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We say that a polyhedron with O-1 valued vertices is combinatorial if the 
midpoint of the line joining any pair of nonadjacent vertices is the midpoint of the 
line joining another pair of vertices. We show that the class of combinatorial 
polyhedra includes such well-known classes of polyhedra as matching polyhedra, 
matroid basis polyhedra, node packing or stable set polyhedra and permutation 
polyhedra. We show the graph of a combinatorial polyhedron is always either a 
hypercube (i.e., isomorphic to the convex hull of a k-dimension unit cube) or else is 
hamilton connected (every pair of nodes is the set of terminal nodes of a hamilton 
path). This imfilies several earlier results concerning special cases of combinatorial 
polyhedra. 

1. INTRODUCTION 

The graph G(P) of a polyhedron P is the graph whose nodes are the 
vertices of the polyhedron and which has an edge joining each pair of nodes 
for which the corresponding vertices of the polyhedron are adjacent, that is, 
joined by an edge of the polyhedron. Such graphs have been studied since the 
beginnings of graph theory; in 1857 Sir William Hamilton introduced his 
“tour of the world” game which consisted of constructing a closed tour 
passing exactly once through each vertex of the dodecahedron. Since then, 
great effort has been expended in developing necessary conditions and 

* Visiting professor at Universite Scientifique et Midicale de Grenoble, Grenoble, France. 
Research supported in part by the National Science and Engineering Research Council of 
Canada. 

297 
0095.8956/81/060297-16502.00/O 
Copyright @ 1981 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82425508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


298 NADDEF AND PULLEYBLANK 

sufficient conditions for the existence of such tours in various classes of 
graphs. Fittingly, graphs which possess such tours are called “hamiltonian.” 

The graphs of three dimensional polyhedra are the three connected planar 
graphs. In 1880 Tait conjectured that every cubic three connected planar 
graph was hamiltonian and showed that this would provide a proof of the 
four color theorem. (It is not difftcult to see that this would also have 
implied that the graph of every three dimensional polyhedron is 
hamiltonian.) Tutte [ 131, however, provided a counterexample to the Tait 
conjecture in 1947. (See Capobianco and Moluzzo [4, p. 1651.) 

Since then, various results have been proved showing that the graphs of 
certain classes of polyhedra are hamiltonian. For example, Balinski and 
Russakoff [l] proved that the graph of an assignment polytope (the convex 
hull of the n! n x )2 permutation matrices) is hamiltonian. 

Brualdi and Gibson [3] studied the graph of the convex hull of the perfect 
matchings of a bipartite graph and showed that these graphs are hamilton 
connected, unless the graph is a hypercube. (These terms are all defined in 
Section 2.) 

Holzmann and Harary [9] showed that the graph of a matroid basis 
polytope ( the convex hull of the incidence vectors of the bases of a matroid) 
is uniformly hamiltonian, provided that it contains at least two cycles. This 
was a generalization of earlier work of Cummings [7] and Shank [ 121, 
proving a similar result for tree graphs. 

Our main result provides a unification and extension of these results. We 
show that for a certain class of polyhedra, whose vertices are O-l valued 
vectors, the graphs of these polyhedra are either hamilton connected or 
hypercubes. This class includes the matching polyhedra and matroid 
polyhedra already mentioned, variations on these polyhedra as well as stable 
set polyhedra and permutation polyhedra. We say that a polyhedron is 
combinatorial if its satisfies the following two properties: 

(1) all its vertices are O-l valued; 

(2) if vertices x and y are not adjacent, then there exist two other 
vertices u and u such that x + y = u + V. 

The second condition can be rephrased to be: if two vertices are nonad- 
jacent then the midpoint of the line joining them is the midpoint of the line 
joining two other vertices. This condition may appear rather unusual, but in 
fact it is satisfied by all the examples cited previously. Section 3 is concerned 
with establishing various classes of polyhedra which satisfy this property. In 
Section 2 we develop the theory of polyhedra with O-l valued vertices and 
combinatorial polyhedra and prove the main theorem, namely, that the graph 
of a combinatorial polyhedron is hamilton connected or a hypercube. In the 
final section, we present concluding remarks. 
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2. POLYHEDRA WITH O-l VALUED VERTICES 

Let E be a finite set and let {0, I}” denote the set of all O-l vectors 
indexed by E. Let XC_ (0, 1)” and let conv(X) denote the convex hull of X, 
where these vectors are considered as elements of RE. It is well known that 

(2.1) for any X5 (0, lJE the vertices of CON(X) are precisely the 
members of X. 

We let G(X) denote the graph whose nodes are the members of X and 
which has an edge joining two nodes if and only if the corresponding vertices 
are adjacent on conv(X). Since two vertices of a polyhedron are adjacent if 
and only if they are the vertices of a one dimensional face, we see that 

(2.2) U, u E X are adjacent nodes of G(X) if and only if, for every Iz 
satisfying 0 < I < 1, the point lu + (1 - 2)~ cannot be expressed as a convex 
combination of members of X- {u, u}. 

