A_{11} D_{7} E_{6}$	620	$E_{6} D_{6} A_{5}^{2} O_{1}$	1	4	192
23	$A_{11} D_{7} E_{6}$	401	$\mathrm{D}_{7} \mathrm{~A}_{7} \mathrm{D}_{5} \mathrm{~A}_{3} \mathrm{O}_{1}$	2	2	192
23	$A_{11} D_{7} E_{6}$	330	$\mathrm{A}_{8} \mathrm{E}_{6} \mathrm{~A}_{6} \mathrm{~A}_{2} \mathrm{O}_{1}$	2	2	192
23	$A_{11} D_{7} E_{6}$	111	$\mathrm{A}_{10} \mathrm{~A}_{6} \mathrm{D}_{5} \mathrm{O}_{2}$	2	2	192
23	$A_{11} D_{7} E_{6}$	222	$\mathrm{A}_{9} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{~A}_{1} \mathrm{O}_{2}$	2	2	192
23	D_{6}^{4}	2222	$\mathrm{D}_{5}^{4} \mathrm{O}_{3}$	1	48	160
23	$A_{9}^{2} D_{6}$	501	$\mathrm{A}_{9} \mathrm{~A}_{5} \mathrm{~A}_{4}^{2} \mathrm{O}_{1}$	2	4	160
23	D_{6}^{4}	0123	$D_{6} D_{5} A_{5}^{2} O_{2}$	12	4	160
23	$A_{9}^{2} D_{6}$	240	$A_{7} D_{6} A_{5} A_{3} A_{1} O_{1}$	4	2	160
23	$A_{9}^{2} D_{6}$	312	$\mathrm{A}_{8} \mathrm{~A}_{6} D_{5} \mathrm{~A}_{2} \mathrm{O}_{2}$	4	2	160
23	$A_{9}^{2} D_{6}$	121	$\mathrm{A}_{8} \mathrm{~A}_{7} \mathrm{~A}_{5} \mathrm{~A}_{1} \mathrm{O}_{2}$	4	2	160
23	\boldsymbol{A}_{8}^{3}	036	$A_{8} A_{5}^{2} A_{2}^{2} O_{1}$	6	4	144
23	A_{8}^{3}	411	$\mathrm{A}_{7}^{2} \mathrm{~A}_{4} \mathrm{~A}_{3} \mathrm{O}_{2}$	6	4	144
23	A_{8}^{3}	177	$\mathrm{A}_{7} \mathrm{~A}_{6}^{2} \mathrm{~A}_{1}^{2} \mathrm{O}_{2}$	6	4	144
23	$A_{7}^{2} D_{5}^{2}$	4400	$D_{5}^{2} A_{3}^{4} O_{1}$	1	16	128
23	$A_{7}^{2} D_{5}^{2}$	4022	$A_{7} D_{4}^{2} A_{3}^{2} O_{2}$	2	8	128
23	$A_{7}^{2} D_{5}^{2}$	2031	$\mathrm{A}_{7} \mathrm{~A}_{5} \mathrm{~A}_{4}^{2} \mathrm{~A}_{1} \mathrm{O}_{2}$	4	4	128
23	$A_{7}^{2} D_{5}^{2}$	2220	$D_{5} A_{5}^{2} D_{4} A_{1}^{2} O_{2}$	4	4	128
23	$A_{7}^{2} D_{5}^{2}$	1112	$\mathrm{A}_{6}^{2} \mathrm{D}_{4} \mathrm{~A}_{4} \mathrm{O}_{3}$	4	4	128
23	$A_{7}^{2} D_{5}^{2}$	1303	$\mathrm{A}_{6} \mathrm{D}_{5} \mathrm{~A}_{4}^{2} \mathrm{~A}_{2} \mathrm{O}_{2}$	8	2	128
23	A_{6}^{4}	5111	$\mathrm{A}_{5}^{3} \mathrm{~A}_{4} \mathrm{~A}_{1} \mathrm{O}_{3}$	8	6	112
23	A_{6}^{4}	0124	$\mathrm{A}_{6} \mathrm{~A}_{5} \mathrm{~A}_{4} \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{O}_{2}$	24	2	112
23	D_{4}^{6}	002332	$D_{4}^{2} \mathrm{~A}_{3}^{4} \mathrm{O}_{3}$	45	96	96
23	$A_{5}^{4} D_{4}$	00331	$A_{5}^{2} A_{3} A_{2}^{4} \mathrm{O}_{2}$	6	16	96
23	$A_{5}^{4} D_{4}$	02220	$\mathrm{A}_{5} \mathrm{D}_{4} \mathrm{~A}_{3}^{3} \mathrm{~A}_{1}^{3} \mathrm{O}_{2}$	8	12	96
23	$A_{5}^{4} D_{4}$	31110	$\mathrm{D}_{4} A_{4}^{3} A_{2}^{2} \mathrm{O}_{3}$	8	12	96
23	$A_{5}^{4} D_{4}$	04111	$A_{5} A_{4}^{2} A_{3}^{2} A_{1} O_{3}$	24	4	96

