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Abstract To explore more hNinein interacting proteins, the
yeast two-hybrid screening using ninein C-terminal domain as
bait protein was performed. One novel gene, CGI-99, was
demonstrated to associate with hNinein in the yeast two-hybrid
method and in vitro GST pull-down assay. Molecular charac-
terization also showed that CGI-99 possessed a transcriptional
activity at the N-terminal. In addition, CGI-99 formed a dimer
with the C-terminal, which overlapped with hNinein binding site.
In kinase assay, CGI-99 binds to hNinein and completely blocks
the phosphorylation of hNinein by GSK3b. Moreover, CGI-99
was highly expressed in all brain tumors which is in agreement
with the Northern blot analysis. Taken together, we have
isolated a novel protein CGI-99, which may be involved in the
functional regulation of human ninein in the centrosome struc-
ture and may also be important in brain development and
tumorigenesis.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The centrosome plays key roles in the formation of themitotic

spindle, cell polarity and cell locomotion. In a typical somatic

cell, the centrosome is composed of a pair of centrioles that are

surrounded by a mass of amorphous pericentriolar material

(PCM). The recent identification of molecular components

shows that PCM may be involved in the formation of the com-

plex of c-tubulin [1,2], centrin [3–5], pericentrin [6] andninein [7–
13,12,14], which are organized into a highly ordered lattice

[13,15,16]. More recently, the centrosomal-associated protein,

hNinein, has been identified as a microtubules minus end cap-

ping [10], centrioles position [13,12], centrosome maturation

[15,16] and anchoring protein [11,12], but the underlying struc-

ture and physiological function are not well understood.

Recently, a growing body of several structurally distinct

protein kinases (PKAs) has been found to be localized at the
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centrosome [14,17–21]. The physiological roles of polo-like

kinase 1 and NeK2 in the centrosome integrity and separation

are demonstrated, respectively [17,20,21]. In addition, aurora

A (AIK) and cAMP-dependent PKA have been suggested to

have possible involvement in chromosome missegregation,

aneuploidy and genomic instability [19–21]. Our previous

study was also to show that human ninein interacts with

GSK3b [22], but the C-terminal fragment of hNinein (1617–

1931 aa) failed to serve as a substrate [14].

To explore more hNinein interacting proteins, the yeast two-

hybrid screening using hNinein C-terminal domain (1617–2090

aa) as a bait protein was performed. One novel gene, CGI-99,

was demonstrated to associate with hNinein in the yeast two-

hybrid method and in vitroGST pull-down assay.We also show

that CGI-99 binds to hNinein and prevents the phosphorylation

of hNinein by GSK3b. Moreover, CGI-99 is highly expressed in

all brain tumors. Our data suggest that CGI-99 may not only

participate in the centrosome architecture but also contribute to

brain development and tumorigenesis as well.
2. Materials and methods

2.1. Cloning and DNA sequencing
To construct plasmids, pET-32a-CGI-99 for expressing His-tagged

CGI-99 in Escherichia coli BL21(DE3), DNA fragments encoding the
CGI-99 were amplified by PCR with the Taq polymerase (TaKaRa),
using primers containing sense sequences, 50-CGGAATTCAT-
GTTCCGACGCAAGTTGACGG, and antisense sequences, 50-
CCGCTCGAGTCATCTTCCAACTTTTCCC. The PCR fragments
were then inserted into the EcoRI–XhoI sites in pET-32a (Novagen) or
pGEX-KG vectors (Novagen). A full-length CGI-99 was constructed
to pEGFPC2 vector (Clontech) and were fused at the restriction sites
EcoRI and XhoI. The N-terminal (1–150 aa) and C-terminal (151–244
aa) of CGI-99 were amplified by PCR. These amplified fragments were
digested by restriction enzyme and they were constructed into pACT2
and pAS2-1 vectors. The nucleotide sequencing was performed by ABI
PRISM� 3730 Genetic Analyzer (Perkin–Elmer).
2.2. Yeast two-hybrid system
Standard techniques were used for the yeast two-hybrid screening