For any u, u E X, we let A(u, u) s E denote the set of coordinates wherein 
u and u agree in value and we let D(u, V) GE denote the set of coordinates 
wherein they disagree. We let x(u, u) be the set of members of X which agree 
with u and u in all coordinates of A@, v). Trivially, u, v E z(u, u) and (2.2) 
can be strengthened to 

(2.3) u, u E X are adjacent nodes of G(X) if and only if there does not 
exist 1 satisfying 0 < 1 < 1 such that the point lu + (I - n)u is a convex 
combination of members of z(u, u) - fu, u}. 

(This is essentially Proposition 2.1 of Hausmann and Korte IS].) In other 
words, when checking adjacency it is sufficient to consider only members of 
X which agree with u and u for all those coordinates where they themselves 
have the same value. Therefore, if D(u, u) is a minimal member of 
{D(u,x):xEX- {u}}, we have z(u, u) - {u, u} = 0 and so 

(2.4) if D(u, u) is a minimal member of {D(u, x): x EX- {u}} or of 
(D(x, u): x E X- {u}} then u and u are adjacent. 

It is not difficult to construct examples that show that the converse of 
(2.4) is false. 

A hypercube is a graph isomorphic to the graph of the convex hull of 
(0, 1)” for some set E. If ] E ] = d, then we say that the hypercube is of 
dimension d. See Fig. 1. (Brualdi and Gibson [3] call this graph a d-box.) It 
is easily verified that a d dimension hypercube is constructed by taking two 
copies of a d - 1 dimension hypercube and then joining the two 
corresponding copies of each node. It follows that hypercubes are bipartite 
with the same number of nodes in each part, when the dimension is at least 
1. It is an easy exercise to show that 

(2.5) if G is a hypercube, then there exists a hamilton path joining two 
distinct nodes if and only if they belong to opposite parts of the graph. 

For any S z E, for any x E X, we let x[S] = (xi: j E S) and we let 
X[S] = (x[S]: x EX}. A n important notion when studying O-l polyhedra is 

582b/31/3-4 
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d=O d=l d=2 d =3 

FIG. 1. Hypercubes of dimension d. 

that of separability. We say that S s E is a separator of X if and only if for 
every x’ f X[S], for every x” E X[E - S], the concatenation x of x’ and x”, 
defined by 

xjsxj: jE S 

=xJ’: jEE-S 

belongs to X. In other words, the values of the coordinate positions 
corresponding to S and E - S are independent of each other. If a separator 
S satisfies 0 # S #E then we say that S is a proper separator. We say that 
S is nonseparable if there exists no proper separator. Otherwise, X is said to 
be separable. A component of X is a minimal nonempty separator of X 
(which is E if X is nonseparable). Clearly, the components of X provide a 
partition of E. 

Let S be a component of X and let r = ]X[S]]. We say that S is an r- 
valued component. If S is a l-valued component, then ]S I= 1. If S is a 2- 
valued component then X[S] consists of two complementary vectors. That is, 
X[S] = {u, u}, w  h ere ui = 0 if and only if vi = 1, for i E S. For any positive 
integer k, we say that S is >,k-valued provided that r > k. 

Let G, = (V, , E,) and G, = (V,, E,) be graphs. Following the terminology 
of Berge [2], we say that G = (V, E) is the Cartesian sum of G, and G, if 
V = V, x V, and nodes (v~, uJ and (w, , w2) E V are adjacent in G if and 
only if either U, = w, and v2 is adjacent to w2 in G,, or uz = w2 and u, is 
adjacent to w, in G,. Since this is the only form of graph product that we 
use, we write in this case, G = G, x G,. It is easily verified that this product 
is associative under isomorphism so if G,, G2,..., G, are graphs we can write 
G = nf=, G,, to denote their Cartesian sum without ambiguity. Moreover, 
we note that G, x G, and G, x G, are isomorphic graphs, so this product is 
commutative under isomorphism. 

LEMMA 2.1. If S,, S, ,..., S, are the >2-valued components of X, then 
G(X) is isomorphic to nF=,G(X[S,]). 
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Proof. We show that if S is any separator of X, then G(X) is isomorphic 
to G(X[S]) x G(X[E -S]) which implies the result. If either ]X[S]] = 1 or 
1 X[E - S]] = 1 then the result is trivial. Otherwise, let u, Y E X. If A(u, u) 
contains S, resp. E-S, then u and v are adjacent if and only if u[E - S] 
and u[E - S], resp. u[S] and u[S], are adjacent in G(X[E -S]) resp. 
G(X[S]). If u and u disagree in coordinate positions of both S and E - S 
then if w  is the concatenation of u[S] and u [E - S] and x is the 
concatenation of u[S] and u [E - S] then u, U, w  and x are all distinct and 
0.5~ + 0.5~ = 0.5~ + 0.5x so u and u are not adjacent. I 