TABLE 1 (cont.)

dim	N	w	V	$c(w)$	$g_{1} g_{2}$	t_{2}
23	A_{4}^{6}	011111	$A_{4} A_{3}^{5} O_{4}$	12	40	80
23	A_{4}^{6}	001234	$A_{4}^{2} A_{3}^{2} A_{2}^{2} A_{1}^{2} O_{3}$	60	8	80
23	A_{3}^{8}	$0^{4} 2^{4}$	$A_{3}^{4} A_{1}^{8} O_{3}$	14	384	64
23	A_{3}^{8}	$0^{3} 21^{3} 3$	$A_{3}^{3} A_{2}^{4} A_{1}^{2} O_{4}$	112	48	64
23	A_{2}^{12}	$0^{6} 1^{6}$	$A_{2}^{6} A_{1}^{6} O_{5}$	264	1440	48
23	A_{1}^{24}	$0^{16} 1^{8}$	$A_{1}^{16} O_{7}$	759	645120	32
23	A_{24}	\min	O_{23}	196560	84610842624000	0

The lattices of minimum norm 1 are easily determined, as we shall see in Section 2, and the numbers of lattices in each dimension may be found in Table 6 below. The entries in Table 1 are explained in Section 2.8. The proof of Theorem 1 is based on the remark (justified in Section 2.3) that any such lattice is associated with a certain Niemeier lattice, and consists in finding all lattices that can be obtained from the Niemeier lattices. As a valuable check we determined the automorphism groups of the lattices in Table 1, and verified that the sum of the reciprocals of the group orders of the lattices of each dimension is equal to the Minkowski-Siegel mass constant. Since we have not been able to find the mass constants stated correctly anywhere in the literature we give them here. (There are unfortunately still three errors even in the formulae as given in [26].) For any undefined terms the reader is referred to [3,14, 17, 22].

Theorem 2: The Minkowski-Siegel Mass Constants. Let $\Phi_{\mathbf{X}}(n)$ denote the family of all inequivalent lattices of dimension n and genus \mathbf{X}. Then

$$
\sum_{\Lambda \in \Phi_{\mathbf{I}(n)}} \frac{1}{|\operatorname{Aut}(\Lambda)|}
$$

is given by

$$
\begin{aligned}
& \frac{\left(1-2^{-k}\right)\left(1+2^{1-k}\right)}{2 \cdot k!}\left|B_{k} . B_{2} B_{4} \cdots B_{2 k-2}\right|, \text { if } n=2 k \equiv 0(\bmod 8), \\
& \quad \frac{2^{k}+1}{k!2^{2 k+1}}\left|B_{2} B_{4} \cdots B_{2 k}\right|, \text { if } n=2 k+1 \equiv \pm 1(\bmod 8), \\
& \frac{1}{(k-1)!2^{2 k+1}}\left|E_{k-1} . B_{2} B_{4} \cdots B_{2 k-2}\right|, \text { if } n=2 k \equiv \pm 2(\bmod 8), \\
& \frac{2^{k}-1}{k!2^{2 k+1}}\left|B_{2} B_{4} \cdots B_{2 k}\right|, \text { if } n=2 k+1 \equiv \pm 3(\bmod 8), \\
& \frac{\left(1-2^{-k}\right)\left(1-2^{1-k}\right)}{2 \cdot k!}\left|B_{k} . B_{2} B_{4} \cdots B_{2 k-2}\right|, \text { if } n=2 k \equiv 4(\bmod 8)
\end{aligned}
$$

Here B_{k} and E_{k} are the k-th Bernoulli and Euler numbers, respectively: $B_{0}=1, B_{1}=-1 / 2$, $B_{2}=1 / 6, \ldots, E_{0}=1, E_{2}=-1, E_{4}=5, \ldots[1, p .810]$. Also

$$
\sum_{A \in \Phi_{\mathrm{P}(n)}} \frac{1}{|\operatorname{Aut}(\Lambda)|}=\frac{\left|B_{k}\right|}{2 k} \prod_{j=1}^{k-1} \frac{\left|B_{2 j}\right|}{4 j}
$$

if $n=2 k \equiv 0(\bmod 8)$.
(The formulae for genus I may be derived from [18-21,23-25], while the formula for genus II is given in [22].) The numerical values of these expressions for $n \leqslant 32$ are shown in Tables 2-4.