[23–25]. Briefly, the CCII domain of human ninein (1617–2090 aa) was
cloned in frame with the Gal4 DNA-binding domain in the pAS2-1
vector (MARCHMAKER Two-Hybrid System 2, Clontech) to yield
pAS2-1-CCII bait plasmid. A human testis cDNA library was screened
by co-transforming yeast YRG-2 (Stratagene) with pAS2-1-CCII bait
ation of European Biochemical Societies.
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plasmid DNA and human adult testis library plasmid DNA (Clon-
tech). The positive clones have the ability to grow on Trp, Leu, and His
dropout media supplemented with 3-aminotriazole (3-AT, and an in-
hibitor of HIS3) and turn blue in b-galactosidase filter assay.

2.3. Cell culture, transfections and indirect immunofluorescence
HeLa cells were grown at 37 �C in DMEM supplemented with 10%

FCS and penicillin–streptomycin (100 IU/ml). For transient transfec-
tion studies, HeLa cells were seeded onto glass coverslips at a density
of 0.7� 105 cells per 24-well plate. DNA was transfected with 1 lg into
HeLa cells, using Lipofectamine plus reagent (Life Technologies).
Fig. 1. Nucleotide and deduced amino acid sequences of CGI-99. (A) The
AATAAA polyadenylation signal is double-underlined. The nucleotide seq
Accession No. NP_057123. (B) Coiled-coil regions of CGI-99 C-terminal, p
of CGI-99 contains an activation domain (see Fig. 3B). (C) Localization of
labelled foci in the perinuclear region of the cell in interphase (upper pane
a-tubulin in a representative interphase or metaphase cell.
After 24 h, cells were treated with a final concentration of 100 ng/ml
nocodazole (drugs purchased from Sigma) for 15 h. Then, the cells
were fixed in cold methanol for 20 min and immunostained as de-
scribed [26]. The fixed cells were probed with anti-a-tubulin polyclonal
antibody. The secondary antibodies were rhodamine-conjugated goat
anti-rabbit Fab fragment (1:300; Santa Cruz) and DNA was stained
with DAPI (Roche).

2.4. Northern blot analysis
Human Northern blot containing poly(Aþ)-RNAs from adult tis-

sues, including the heart, brain, placenta, lung, liver, skeletal muscle,
location of the predicted nuclear location signal (NLS) is boxed. The
uences for CGI-99 have been assigned to the GenBank database as
redicated by the program of Lupas et al. [30]. Note that N-terminal
CGI-99. CGI-99 was localized to the nuclear compartment with some
l), in metaphase (lower panel). Noted to compare GFP-CGI-99 and



Fig. 2. Northern blot analysis of CGI-99 expression in various human
tissues. The membrane contained �2 lg of poly(Aþ) mRNA from each
tissue. Hybridization was done using [a-32P]-labelled cDNA probe for
the full-length CGI-99 and the human b-actin as a control. (A) Adult
tissues including the heart, brain, placenta, lung, liver, skeletal muscle,
kidney and pancreas are indicated. (B) Fetal tissues including the
brain, lung, liver and kidney. (C) Quantitative PCR analysis of CGI-99
expression in different human tissues. PCR primers (sense sequences,
50-ATGTTCCGACGCAAGTTGACGG and antisense sequences, 50-
TCATCTTCCAACTTTTCCC) specific for CGI-99 full-length ex-
pected product size is 732-bp (upper panel); b-actin as positive control
(lower panel). M, 100 bp marker.
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kidney and pancreas or from human fetal tissues, including the brain,
lung, liver and kidney were obtained from Clontech and hybridized for
16–18 h at 68 �C in formamide, 10� Denhardt’s solution, 5� buffer A
(0.75 M sodium chloride, 50 mM sodium phosphate and 5 mM EDTA,
pH 7.4) and 1% SDS, salmon sperm DNA (100 lg/ml) with [a-
32P]dCTP-labeled cDNA probe. The probe used was a 0.73-kb cDNA
full-length of CGI-99. The blots were rinsed twice in 2� SSC, 0.1%
SDS at room temperature for 10 min and washed twice in 0:1� SSC
and 0.1% SDS at 50 �C for 20 min. The X-ray film was exposed
overnight at )70 �C.