A graph G is hamilton connected (Berge [2]) if every pair of distinct nodes 
is joined by a hamilton path. There are two, admittedly trivial, hamilton 
connected graphs which do not contain hamilton cycles, namely K, and K,, 
the complete graphs on one and two nodes. In all other cases, this property 
implies strong hamiltonicity (G is connected and every edge belongs to a 
hamilton cycle) which of course implies hamiltonicity. Holtzmann and 
Harary [9] use a property called uniform hamiltonicity which includes, in 
addition to the property of being strongly hamiltonian, the property that 
every edge does not belong to some hamilton cycle. It is clear that there exist 
graphs which are uniformly hamiltonian but not hamilton connected- 
consider the complete bipartite graph K,,,, for n > 3. Recently, Adrian 
Bondy observed that if an eleventh node is joined to three nodes of a 
pentagon of the Petersen graph, which do not form a consecutive subse- 
quence of the pentagon, then this graph is hamilton connected, but has an 
edge belonging to every hamilton cycle, so is not uniformly hamiltonian. 
Thus these two properties, though closely related, are independent. 

In general, bipartite graphs present certain difficulties when dealing with 
hamiltonicity of polyhedra. For example, if they contain more than two 
nodes, then they are never hamilton connected, because if there is to be a 
hamilton path joining nodes in opposite parts, then the two parts must be of 
the same cardinality. In this case there cannot exist a hamilton path joining 
two nodes in the same part. Fortunately, these diffkulties can be minimized 
for the case of combinatorial polyhedra. We will show (Theorem 2.9) that 
the only bipartite graphs of combinatorial polyhedra and hypercubes, and in 
view of (2.5), these are “almost” hamilton connected. Brualdi and 
Gibson [3] proved the foolowing lemma which, when combined with 
Lemma 2.1, will enable us to restrict our attention to nonseparable sets. 

LEMMA 2.2. Let G, , G, ,..., G, be hamilton connected graphs. If 
IV(G,)I 23 for some i, then G = nf=, Gi is hamilton connected. If 
1 V(G,)I < 2 for all i = 1, 2 ,..., k, then G is a hypercube. 

LetXZ(O,l)EandleteEE. Welet 
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x+{xEX:xp=O}, 
xi= {xEX:xe= 1). 

This defines a partition of X and unless {e} is a l-valued component of X, 
this is a proper partition. 

We can obtain the following variant of (2.4). 

PROPOSITION 2.3. Let e E E and let x E Xz and w E XL. If D(x, w) is a 
minimal member of {D(x, u): u E Xi} then x and w are adjacent in G(X). 

Proof. Suppose that x and w  are nonadjacent. Then there exists 1 
satisfying 0 < 11 < 1 such that the point lx + (1 - 1)~ is a convex 
combination of members of X - (x, w}, all of which must agree with x and w  
on A(x, w). At least one of these, say, ti’, must belong to Xi since the eth 
coordinate position of Ix + (1 - 1)~ is positive. Therefore D(x, W) c D(x, w) 
since @ # w, a contradiction. I 

We remark at this point, that in Proposition 2.3 and in fact, in all results 
concerning the sets x and Xi., these two sets can be interchanged. In 
general, we will avoid belabouring this point. 

An immediate consequence of Proposition 2.3 is that every member of x 
is adjacent with at least one member of Xt, unless this latter set is empty, 
and of course, conversely. In fact, we have the following: 

LEMMA 2.4. Every v E g is a@acent to at least one w E Xi provided 
that this set is nonempty. Moreove if v is adjacent to exactly one w E Xb then 
v[E-S]=w[E-S], where S is the set of coordinates of l-valued 
components of XJ . 

ProoJ: If IX: 1 = 1 then S = E and the result is immediate. Otherwise, 
suppose IX:\> 1 and v[E-S]fw[E-S]. Let jEE--S be such that 
vi # w,. If Xi f vJ for all x E Xi, then everything in Xb is constant in the jth 
coordinate position so j E S, a contradiction. Therefore there exists fl E Xi 
such that W, = v,. Then A(v, #) Y$ A(v, w) so if we let w* be a member ofXt 
such that A(v, w*) ?A(v, tj) and A(v, w*) is maximal, we will have w* # w  
and by Proposition 2.3, w* and v are adjacent. I 

Finally, we observe that when we “split” X by means of an element e, the 
adjacencies within G(g) and G(Xj) are the same as within G(X). 

LEMMA 2.5. Elements v, w E Xz are adjacent in G(Xz) if and only iJ 
they are adjacent in G(X). 

ProoJ: This is an immediate consequence of (2.3). i 
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A universal node of a graph is a node that is adjacent to every other node. 
We say that G is a pyramid if its contains a universal node. We now have 
the following corollary of Lemma 2.4. 