2. The Proof of Theorem 1

2.1. Niemeier's Result. Niemeier [16] showed that there are exactly 24 even unimodular lattices in $\mathbb{R}^{24}, 23$ of which have minimum norm 2, and one, the Leech lattice Λ_{24}, having minimum norm 4. We shall refer to these 24 as the Niemeier lattices.

The Niemeier lattices of minimum norm 2 (and more generally any integral lattice of minimum norm 1 or 2) are composed of various Witt components held together by glue. This glueing theory has been adequately described elsewhere ($[8,9]$), and so we shall just recall that the Witt component lattices are taken from the list $O_{n}(n \geqslant 1)$, an empty component; \mathbb{Z}, the one-dimensional lattice of integers; and the root lattices $A_{n}(n \geqslant 1)$, $D_{n}(n \geqslant 1), E_{6}, E_{7}$ and E_{8}. The subscript on a lattice indicates its dimension. We sometimes use I_{m} to denote the m-dimensional integer lattice \mathbb{Z}^{m}. The enumeration of these lattices is usually carried out up to equivalence, two lattices being called equivalent if one can be obtained from the other by a rotation and change of scale.

Alternative proofs of Niemeier's result have been given by Venkov [27] and in our earlier paper [9]. It is perhaps worth outlining a fourth proof, that uses hyperbolic geometry and throws some light on the connections between [7], [10] and [16].

Let G denote the group of all autochronous automorphisms of the even unimodular 26 -dimensional Lorentzian lattice $\mathrm{II}_{25,1}$, and let H be the reflection subgroup of G. The groups G and H were found in [6], where in particular it was shown that H is a Coxeter group whose graph is isomorphic to the Leech lattice. From Vinberg's work [28] it follows that the even unimodular 24-dimensional Euclidean lattices of minimum norm 2 are described by those maximal subdiagrams of the Leech lattice that are unions of the extended Coxeter-Dynkin diagrams $A_{n}(n \geqslant 1), D_{n}(n \geqslant 4), E_{6}, E_{7}$ and E_{8}. But in [7] it was shown that there are precisely 23 such subdiagrams, which are exactly those corresponding to the Niemeier lattices of minimum norm 2. This result, plus the fact [4] that the Leech lattice is the unique even unimodular lattice of minimum norm $\geqslant 4$, provides another proof of Niemeier's result. It also clarifies the one-to-one correspondence between the deep holes in the Leech lattice [7] and the Niemeier lattices. We must emphasize, however, that in no sense is this a short-cut to Niemeier's result, for the proofs in [7] required extensive computations.

Remark. The notation used in this paper to specify the components of a lattice differs slightly from that used in [9]. For example the lattice $E_{6}^{3} O_{1}$ was called $E_{6}^{3}[3]$ in reference [9]. The latter notation is more informative but less general (it fails when the empty component has dimension greater than one), and somewhat confusing, since [3] is also the name of a glue digit. We therefore recommend the $\ldots O_{n}$ notation for general use.
2.2. Chains of Lattices. Every unimodular lattice Λ appears in a uniquely determined chain of the form

$$
\Lambda_{n}, \Lambda_{n} \oplus I_{1}, \Lambda_{n} \oplus I_{2}, \ldots, \Lambda=\Lambda_{n} \oplus I_{m}, \ldots
$$

where the initial lattice Λ_{n} does not represent 1 . We call Λ_{n} the reduced version of Λ. The summand I_{m} is the sublattice of Λ generated by vectors of norm 1 , and Λ_{n} is its orthogonal complement. In these circumstances we have

$$
\left|\operatorname{Aut}\left(\Lambda_{n} \oplus I_{m}\right)\right|=\left|\operatorname{Aut}\left(\Lambda_{n}\right)\right| \cdot 2^{m} m!
$$