2.5. RT-PCR
The cDNAs from the human brain were obtained from Clontech

and used as templates for tissue-specific PCR. Total RNA was ex-
tracted from brain tumors by means of the acid guanidinium phenol/
chloroform method and cDNA was synthesized with molonry murine
leukemia virus reverse transcriptase (Stratagene, La Jolla, CA). In
order to identify CGI-99 expression in different brain tumors, primers
CGI-99-50(50-ATGTTCCGACGCAAGTTGACGG-30) and CGI-99-
30(50-TCATCTTCCAACTTTTCCC-30), corresponding to the 732-bp
region, were used for detection of the CGI-99. The PCR mixture
contained 10 mM Tris–HCl (pH 8.3), 1.5 mMMgCl2, 50 mMKCl, 200
mM dNTP and 2 lM of each primer with 1 U of ExTag polymerase
(TaKaRa). The PCR involved denaturation at 94 �C for 1 min, 60 �C
for 1 min and 72 �C for 2 min for a total of 35 cycles. After PCR, the
total product was electrophoresed on a 1.2% polyacrylamide gel and
stained by ethidium bromide. Gels were photographed using Polar-
oid film and the intensity of CGI-99 was measured by means of a
densitometer.

2.6. Western blot analysis
For western blot analysis, E. coli were harvested and washed once in

PBS. Later, cells were resuspended in cell lysate buffer (20 mM PIPES,
pH 7.2, 100 mMNaCl, 1 mM PMSF, 1 mM EDTA, 0.1% CHAPS and
10% sucrose). Samples were left for 30 min on ice and centrifuged at
14 000 rpm for 30 min at 4 �C. The supernatant was removed into a
fresh centrifuge tube, the protein sample buffer was added, and the
sample was heated to 95 �C for 5 min following analysis on a 12%
SDS–PAGE as previously described [27]. Proteins were transferred to
PVDF and incubated for 1 h in blocking buffer (5% in PBS/0.1% Tween
20). His or GST polyclonal antibody incubations were carried out first
in blocking buffer for 1 h at room temperature and second antibody
using HRP-conjugated anti-rabbit antibodies for another hour.

2.7. GST pull-down assay
E. coli BL21(DE3) (pGEX-CGI-99, pGEX-4T1 vector) was cultured

in 3 ml of LB medium at 37 �C to the mid-log phase. Isopropylthio-b-
DD-galactoside was then added to a final concentration of 1 mM to
induce the expression of GST fusion proteins. After culturing for 3 h,
cells were pelleted by centrifugation and suspended in 100 ll of a lysis
buffer, B-Per (Pierce, Rockford, IL), containing 10 ll leupeptin,
aprotinin and 4-(2-aminoethyl)-benzenesulfonyl fluoride. The suspen-
sion was centrifuged again at 10 000 rpm for 5 min at 4 �C with a
T15A22 rotor in a HITACHI CFR15 centrifuge. Glutathione–
Sepharose 4B beads (20 ll) (Amersham Pharmacia Biotech) were then
added to the supernatant and the mixture was incubated under shaking
for 1 h at 4 �C. The beads were washed three times with NETN buffer
(20 mM Tris–HCl, pH 8.0, 100 mMNaCl, 1 mM EDTA and 0.5% NP-
40). After washing, the beads were added to the lysate (300 ll) pre-
pared from E. coli lysate containing His-tagged C-terminal hNinein.
The reaction mixture was incubated on ice for 1 h to allow the binding
between a GST-fusion protein, including GST-CGI-99, His-tagged C-
terminal hNinein (1617–2090 aa) and His-tagged C-terminal hNinein
(1617–1931 aa) as described [14]. The beads were subsequently washed
with NETN buffer (20 mM Tris, pH 8.0, 100 mM NaCl, 1 mM EDTA
and 1% Tween 20). An equal volume of 2� electrophoresis sample
buffer was then added to the mixture and proteins were extracted from
the beads by heating at 95 �C for 5 min. Proteins were finally analyzed
by SDS–PAGE and immunoblotting.