COROLLARY 2.6. If there exists e E E such that IgI= 1 or IX:] = 1 
then G(X) is a pyramid. 

Moreover, it is easy to verify the following: 

PROPOSITION 2.7. If v is a universal node of G and G - v is hamilton 
connected or a hypercube, then G is hamilton connected. 

In the following section we will show that many polyhedra of well-known 
combinatorial objects have a relatively simple “nonadjacency” situation. If 
vertices x and y are nonadjacent then there exist two different vertices u and 
v such that 1/2x + 1/2y = 1/2u + 1/2v. (Often this amounts to the fact that 
when the vertices corresponding to two combinatorial “objects” are nonad- 
jacent. there exist two different “objects” with the same union and inter- 
section.) In other words, the midpoint of the line segment joining two nonad- 
jacent vertices is the midpoint of the line joining two different vertices. This 
prompts the following definition: We say X E { 0, 1 }” is a combinatorial set if 
whenever x and y are nonadjacent on G(X) there exists u, v E X - {x, y} 
such that x + y = u + v. In this case we say that conv(X) is a combinatorial 
polyhedron and G(X) is a combinatorial graph. The following important 
lemma shows that if IX] > 3 and X is nonseparable, for a combinatorial set 
X, then G(X) is nonbipartite. At present we do not know of any counterex- 
amples to this assertion for noncombinatorial sets, and we conjecture that 
the result remains true, with this hypothesis removed. 

LEMMA 2.8. Let X s (0, 1 }” be a combinatorial set. If 1 XI > 3 and X is 
nonseparable then G(X) is nonbipartite. 

Proof. We prove by induction on ] X]. If ]X] = 3 then G(X) is a triangle 
and the result is immediate. Suppose that it is true whenever IX] < k and we 
have ] X] = k. Choose e E E. Since X is nonseparable. x # 0 # Xt . If either 
Xz or X: had a > 3-valued component, then by induction the graph of this 
component would be nonbipartite so by Lemma 2.1, G(g) or G(Xj) would 
be nonbipartite. Then by Lemma 2.5, G(X) would be nonbipartite. Therefore 
we can assume that both X,” and Xi consist of l-valued and 2-valued 
components. If either IX,“] = 1 or IX: ] = 1 then, by Corollary 2.6, G(X) is a 
pyramid and the result is immediate. Therefore we can assume that each of 
Xg and Xj contains at least one 2-valued component. 

Since X is nonseparable, there exists w  E g, say, such that 
w[E -. {e}] & Xi[E - {e}]. (Otherwise, {e} would be a 2-valued component 
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of X.) By Lemma 2.4 there exists x E Xi adjacent to w. Let S be a 2-valued 
component of Xi and let X be the vector obtained from x by taking the other 
possibility for the coordinate positions indexed by S. It follows from (2.4) 
that x and z? are adjacent. Suppose that 2 and w  are not adjacent. Then, since 
X is combinatorial, there exist U, u E X - {w, X} such that w  + X = u + u. 
Moreover, exactly one of U, V, say u, must belong to Xi. Let U be obtained 
from u by taking the other possibility for the coordinate positions in S. Then 
w+x=C+u and zi, VEX-{w,x} so w  and x are not adjacent, a 
contradiction. Therefore X and w  are adjacent and w, ~7, x are the nodes of a 
triangle of G(X) and the result follows. 1 

We can now obtain the following: 

THEOREM 2.9. If G(X) is bipartite for a combinatorial set X, then G(X) 
is a hypercube. 

Proof. If any component were >3-valued then, by Lemmas 2.8 and 2.1, 
G(X) would be nonbipartite. Therefore every component is l-valued or 2- 
valued and so by Lemma 2.1, G(X) is the Cartesian sum of a number of X2’s 
and Ki’s. By Lemma 2.2, therefore, G is a hypercube. m 

For hypercubes, there is a very simple adjacency criterion: If G(X) is a 
hypercube, where X is a combinatorial set, then nodes x, y E X are adjacent 
in G(X) if and only if (j E E: xi # yj} is a 2-valued component of X. 
Moreover, it follows immediately from Lemma 2.1 that IX] = 2”, where IZ is 
the number of 2-valued components. 

We now prove the main result of this paper. 

THEOREM 2.10. Let G be the graph of a combinatorial O-l polyhedron. 
Then G is either a hypercube or else is hamilton connected. 

Prooj Let X s (0, 1 }” be a combinatorial set and let G = G(X). We 
prove by induction on IX], the number of nodes of G. If IX] < 3 then the 
result is immediate, so suppose IX] = k > 4 and that the result is true for all 
smaller values of ] XI. We can assume that X has no l-valued components 
(i.e., there are no j E E such that x, is constant for all x E X) as these can be 
eliminated without changing G. 