Table 2
Exact values of the Minkowski-Siegel mass constants for lattices of genus I

n	mass
1	1
2	$\frac{1}{8}$
3	$\frac{1}{48}$
4	$\frac{1}{384}$
5	$\frac{1}{3840}$
6	$\frac{1}{46080}$
7	$\frac{1}{645120}$
8	$\frac{1}{10321920}$
9	$\frac{17}{2786918400}$
10	$\frac{1}{2229534720}$
11	$\frac{31}{735746457600}$
12	$\frac{31}{5885971660800}$
13	$\frac{691}{765176315904000}$
14	$\frac{42151}{192824431607808000}$
15	$\frac{29713}{385648863215616000}$
16	$\frac{505121}{12340763622899712000}$
17	$\frac{642332179}{18881368343036559360000}$
18	$\frac{692319119}{15105094674429247488000}$
19	$\frac{8003636403977}{77489135679822039613440000}$
20	$\frac{248112728523287}{619913085438576316907520000}$
21	$\frac{593468652605200909}{216969579903501710917632000000}$
22	$\frac{50904295073459007001}{1507367607750643465322496000000}$
23	$\frac{1015740532498234470066371}{1317439289174062388691861504000000}$

TABLE 2 (cont.)

n	mass
24	701876707956280018815862361
	$\overline{210790286267849982190697840640000000 ~}$
25	84715059480304651623612272842147
	30465396080006318014267329085440000000
26	14616335635894388876188472684851927
	31871491283698917307233513504768000000
27	1894352751772146867430486995462923265007
	12429881600642577749821070266859520000000
28	10345060377427694043037889482223023950203227
	99439052805140621998568562134876160000000
29	4285009823959590682115628739356169586687220752159
	28837325313490780379584883019114086400000000
30	$\underline{156429914319579070270102710292957201465725850451195039 ~}$
	346047903761889364555018596229369036800000000
31	447543572700878404232772149927275573042725639059585587715489
	150184790232659984216878070763546161971200000000
32	$\underline{416022631331982837344253774635747627157753429574979915187099394241 ~}$
	9611826574890238989880196528866954366156800000000

Table 3
Decimal expansions of the mass constants for lattices of genus I

n	mass	n	mass	n	mass		n
n	mass						
1	1.0	9	6.100×10^{-9}	17	3.402×10^{-14}	25	2.781×10^{-6}
2	1.25	10	4.485×10^{-10}	18	4.583×10^{-14}	26	4.586×10^{-4}
3	2.083×10^{-2}	11	4.213×10^{-11}	19	1.033×10^{-13}	27	1.524×10^{-1}
4	2.604×10^{-3}	12	5.267×10^{-12}	20	4.002×10^{-13}	28	1.040×10^{2}
5	2.604×10^{-4}	13	9.031×10^{-13}	21	2.735×10^{-12}	29	1.486×10^{5}
6	2.170×10^{-5}	14	2.186×10^{-13}	22	3.377×10^{-11}	30	4.520×10^{8}
7	1.551×10^{-6}	15	7.705×10^{-14}	23	7.710×10^{-10}	31	2.980×10^{12}
8	9.688×10^{-8}	16	4.093×10^{-14}	24	3.330×10^{-8}	32	4.328×10^{16}

Our enumeration process considers all lattices of a chain simultaneously. For some purposes the most appropriate lattice to consider is the initial lattice Λ_{n}, but for other purposes it is the 23-dimensional lattice $\Lambda_{n} \oplus I_{23-n}$.
2.3. The Associated Niemeier Lattice. We now describe how an odd unimodular lattice Λ_{n} of dimension $n \leqslant 23$ is associated with a uniquely determined Niemeier lattice N. For brevity we omit the easy justifications of some statements, since in any case the mass formula provides an independent verification. Let $m=24-n$. Both Λ_{n} and I_{m} have sublattices of index 2 containing only vectors of even norm, denoted by Λ_{n}^{0} and I_{m}^{0}, respectively. The dual of Λ_{n}^{0} consists of Λ_{n}^{0} and three cosets, say $\Lambda_{n}^{1}, \Lambda_{n}^{2}, \Lambda_{n}^{3}$, and similarly the dual of I_{m}^{0} consists of the cosets $I_{m}^{0}, I_{m}^{1}, I_{m}^{2}, I_{m}^{3}$. The notation can be chosen

TAble 4 The mass constants for lattices of genus II

n	mass
0	1
8	$\frac{1}{696729600}$
16	$\frac{691}{277667181515243520000}$
	$\frac{1027637932586061520960267}{129477933340026851560636148613120000000}$
24	$\frac{4890529010450384254108570593011950899382291953107314413193123}{121325280941552041649762780685623131486814208000000000}$

so that

$$
\begin{aligned}
\Lambda_{n} & =\Lambda_{n}^{0} \cup \Lambda_{n}^{2}, \\
I_{m} & =I_{m}^{0} \cup I_{m}^{2},
\end{aligned}
$$