2.8. In vitro kinase assays
Kinase reaction was carried out [17,18]. Briefly, the hNinein C-ter-

minal protein was purified and incubated with GSK3b kinases in ki-
nase buffer (100 mM HEPES, pH 7.4, 1 mM dithiothreitol, 10%
glycerol, 0.4 mM ATP, 80 mM MgCl2 and 10 lCi of [c-32P]ATP
(Amersham, 3000 Ci/mM)). The assays were carried out for 20 min at
30 �C. Reactions were stopped by the addition of 2� sample buffer and
heated at 95 �C for 5 min, followed by SDS–PAGE and detection by
autoradiography.
3. Results and discussion

3.1. Molecular cloning of CGI-99 and nuclear localization

In this study, we surveyed hNinein C-terminal domain

(1617–2090 aa) interacting proteins from a human testis cDNA

library (Clontech) using the yeast two-hybrid system. One of

these interacting proteins was CGI-99, which sequence con-

servation was found in different species [28,29]. The cDNA

sequence contained an open reading frame of 732 bp encoding

a polypeptide of 244 amino acids with a predicted molecular

mass of 28 113 Da (pI¼ 6.49) (Fig. 1A). As illustrated in

Fig. 1B, C-terminal of the CGI-99 sequence was predicted to

contain coiled-coil structure based on the algorithm by Lupas

et al. [30].

To identify the subcellular localization of CGI-99, HeLa

cells expressing the GFP-CGI-99 fusion were examined by

fluorescence microscopy. A computer-assisted search for the

motifs presented in CGI-99 protein found a nuclear localiza-

tion signal, suggesting that CGI-99 could be a nuclear protein.

Indeed, ectopically expressed GFP epitope-tagged CGI-99 was

localized to the nuclear compartment with some labelled foci

in the perinuclear region of the cell (Fig. 1C, upper panel);

however, CGI-99 may be localized at the spindle body during

metaphase (Fig. 1C, lower panel).
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3.2. Expression of CGI-99 in various human tissues

By Northern blot analysis, a 1.1-kb transcript was found in

almost all adult tissues examined with a relatively higher ex-

pression level in the heart and skeletal muscle (Fig. 2A). In

brain, however, the transcript was absent (Fig. 2A, lane 2).

Interestingly, the transcript was expressed more distinctly in

the fetal brain and lung than in the adult brain and lung

(Fig. 2B), suggesting that this protein may play a role during

brain and lung development. The CGI-99 expression level in

adult tissues was further confirmed by RT-PCR (Fig. 2C).

3.3. CGI-99 interacts with hNinein in vivo and in vitro

Since large parts of the hNinein sequence contain a coiled-

coil structure [11]; in order to determine whether coiled-coil

domain was involved in this interaction, we then tested the

interaction between hNinein and CGI-99 using the yeast two-

hybrid system. The data show that C-terminal of the CGI-99

coiled-coil structure (151–244 aa) specifically interacts with

hNinein in a very C-terminal coiled-coil domain (1931–2090

aa), but not the previously reported dimerization domain

(1617–1931 aa) (Fig. 3A). Molecular characterization also

showed that CGI-99 possessed a transcriptional activity at the
Fig. 3. Yeast two-hybrid assay showing the interaction of CGI-99 and hNinei
‘‘*’’ indicates that original hNinein C-terminal domain (1617–2090 aa) was u
interaction. Numbers indicate the portion of amino acid residues in CGI-99 or
dropout media supplemented with 3-AT plates. Growth indicates a positive
N-terminal residues (1–150 aa) (Figs. 3B and 1B). To further