If X is separable then it is easily verified that for each component S, X[S] 
is a combinatorial set and ]X[S]] < IX]. Therefore, using induction and 
Lemmas 2.1 and 2.2, G is hamilton connected or a hypercube depending on 
whether or not there exists a >3-valued component. Therefore, we assume 
that X is nonseparable. We will show that every pair of distinct nodes x, y is 
joined by a hamilton path. Let x and y be distinct and let e E E be such that 
x,#y,.Then~#~~l#X~.IfI~I=l.or~X~I=lthenGisapyramid,by 
Corollary 2.6. By induction, whichever of Xi or g contains three or more 
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elements must be hamilton connected or a hypercube. Therefore by 
Proposition 2.7, G is hamilton connected. So we assume Ix I> 2, IX: I> 2. 
Each of these sets contains one of x, y; suppose x E g, y E Xi. We now 
distinguish three cases: 

Case 1. Both G(g) and G(Xj) are hamilton connected. If we can find 
u E g - {x) and u E Xi - { y} such that u and u are adjacent we are done, 
for we know there exist hamilton paths 17, in G(Y,) from x to u and IZ, in 
G(XL) from v to y. Then the concatenation of IZ,, the edge joining U, Y, and 
17, yields the desired hamilton path from x to y. (See Fig. 2.) So suppose that 
y is the only node of Xi adjacent to a node of g - {x}, and hence, x is the 
only node of g adjacent to a node of Xj - {y}. We will show that in this 
case 

1x1=2 and Ix;1 = 2. (2.6) 

By Lemma 2.4, we must have u[E - S] = y[E - S] for every u E g - {x}, 
where S is the set of coordinates of l-valued components of Xi. Let 
u E g - (x} and let w  E Xi - { y}. Since u and w  are nonadjacent, and X is 
combinatorial, there exist ri E g - (u} and B E Xi - {w} such that 
u+w=C+W. Suppose ufx. Then C[E-S]=y[E-S]=u[E-S], so 
w[E - S] = B[E - S]. Since S was the set of coordinates of l-valued 
components of Xi, w[S] = KJ[S] and therefore w  = @, a contradiction. 
Therefore U= x, and similarly, W = y. But that means for a fixed 
UEX,O- (x}, every WEXJ-{y} must satisfy w=x+y-U. But this 
means IX: - { y}l = 1 and similarly Ix - (x)] = 1 so (2.6) is established. 

But this leads immediately to a contradiction. Since, by hypothesis, 
1x1 > 4 and X is nonseparable, it follows from Lemma 2.8 that G(X) is 
nonbipartite. Therefore, if g = {x, u) and Xi = { y, u} we must have x and y 
adjacent. But since we assumed u and u to be nonadjacent, and X is 
combinatorial, we have u + u = x + y, contradicting x and y being adjacent. 

\ ” / 
\ / \ / 

L-1 k-’ 

FIGURE 2 
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Thus we can always find adjacent u E g - {x} and v E Xi - { y} so the first 
case is complete. 

Case 2. Only one of G(g) and G(Xi), say, G(g), is hamilton 
connected. Then by induction, G(Xi) is a hypercube of dimension at least 2, 
so IX: I> 4. Let W be the part of G(Xi) that does not contain y. If any 
u E W is adjacent to u E g - {x}, then, using (2.5) we can proceed exactly 
as in the previous case. Therefore, suppose that x is the only node of g 
adjacent to any u E W. Then, by Lemma 2.4, u[E - S] = x[E - S] for all 
Y E W, where S is the set of coordinates of l-valued components of Xz. 
Suppose there existed U’ E XJ - { W} such that u’[E - S] # x[E - S]. Since 
u’ is adjacent to some member of W, one of the 2-valued components of XJ 
must contain an element of E - S. Since IX: I> 4 there is another 2-valued 
component and let 6’ be obtained from u’ by changing the value on this 
component. Then V’ and u’ are adjacent, so V’ E w. But 
zT’[E - S] # x[E - S], a contradiction. Therefore u[E - S] = x[E - S] for 
all u E Xi. Now let w  E XE - (x} and u E W. By hypothesis they are not 
adjacent so since X is combinatorial, there exist tt, E g - (w} and 
GE Xi - (u) such that u + w  = U + @. We have just seen that 
B[E - S] = u[E - S]. But since S is the set of l-valued components of X,“, 
w[S] = W[S] and therefore u[S] = fi[S]. But this means u = V; a 
contradiction. Therefore there must exist adjacent u E X,0 - {x} and u E W, 
so we are finished with this case. 