and the set of all vectors

$$
\left\{x+y: x \in \Lambda_{n}^{k}, y \in I_{m}^{k}, k=0,1,2,3\right\}
$$

is an even unimodular 24-dimensional lattice. The latter is the Niemeier lattice N associated with Λ_{n}.
2.4. Constructing Λ_{n} from N. The lattice I_{m}^{0} is better known as D_{m}, and seen from the point of view of N the process we have just described appears as follows. We look for a copy of the lattice D_{m} in N and observe that Λ_{n} is the set of vectors x in the orthogonal complement D_{m}^{\perp} for which either $x+[0]$ or $x+[2]$ is in N, where [0], [1], [2], [3] are the glue vectors for D_{m} in D_{m}^{\perp}, [2] being a glue vector of norm 1. (For further information about these glue vectors see reference [9].) Λ_{n} will be the initial member of its chain if D_{m} is not contained in a $D_{m^{\prime}}$ in N with $m^{\prime}>m$ using the same glue vector [2].

Alternatively we can refer to the 23 -dimensional member of the chain, for which the appropriate D_{m} is a D_{1} generated by a single vector $v=2 e$ of norm 4 and [2] $=e$. This 23-dimensional lattice is the set of vectors $x \in e^{\perp}$ for which $x+n e \in N$ for some integer n. The other members of the chain can be obtained by removing summands I_{k}.

Thus our process can be viewed from either end of the chain containing Λ_{n}. On the one hand we search for a maximal sublattice D_{m} (and glue vector [2]) in the Niemeier lattice N, and locate the initial member of the chain in D_{m}^{\perp}. Alternatively we find all possible vectors $v=2 e$ of norm 4 in N and locate the 23-dimensional member of the chain in the subspace v^{\perp}.
2.5. The Niemeier Lattices of Minimum norm 2. Let N be one of the 23 Niemeier lattices with minimum norm 2, and let W_{1}, W_{2}, \ldots be its Witt components. The norm 4 vector v used in the construction may then be written as

$$
v=v_{1}+v_{2}+\cdots
$$

where $v_{1}, v_{2}, v_{3}, \ldots$ are
(1) minimal representatives of glue digits corresponding to a glue word of norm 4;
(2) minimal vectors r, s of norm 2 in two distinct Witt components W_{i}, W_{j}, and 0 in the other components; or
$(\geqslant 3) 0$ except for one v_{i} which is a vector of norm 4 in its Witt component W_{i}. (Again we omit the easy proof of this statement.) The cases have been numbered so as to correspond with the value of m mentioned in Section 2.4.

In case (1) the D_{1} generated by v is maximal and we obtain a 23 -dimensional lattice not representing 1 . Our symbol for this case is the glue word mentioned.

In case (2) the D_{2} generated by r and s is maximal with [2] $=\frac{1}{2}(r+s)$, and so the reduced lattice is 22 -dimensional. The symbol for this case is a word with $*$'s in positions i and j and 0 's elsewhere.

The cases ($\geqslant 3$) can be further subdivided as follows. Case (3): $v=v_{i}$ is the vector $\left(1,1,-1,-1,0^{k-3}\right)$ in a Witt component $W_{i}=A_{k}$ for some $k \geqslant 3$. The maximal D_{m} is the sublattice A_{3} of \boldsymbol{A}_{k} supported in the four non-zero coordinates of v_{i}. The reduced lattice is 21 -dimensional, and the symbol for this case has a + in position i and 0 's elsewhere.

Case (4): $v=v_{i}$ is a vector of the form $\left(\pm 1^{4}, 0^{k-4}\right)$ in a component D_{k}. In this case the maximal D_{m} is the D_{4} supported in the four non-zero coordinates of v, and the reduced lattice is 20 -dimensional. Again the symbol contains 0 's except for a + in position i. We remark that the case $k=4$, when there is a Witt component D_{4}, is rather special because all three non-trivial cosets of D_{4} in its dual contain vectors of norm 1 which can serve as the glue vector [2]. Fortunately, in both the cases $N=D_{4}^{6}$ and $N=A_{5}^{4} D_{4}$, $\operatorname{Aut}(N)$ contains elements permuting all three cosets of any D_{4} component, so we may suppose $v=\left(\pm 1^{4}, 0^{k-4}\right)$.