confirm such protein–protein interaction, CGI-99 and hNinein

were overexpressed to carry out in vitro binding assay. The

cDNA of CGI-99 and two hNinein C-terminal regions (resi-

dues 1617–1931 and 1617–2090 aa) were cloned into pET

vector to produce a His-Tag fusion protein, and the full length

of CGI-99 cDNA was cloned into a pGEX-KG vector to

generate a GST fusion protein. Purified His-Tag-hNinein

(1617–1931 aa), His-Tag-hNinein (1617–2090 aa), His-Tag-

CGI-99; and GST-CGI-99 fusion proteins were analyzed by

SDS–PAGE (Fig. 4A, left panel) and Western blotting

(Fig. 4A, right panel). The results of in vitro GST pull-down

assay showed that GST-CGI-99 binds to His-Tag-hNinein

(1617–2090 aa), but not His-Tag-hNinein (1617–1931 aa)

(Fig. 4B, compare lane 6 to lane 4). Moreover, His-Tag-CGI-

99 and GST-CGI-99 fusion proteins were pulled down as de-

tected by Western blotting (Fig. 4C, lane 4), suggesting that

CGI-99 indeed forms a dimer. These data are consistent with

our above observation in the yeast two-hybrid screening

(Fig. 3). Furthermore, co-expressed hNinein and CGI-99 in

HeLa cells also show tht they are partially co-localized in the

centrosome during interphase (Fig. 4D). Although CGI-99 and
n. (A) Interaction of CGI-99 and hNinein. (B) Dimerization of CGI-99.
sed as a bait. ‘‘+’’ indicates positive interaction. ‘‘)’’ indicates negative
hNinein. Yeast containing plasmids were spotted on Trp, Leu, and His
interaction.



Fig. 4. In vitro GST-pull-down assays. (A) Coomassie blue staining (lanes 1–4); Western blotting with His antiserum (lanes 5–7); GST antiserum
(lane 8). Lanes 1 and 5, His-tagged C-terminal hNinein (1617–1931 aa); lanes 2 and 6, His-tagged C-terminal hNinein (1617–2090 aa); lanes 3 and 7,
His-tagged CGI-99; and lanes 4 and 8, GST-CGI-99. The molecular marker is shown on the left as indicated. (B) Interaction of CGI-99 and hNinein
was analyzed either in the presence (+) or absence ()) of the assay mixtures containing purified GST-CGI-99; His-tagged C-terminal hNinein (1617–
1931 aa); His-tagged C-terminal hNinein (1617–2090 aa); GST vector and His vector. The reactions were performed at 4 �C for 2 h and the reaction
mixtures were finally analyzed by immunoblot analysis with anti-His antibody (upper panel); anti-GST antibody (lower panel). Arrow indicates
positive interaction. (C) Dimerization of CGI-99 was analyzed either in the presence (+) or absence ()) of the assay mixtures containing purified
GST-CGI-99; His-tagged-CGI-99; GST vector and His vector. The reactions were performed at 4 �C for 2 h and the reaction mixtures were finally
analyzed by immunoblot analysis with anti-His antibody (upper panel); anti-GST antibody (lower panel). Arrow indicates positive interaction. (D)
Co-localization of hNinein and CGI-99 as indicated by an arrow.
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hNinein did not clearly show the centrosomal co-localization,

they may co-localize at the spindle body during metaphase

(Fig. 1C, lower panel). A recent paper using as proteomic

approach of the human centrosome by protein correlation

profiling [31] showed that hNinein and CGI-99 indeed co-ex-

isted in centrosome, implying that hNinein may interact with

CGI-99. However, the biological function of CGI-99 and

hNinein interaction remains to be elucidated.
3.4. CGI-99 interaction with hNinein blocks hNinein

phosphorylation by GSK3b
Recently, several structurally distinct PKAs have been found