Case 3. Neither G(g) nor G(Xi) is hamilton connected. Then Ix I> 4, 
IX: I> 4 and G(g) and G(Xi) are hypercubes, by induction. Let Y” and Z” 
be the parts of G(x) and Y’ and Z’ be the parts of G(Xj), where x E Y”, 
y E Z’. Our objective is to establish 

(2.7) there exist an edge 1 of G(X) joining a node u of Z” to a node u of 
Y’. 
For then the result will follow easily from (2.5) by concatenating a hamilton 
path in G(Xz) from x to U, the edge 1, and a hamilton path in G(Xi) from u 
to y. Let S’ be the set of coordinates of l-valued components of XL for 
i = 0, 1. First we observe that if So US’ = E then every u E X,” is adjacent 
to every u E Xi. For if such a u and u were not adjacent, since X is 
combinatorial, there would exist zi E x - (u} and 5 E Xi - {u} such that 
u + u = U + 0. But then u[S’] = ti[S”] and consequently u[S”] = V[SO]. But 
since we also have u[S’] =V[S’] we would have u = 6, a contradiction. 
Therefore E - (So U S’) # 0. 

Since IXI> 3 and X is nonseparable, if (2.7) is not satisfied there must 
exist s E Y” and t E Z’ which are adjacent in G(X), for otherwise G(X) 
would be bipartite, contradictory to Lemma 2.8. Let j E E - (So U S’), let 
Co be the (2-valued) component of x that contains j and let C, be the (2- 
valued) component of Xi that contains j. Let 5 and f be obtained from s and 
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t by switching the values indexed by coordinates in C, and C,, respectively. 
Then FE 2’ and f E Y’, since s and S are adjacent, as are t and f. If F and I 
are nonadjacent, then there exist u E 3 - {F} and o E Xi - {i} such that 
J + i= u t V. Note that this implies uk # S;, if and only if vk # f, for k E E, 
so if we let K be the set of indices where uk # S;, we have K GE - (So U S,). 

Further, K must be the union of some set of 2-valued components of X,0 and 
of 1;. If Co&K, then C,nK=0 and C,nK=0 and so u[C,]=S[C,] 
and v[C,] = r[C,]. Hence, if we let P and ti be obtained from u and v by 
taking the opposite choice for the components indexed by Co and C,, 
respectively, we have It B = s t t and zZ# s, r7 # t, contradicting the 
adjacency of s and t. Therefore, we must have Co E K and C, E K. 

Next, we observe that for any h E E, if we have S;, = f,,, then we must 
have u,, = v,, = S;, = i,, so h cf K. Therefore, for each k E K we have S;, t ik = 
uk t vk = 1. Since K is the union of 2-valued components of g, we can 
obtain u’ from u by reversing the values coresponding to coordinates in these 
components and similarly obtain v’ from v. Then u’ t v’ = u + v and since 
Co, C, z K, we have u’ [ Co] # B[C,] and v’ [C, ] # i[C,]. Therefore u’ t v’ = 
S+ I and so, letting E’ and 6’ be obtained from u’ and v’ by switching the 
values corresponding to coordinates in C, and C,, respectively, we have 
u” t 6’ = s + t. But since s and t are adjacent, this means that zi’ = s and 
5’ = t. But then K = Co = C, and the two possible values for u [K] for u E g 
and v[K] for v E Xi are identical. Thus, K is a component of X, which 
contradicts the nonseparability of X. This final contradiction completes the 
proof of the theorem. 1 

3. SOME APPLICATIONS 

In this section we show that the polyhedra of many well-known 
combinatorial problems are, in fact, “combinatorial polyhedra” as defined in 
the previous section. Therefore, it follows from Theorem 2.10 that their 
graphs are either hypercubes or are hamilton connected. In many of these 
cases, the proof that the polyhedra are combinatorial already appears in the 
literature, usually imbedded in the justification of an adjacency criterion. 
Generally we have included the proof that it is combinatorial, first for 
completeness and second to illustrate that often this is a very easily verified 
property. 

3.1. Matchings 

A matching of a graph G is a set M of edges such that every node of G is 
incident with at most one member of M. A matching M is perfect if every 
node is incident with exactly one member of M. The symmetric difference of 
two matchings M, and M, consists of a number of node disjoint even cycles 
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and simple paths in general, or simply even cycles if M, and M, are perfect. 
The (perfect) matching polyhedron (PM(G)) M(G) is the convex hull of the 
incidence vectors of the (perfect) matchings of G. Chvatal [6] proved that 
vertices u, and u2 of M(G) or PM(G) are adjacent if and only if the 
symmetric difference of the corresponding matchings induces a connected 
subgraph of G. 

THEOREM 3.1.1. Let X be the incidence vectors of the perfect matchings 
of G. Then X is a combinatorial set. 

Proof If vi and v2 are nonadjacent then the symmetric difference of the 
corresponding perfect matchings M, and M, contains two disjoint alternating 
cycles C and C. Let x1 and xI be the incidence vectors of the perfect 
matchings M,AC and M.J c. Then x1 + x2 = u, + 272 and 
{xi, x2} n (vi, u2} = 0 since x, disagrees with v, on C and with u2 on C and 
since 2y2 disagrees with o2 on C and with v, on C. 1 

COROLLARY 3.1.2. The graph of PM(G) is either a hypercube or 
hamilton connected. 