Cases ($\geqslant 5): v=v_{i}$ is the vector $\left(2,0^{k-1}\right)$ in a $D_{k}(k \geqslant 5)$ or any norm 4 vector in E_{6}, E_{7} or E_{8}. The maximal D_{m} in these four cases is D_{k}, D_{5}, D_{6} or D_{8} respectively, and the symbol has a - in position i and 0 's elsewhere.
2.6. Inequivalent Latrices. The above remarks make it easy to determine when two lattices constructed in this way are equivalent. Each lattice Λ_{n} is specified by a Niemeier lattice

$$
N=W_{1} W_{2} \cdots W_{a}
$$

and a symbol

$$
w=d_{1} d_{2} \cdots d_{a}
$$

which is either a glue word or a permutation of $* * 0^{a-2},+0^{a-1}$ or -0^{a-1}. Two lattices are equivalent if and only if they are specified by the same N and their symbols are equivalent under $\operatorname{Aut}(N)$. The Witt components V_{1}, V_{2}, \ldots of Λ_{n} are determined by the W_{i} and d_{i} as shown in Table 5.
2.7. The Automorphism Group of Λ_{n}. To compute the order of the automorphism group of Λ_{n} we argue as follows. The lattices $\Lambda_{n}, \Lambda_{n+1}, \ldots$ of a chain whose reduced lattice is Λ_{n} have

$$
\left|\operatorname{Aut}\left(\Lambda_{n+m}\right)\right|=\left|\operatorname{Aut}\left(\Lambda_{n}\right)\right| \cdot 2^{m} m!
$$

so that is suffices to compute $\left|\operatorname{Aut}\left(\Lambda_{23}\right)\right|$. Now a 23 -dimensional lattice Λ_{23} is completely determined by the associated Niemeier lattice N and either of the norm 4 vectors $\pm v$ of $\Lambda_{23}^{\perp} \cap N$. Hence

$$
\begin{equation*}
\left|\operatorname{Aut}\left(\Lambda_{23}\right)\right|=\frac{2|\operatorname{Aut}(N)|}{c(v)} \tag{1}
\end{equation*}
$$

where $\operatorname{Aut}(N)$ is given in [9] and $c(v)$ is the number of images of v under $\operatorname{Aut}(N)$. This number is easily computed as the product

$$
\begin{equation*}
c(v)=c\left(d_{1}\right) c\left(d_{2}\right) \cdots c\left(d_{a}\right) c(w) \tag{2}
\end{equation*}
$$

where $w=d_{1} d_{2} \cdots d_{a}$ is the symbol for $\Lambda_{N}, c(w)$ is the number of images of w under $\operatorname{Aut}(N)$, and $c\left(d_{i}\right)$ is the number of choices for the component v_{i} of the vector v which would lead to the digit d_{i}. For example $c(*)$ is the number of minimal vectors in W_{i}. The numbers $c\left(d_{i}\right)$ can be found by elementary counting arguments and are given in Table 5. The values of $c(w)$, which are usually small, were found by careful consideration of the group action, and are given in Table 1.

Table 5
Each lattice Λ_{n} is specified by the Witt components W_{1}, W_{2}, \ldots of a Niemeier lattice N and a certain symbol $w=d_{1}, d_{2}, \ldots$. This table gives the Witt components V_{1}, V_{2}, \ldots of Λ_{n} corresponding to each Witt component W of N and each digit d of w, as well as the numbers $c(d)$ defined in Section 2.7. The four parts of the table correspond to (a) $W=A_{n}$, (b) $W=D_{4}$, (c) $w=D_{n}(n \geqslant 5)$, and (d) $W=E_{6}, E_{7}$ or E_{8}

	A_{n}	
d	$V_{1} V_{2} \cdots$	$c(d)$
0	A_{n}	1
i	$A_{i-1} A_{n-i}$	$\binom{n+1}{i}$
$*$	A_{n-2}	$2\binom{n+1}{2}$
+	A_{n-4}	$6\binom{n+1}{4}$

D_{4}		
d	$V_{1} V_{2} \cdots$	$c(d)$
0	D_{4}	1
1	A_{3}	8
2	A_{3}	8
3	A_{3}	8
$*$	A_{1}^{3}	24
+	-	24

$D_{n}(n \geqslant 5)$		
d	$V_{1} V_{2} \cdots$	$c(d)$
0	D_{n}	1
1	A_{n-1}	2^{n-1}
2	D_{n-1}	$2 n$
3	A_{n-1}	2^{n-1}
$*$	$D_{n-2} A_{1}$	$4\binom{n}{2}$
+	D_{n-4}	$16\binom{n}{4}$
-	-	$2 n$

d	E_{6}		E_{7}		E_{8}	
	$V_{1} V_{2} \cdots$	$c(d)$	$V_{1} V_{2} \cdots$	$c(d)$	$V_{1} V_{2} \cdots$	$c(d)$
0	E_{6}	1	E_{7}	1	E_{8}	1
1	D_{5}	27	E_{6}	56		
2	D_{s}	27				
*	A_{5}	72	D_{6}	126	E_{7}	240
-	-	270	\boldsymbol{A}_{1}	756	-	2160

The orders of the automorphism groups of the lattices Λ_{n} in Table 1 were calculated from Equations (1) and (2). The lattices with minimum norm 1 were then found by forming direct sums $\Lambda_{n} \oplus I_{m}$, and the mass constants were checked against the formulae given in Theorem 2. (This completes the formal proof of Theorem 1.) The numbers of lattices found in each dimension are shown in Table 6.