to be localized at centrosomes and to regulate the function of

centrosome [19–21]. It is also noted that hNinein, as we have

identified previously, has been described as GSK3b interacting

protein [22]. In our efforts, the kinase assay shows phosphor-

ylation on 1617–2090 aa, but not on 1617–1931 aa fragment of



Fig. 5. Phosphorylation of the C-terminal fragment of hNinein by GSK3b. The reactions were analyzed either in the presence (+) or absence ()) of
the assay mixtures containing purified His-tagged-CGI-99; His-tagged C-terminal hNinein (1617–2090 aa) or His-tagged C-terminal hNinein (2010–
2090 aa) and partially purified His-tagged-GSK3b. (A) His-tagged C-terminal hNinein (1617–2090 aa). (B) His-tagged C-terminal hNinein (2010–
2090 aa). Arrow indicates phosphorylated hNinein band. Arrowhead indicates GSK3b autophosphorylation.
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hNinein, suggesting that hNinein phosphorylation site is lo-

cated at more extensive C-terminal of hNinein (1617–2090 aa,

Fig. 5A, lane 1). Indeed, the phosphorylation site of hNinein

could be narrowed down to 80 amino acid residues at C-ter-

minal of hNinein (2010–2090 aa), suggesting that 80 aa acts as

a sufficient domain for GSK3b phosphorylation (Fig. 5B, lane

1). This result is in agreement with our previous observation

showing that shorter C-terminal of hNinein fragment (1617–

1931 aa) could not be phosphorylated by GSK3b [14]. In ad-

dition, CGI-99 does not act as a substrate for GSK3b (Figs.

5A and B, lane 3); however, our data show that CGI-99 in-

teraction with hNinein could block hNinein phosphorylated

by GSK3b (Figs. 5A and B, lane 2), suggesting that CGI-99

may be involved and restricted to hNinein phosphorylation
Fig. 6. CGI-99 is expressed in brain tumors: (A) RT-PCR analysis of CGI-99 i
independent experiments. b-actin as internal control. (B) Distribution of CG
during the cell cycle. It is noted that the region of hNinein

binding to CGI-99 overlaps with GSK3b binding site (data not

shown), suggesting that CGI-99 may be involved in the func-

tional regulation of hNinein by competing with the hNinein

phosphorylation site.

3.5. CGI-99 is highly expressed in brain tumors

To determine whether the data appearing in Northern blot

or RT-PCR were true in Fig. 2, we further examined the CGI-

99 expression profile in various brain tumors. In our studies,

26 human brain tumor samples were examined by RT-PCR. A

representative experiment demonstrating amplification of

CGI-99 from cancerous brain tissues is shown in Fig. 6A.

Overall, 22 among 26 brain tumors exhibited CGI-99 overex-
n various brain tumors. Data shown are representatives of at least three
I-99 in various brain tumors.
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pression compared to normal brain tissue (Fig. 6B), suggesting

that aberrant expression of the CGI-99 may contribute to the

pathogenesis of brain tumors. It is noted that this study

showed no significant difference in the CGI-99 overexpression

between various brain tumors, even low-grade and high-grade

brain tumors (data not shown); thus, these results suggest that

malignant progression of brain tumors may not necessarily

correlate with CGI-99 overexpression. It is likely that the

overexpression of CGI-99 is involved in the early stage of brain

tumor formation. It is also noted that CGI-99 transcript was

indeed expressed in the fetal brain and lung more than in the

adult brain and lung (Fig. 2B), implying that this protein may

also be important in brain and lung development.

In conclusion, we have isolated a novel protein, CGI-99,

which may be involved in the functional regulation of

hNinein by interacting with hNinein and blocking hNinein

phosphorylation, suggesting that CGI-99 could participate in

the centrosome architecture as well as regulate centrosome

formation. Moreover, its existence or overexpressions in fetal

brain and brain tumors implies that this protein may also

play a role in brain development and tumorigenesis as well.
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