For the case of G bipartite, this corollary was proved by Brualdi and 
Gibson [ 31. 

THEOREM 3.1.3. Let X be the set of incidence vectors of all matchings of 
G. Then X is a combinatorial set. 

ProoJ The proof is identical to that of Theorem 3.1.1, except that C and 
C can now be simple paths or alternating cycles. 1 

COROLLARY 3.1.4. The graph of M(G) is either a hypercube or is 
hamilton connected. 

3.2. Stable Sets 

A stable set S of a graph G is a set of nodes such that no two are adjacent 
in G. The stable set polyhedron S(G) is the convex hull of the set of 
incidence vectors of stable sets of G. Chvatal [6] showed that vertices v, and 
u2 of S(G) are adjacent if and only if the subgraph G’ of G induced by the 
symmetric difference of the stable sets corresponding to II, and o2 is con- 
nected. 

THEOREM 3.2.1. Let X be the set of incidence vectors of all stable sets of 
G. Then X is a combinatorial set. 

ProoJ: If v, and u2 are nonadjacent then the symmetric difference of S, 
and S,, the stable sets corresponding to U, and v2, has at least two 
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components. Let C be the nodeset of a component. Then the incidence 
vectors x, , x2 of S, AC and S,AC are easily seen to be the incidence vectors 
of stable sets distinct from S,, S, and satisfying x, $ x2 = u, + ur. \ 

COROLLARY 3.2.2. The graph of S(G) is either a hypercube or is 
hamilton connected. 

In fact, Chvital proves his adjacence criterion for matchings by observing 
that vertices u, and v2 of M(G) are adjacent if and only of the corresponding 
vertices 6, and UZ of S&(G)) are adjacent, where L(G) is the line graph of 
G. Thus, in fact, we can view Theorem 3.1.3 as a corollary of 
Theorem 3.2.1. 

3.3. Matroids 

Let M = (E, ,P) be a matroid where E is the underlying set and X is the 
family of independent sets. Let 9 be the set of bases (maximal independent 
sets) of A4. Let B(M) be the convex hull of the incidence vectors of the bases 
of M and let I(M) be the convex hull of the incidence vectors of all members 
of .P. The graph G(B(M)), the so-called matroid basis graph, has been 
studied in the literature (see Maurer [ 10, ll]), as has the special case when 
M is the forest matroid of a graph (Cummings [7], Shank [ 121). As 
mentioned in the Introduction, several results have been proven concerning 
the hamiltonicity of these graphs. The strongest, to our knowledge, is that of 
Holzmann and Harary [9] who show that G(B(M)) is uniformly 
hamiltonian, that is, for every edgej there exists a hamilton cycle containing 
j (provided that G@(M)) has at least one cycle) and there exist another 
hamilton cycle not containing j (provided that G@(M)) has at least two 
cycles). 

Two vertices vi, v2 of B(M) are adjacent, if and only if IB,AB,I = 2, 
where B, and B, are the two bases of M corresponding to v, and v2. (It is 
diff’mult to know to whom this characterization should be attributed. It was 
known to Jack Edmonds in the early 1970s. It appears in print in Hausmann 
and Korte [8].) 

THEOREM 3.3.1. Let X be the set of incidence vectors of all bases of a 
matroid M. Then X is a combinatorial set. 

Proof (Hausmann and Korte [8]). Let v, and v2 be nonadjacent vertices 
of B(M) corresponding to bases B, and B,. Then ] B, AB, 1 > 2. Let 

e E B, -B,, By the matroid basis exchange axiom there exists f E B, -B, 
such that B,=B,U{e}-{f} and B,=B,U{f}-{e} are bases of M. 
Then, if we let x, and x2 be the incidence vectors of B, and BZ, respectively, 
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we have x,+x,=v,+v,. Moreover, since ]B,dB,] = ]B,dB,] = 2 and 
since JB, AB,I > 2, the vectors (xi, x2, vi, vz} are pairwise different. 1 

COROLLARY 3.3.2. The graph of B(M) is either a hypercube or else is 
hamilton connected. 

This corollary is stronger than the “positive” half of the Holzmann- 
Harary theorem, in that if a graph with a cycle is either a hypercube or 
hamilton connected then every edge belongs to a hamilton cycle, but the 
converse is not true. However, it does not imply the “negative” part of this 
result. 

To the best of our knowledge, Hausmann and Korte [8] were the first to 
consider the polyhedron I(M), the convex hull of the incidence vectors of all 
independent sets on a matroid. They establish the following adjacency 
criterion: the vertices of I(M) corresponding to independent sets I, and I, of 
a matroid A4 are adjacent if and only if 

(i) )I,AIzl = 1 or 

(ii) ]Z, AI2 ] = 2 and I, U I, & .P. 