Table 6
The number of unimodular lattices in \mathbf{R}^{n} of genus I that do not represent $1\left(\alpha_{n}\right)$, the number of genus II (β_{n}), and the total number of genus I and II ($\boldsymbol{\gamma}_{n}$)

n	0	1	2	3	4	5	6	7	8	9	10	11	12
α_{n}	0	0	0	0	0	0	0	0	0	0	0	0	1
β_{n}	1	0	0	0	0	0	0	0	1	0	0	0	0
γ_{n}	1	1	1	1	1	1	1	1	2	2	2	2	3
n	13	14	15	16	17	18	19	20	21	22	23	24	
α_{n}	0	1	1	1	1	4	3	12	12	28	49	$?$	
β_{n}	0	0	0	2	0	0	0	0	0	0	0	24	
γ_{n}	3	4	5	8	9	13	16	28	40	68	117	$?$	

The purpose of the column headed $g_{1} g_{2}$ in Table 1 is to provide the reader with an alternative and easier method of computing $\left|\operatorname{Aut}\left(\Lambda_{n}\right)\right|$, via the formula

$$
\begin{equation*}
\left|\operatorname{Aut}\left(\Lambda_{n}\right)\right|=\prod_{i=1}^{b} g_{0}\left(V_{i}\right) \cdot g_{1}\left(\Lambda_{n}\right) g_{2}\left(\Lambda_{n}\right) \tag{3}
\end{equation*}
$$

Here V_{1}, \ldots, V_{b} are the Witt components of Λ_{n} (given in the column headed V in Table 1), and the values of $g_{0}\left(V_{i}\right)$ can be found in Table 7. The product $g_{1}\left(\Lambda_{n}\right) g_{2}\left(\Lambda_{n}\right)$ is given in the column headed $g_{1} g_{2}$ in Table 1. For example the penultimate line of Table 1 refers to the lattice $A_{1}^{16} O_{7}$, for which

$$
\left|\operatorname{Aut}\left(\Lambda_{n}\right)\right|=(2!)^{16} \cdot 1^{7} \cdot 645120
$$

(The explanation for this decomposition of $\left|\operatorname{Aut}\left(\Lambda_{n}\right)\right|$ may be found in [8] or [9], but need not concern us here.) The values of $g_{1} g_{2}$ were actually "back-computed" from Equations (1), (2) and (3) after the mass formulae check had been applied.

Table 7
Values of $g_{0}\left(W_{i}\right)$ for Witt components W_{i}

W_{i}	O_{n}	A_{n}	D_{n}	E_{6}	E_{7}	E_{8}
$g_{0}\left(W_{i}\right)$	1	$(n+1)!$	$2^{n-1} \cdot n!$	$72.6!$	$8.9!$	$192.10!$

2.8. Description of Table 1. Table 1 shows the unimodular lattices Λ_{n} that contain no vectors of norm 1 . The columns give the dimension n, the Witt components W_{1}, W_{2}, \ldots of the corresponding Niemeier lattice N, the symbol w, the Witt components $V=V_{1}, V_{2}, \ldots$ of Λ_{n} itself, and the numbers $c(w)$ and $g_{1}\left(\Lambda_{n}\right) g_{2}\left(\Lambda_{n}\right)$ (see Section 2.7). The last column gives the number $\left(t_{2}\right)$ of norm 2 vectors in Λ_{n}. We note that V identifies Λ_{n} uniquely.
2.9. The Leech Lattice. It remains to consider the unique Niemeier lattice with minimum norm greater than 2, the Leech lattice. In this lattice there is just one orbit of norm 4 vectors ([5]). Our construction produces a certain 23-dimensional lattice with minimum norm 3, which may be called the shorter Leech lattice. It appears in the last line of Table 1, and is the only lattice in the table with minimum norm 3.

Acknowledgements

The extensive arithmetical calculations needed to compute the two sides of the mass formulae were performed using ALTRAN [2] and MACSYMA [13]. We should like to thank the M.I.T. Laboratory for Computer Science for allowing us to use MACSYMA.

References

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Nat. Bur. Standards Appl. Math. Ser. 55, U.S. Dept. Commerce, Washington, D.C., 1972.
2. W. S. Brown, ALTRAN User's Manual, 4th ed. Bell Laboratories, Murray Hill, 1977.
3. J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, New York, 1971.
4. J. H. Conway, A characterization of Leech's lattice, Invent. Math. 7 (1969), 137-142.
5. J. H. Conway, Three lectures on exceptional groups, in Finite Simple Groups (M. B. Powell and G. Higman, eds), Academic Press, New York, 1971, pp. 215-247.
6. J. H. Conway, The automorphism group of the 26 -dimensional even unimodular Lorentzian lattice, J. Algebra (to appear).
7. J. H. Conway, R. A. Parker and N. J. A. Sloane, The covering radius of the Leech lattice, Proc. Roy. Soc. London Ser. A 380 (1982), 261-290.
8. J. H. Conway and V. Pless, On the enumeration of self-dual codes, J. Combin. Theory Ser. A 28 (1980), 26-53.
9. J. H. Conway and N. J. A. Sloane, On the enumeration of lattices of determinant one, J. Number Theory 15 (1982), 83-94.
10. J. H. Conway and N. J. A. Sloane, Lorentzian forms for the Leech lattice, Bull. Amer. Math. Soc. 6 (1982), 215-217.
11. J. H. Conway and N. J. A. Sloane, Twenty-three constructions for the Leech lattice, Proc. Roy. Soc. London Ser. A 381 (1982), 275-283.
12. J. H. Conway and N. J. A. Sloane, Leech roots and Vinberg groups, Proc. Roy. Soc. London Ser. A (to appear).
13. Mathlab Group, MACSYMA Reference Manual, Version 9, Laboratory for Computer Science, M.I.T., Cambridge, 1977.
14. J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer-Verlag, New York, 1973.
15. A Neumaier and J. J. Seidel, Discrete hyperbolic geometry, Combinatorica (to appear).
16. H.-V. Niemeier, Definite quadratische Formen der Dimension 24 and Diskriminante 1, J. Number Theory 5 (1973), 142-178.
17. O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1971.
18. G. Pall, The weight of a genus of positive n-ary quadratic forms, pp. 95-105 in The Theory of Numbers (A. L. Whiteman, ed.), Proc. Symp. Pure Math. Vol. 8, American Mathematical Society, Providence, R.I., 1965.
19. H. Pfeuffer, Bemerkung zur Berechnung dyadischer Darstellungsdichten einer quadratischen Form über algebraischen Zahlkörpern, J. Reine Angew. Math. 236 (1969), 219-220.
20. H. Pfeuffer, Quadratsummen in totalreellen algebraischen Zahlkörpern, J. Reine Angew. Math. 249 (1971), 208-216.
21. H. Pfeuffer, Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern, J. Number Theory 3 (1971), 371-411.
22. J.-P. Serre, Cours d'Arithmétique, Presses Universitaires de France, Paris, 1970. English translation, Springer-Verlag, New York, 1973.
23. C. L. Siegel, Uber die analytische Theorie der quadratischen Formen, Ann. of Math. 36 (1935), 527-606 (Gesam. Abh. I, pp. 326-405, Springer-Verlag, New York. N.Y. 1966).
24. C. L. Siegel, Uber die Fourierschen Koeffizienten der Eisensteinschen Reihen, Danske Vid. Selskab. Mat.-fys. Meddelelser 34 (1964), Nr. 6 (Gesam. Abh. III, pp. 443-458, Springer-Verlag, New York, 1966).
25. C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Göttingen Nach. 10 (1969), 87-102.
26. N. J. A. Sloane, Self-dual codes and lattices, in Relations Between Combinatorics and Other Parts of Mathematics, Proc. Sympos. Pure Math. Vol. 34, American Mathematical Society, Providence, R.I., 1979, pp. 273-308.
27. B. B. Venkov, The classification of integral quadratic forms, English translation in Proc. Steklov Inst. Math. 4 (1980), 63-74.
28. È. B. Vinberg, On unimodular integral quadratic forms (in Russian), Funkt. Analiz Prilozen 6 (No. 2, 1972), 24-31. English translation in Funct. Anal. Appl. 6 (1972), 105-111.
29. È. B. Vinberg, Some arithmetical discrete groups in Lobacevskii spaces, in Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford University Press, Oxford, 1975, pp. 323-348.

Received 2 April 1982 and in revised form 14 June 1982
J. H. Conway

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane,
Cambridge CB2 1SB, U.K.
N. J. A. Sloane

Mathematics and Statistics Research Center, Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A.