From our point of view, the interesting part is that they show that if u, and 
v2 are nonadjacent, then there exist two other vertices xi, x2 such that 
v,+v,=x,+x,. (See [8, p. 118, proof of Theorem 1.21 for details.) Thus 
they establish: 

THEOREM 3.3.3. Let X be the set of incidence vectors of independent sets 
of a matroid M. Then X is a combinatorial set. 

COROLLARY 3.3.4. The graph of Z(M) is either a hypercube or is 
hamilton connected for a matroid M. 

3.4. Permutation Polyhedra 

Let 0 = (a,, t7* ,..., u,,) be a permutation of { 1,2,3 ,..., n}. Let E” be the 
n x n matrix with a 1 in the position (i, j) if i precedes j in o and 0 
otherwise. The permutation polytope l7, is defined to be the convex hull of 
the set of matrices E” for all permutations CJ. (This should not be confused 
with the assignment polytope of order n: the convex hull of all n X n 
permutation matrices. The assignment polytope is the special case of the 
perfect matching polyhedron, where G is a complete bipartite graph with n 
nodes on each side. Thus its membership in the class of combinatorial 
polyhedra and consequent hamiltonicity result follows from Theorem 3.1.1.) 

Young [ 141 showed that the graph of n, is hamiltonian. In fact, as 
observed by Young, this result is well known in computer science, but in a 
different form. It follows directly from the fact that if permutations u and r 
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differ only by the interchange of an adjacent pair of elements, then the 
matrices E” and E’ are easily seen to be adjacent on II,. Several algorithms 
are known for generating the complete set of permutations of an n element 
set, where each is obtained from the previous permutation by the 
transposition of an adjacent pair of elements. 

When proving an adjacency criterion for n,, Young shows that if E” and 
E’ are nonadjacent, then there exist different E”’ and E” such that 
E” + E’ = E”’ + E”. (See [ 14, p. 122-1331.) Therefore we have: 

THEOREM 3.4.1. If X is the set of matrices E” for all permutations o of 
an n element set, then X is a combinatorial set. 

We have the following corollary, which is slightly stronger than usual. 

COROLLARY 3.4.2. The graph of II, is hamilton connected. 

ProoJ For n = 1 or 2 this is trivial. If n 2 3 then [{E”: u permutation of 
{ 1, z..., n)}l = n! cannot be a power of 2 so the graph cannot be a 
hypercube. The result follows from Theorem 2.10. 1 

4. CONCLUDING REMARKS 

We have shown that it is easily verified that the polyhedra of many well- 
known combinatorial problems satisfy the two conditions required of a 
“combinatorial polyhedron”: The vertices are O-l valued and the midpoint 
of the line joining any two nonadjacent vertices is the midpoint of the line 
joining another pair of vertices. The two main results proved in this paper 
are: 

(1) If G is a bipartite combinatorial graph, then G is a hypercube 
(Theorem 2.9). 

(2) If G is the graph of a combinatorial polyhedron, then G is a 
hypercube or is hamilton connected (Theorem 2.10). 

The two alternatives of Theorem 2.10 are almost mutually exclusive; the 
only hamilton connected hypercubes are the graphs K, and K,. It should be 
noted that a theorem such as Theorem 2.10 cannot be proved by simply 
considering the degree sequence of the graph of a combinatorial polyhedron 
and then applying a theorem of the form of Dirac. (See Berge [2].) This 
theorem and its subsequent strengthenings (Chvital [5]) have the following 
general form. The nodes of a n-node graph are sorted by decreasing degree 
and then it is proved that if the sum of the degrees of the ith node and the 
tz - ith node is at least n, then the graph is hamiltonian. For consider the 
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case of Theorem 3.3.1 and Corollary 3.3.2. Let E be an m element set and let 
.D be the set of all k = [m/2J element subsets of E. Then S!Y is the family of 
bases of a (rather trivial) matroid on E and IS[= 2*-l. But for each 
B E 58, the number of neighbours of the corresponding vertex of the matroid 
basis polyhedron is k . (m - k) < m*/4. Thus all degrees are constant and 
the ratio between this constant degree and the number of vertices of the 
polyhedron tends to zero as n tends to infinity. 

At present, we know of no example of a O-l polyhedron which violates 
Theorem 2.9 or Theorem 2.10 with the “combinatorial” hypothesis removed. 
Certainly there exist non-hamiltonian polyhedral graphs (for example, 
Tutte’s counter example to the Tait conjecture) but the problem seems to be 
that if such a graph is embedded in I?” in such a way that all the nodes have 
O-l coordinates, and so that all adjacencies are maintained, then we cannot 
avoid producing enough other adjacencies that the graph of the polyhedron 
becomes hamiltonian. Thus an outstanding open question is: To what extent 
can Theorems 2.9 and 2.10 be generalized? 
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