On Regular Graphs, V*

Dragomir Ž. Djoković
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Communicated by the Editors

Received August 6, 1976

Abstract

Let Γ_{a} be an infinite regular tree of valence 3. There exist subgroups B of Aut $\left(\Gamma_{3}\right)$ which are 5 -regular on Γ_{3}, i.e., sharply transitive on the set of 5 -arcs of Γ_{3}. We prove that any two such subgroups are conjugate in Aut $\left(\Gamma_{3}\right)$. The pair (Γ_{3}, B) is a universal 5 -regular action in the sense that if (G, A) is a pair consisting of a cubical graph G and a 5 -regular subgroup A of automorphisms of G then (G, A) can be "covered" by (Γ_{3}, B) in a certain natural way.

Preliminaries

This paper can be read independently from the previous papers with the same title. The terminology is standard; we only recall that an s-arc ($s \geqslant 0$) in a graph G is a map $S:\{0,1, \ldots, s\} \rightarrow G(=$ the set of vertices of $G)$ such that $S(i)$ is adjacent to $S(i+1)$ for $0 \leqslant i \leqslant s-1$ and $S(i) \neq S(i+2)$ for $0 \leqslant i \leqslant s-2$. If S is an s-arc then its opposite s-arc S^{\prime} is defined by $S^{\prime}(i)=$ $S(s-i), 0 \leqslant i \leqslant s$.

In the whole paper G denotes a regular graph of valence 3 and A a subgroup of $\operatorname{Aut}(G)$ which is 5-regular. This means that the induced action of A on 5 -arcs of G is regular, i.e., sharply transitive. If v_{1}, \ldots, v_{k} are vertices of G then $A\left(v_{1}, \ldots, v_{k}\right)$ denotes the subgroup of A consisting of all $\alpha \in A$ such that $\alpha\left(v_{i}\right)=v_{i}$ for $i=1, \ldots, k$. We say that $A\left(v_{1}, \ldots, v_{k}\right)$ is the fixer in A of the set $\left\{v_{1}, \ldots, v_{l b}\right\}$.

Since (G, A) is 5-regular it is clear that the fixer of a vertex has order $3 \cdot 2^{4}=48$ and the fixer of an s-arc $(1 \leqslant s \leqslant 5)$ has order 2^{5-s}. Morcover, according to Biggs [1, p. 126] these groups are unique up to isomorphism: If F_{s} is a fixer in A of an s-arc then

$$
\begin{gather*}
F_{0} \cong S_{4} \times C_{2}, \quad F_{1} \cong D_{4} \times C_{2}, \quad F_{2} \cong C_{2}^{3} \tag{1}\\
F_{3} \simeq C_{2}^{2}, \quad F_{4} \cong C_{2}
\end{gather*}
$$

[^0]where S_{n}, D_{n}, C_{n} are the symmetric group of degree n, the dihedral group of order $2 n$ and the cyclic group of order n, respectively. This claim in Biggs is based on the paper [5] of W. J. Wong in which only finite primitive permutation groups are studied.

We shall not rely on this claim but will reprove it here in the course of our study of $A(v)$ and its action on vertices not far away from v. Note that we do not require the action of A on vertices of G to be primitive. We also allow G to be infinite. In fact, our main results are about the case when G is an infinite tree.

For some general results on the automorphism groups of trees the reader should consult a recent paper of J. Tits [3].

Amalgam of Two Vertex-Fixers

Lemma 1. Let v be a vertex of G. Then
(i) there exists a unique non-trivial element $\tilde{v} \in A$ which fixes all vertices whose distonce from v is $\leqslant 2$;
(ii) \tilde{v} is an involution and belongs to the center of $A(v)$;
(iii) if $\alpha \in A$ and $\alpha(v)=w$ then $\alpha \tilde{v} \alpha^{-1}=\tilde{w}$;
(iv) if w is a vertex at distance 3 from v then $\tilde{v}(w) \neq w$;
(v) $\langle\tilde{v}\rangle$ is the fixer of any 4 -arc S such that $S(2)=v$.

Proof. Let a, b, c, \ldots be the vertices of G as indicated on Fig. 1. Since A is 5 -regular, the girth of G is $\geqslant 8,[1, p .113]$, and consequently all these vertices are distinct.

Figure 1
(i) The order of $A(b, v, e)$ is 2 and let α be its generator. Thus α is an involution. Since $\alpha(g)=g$ we have either $\alpha(h)=h$ or $\alpha(h)=i$. We shall show now that $\alpha(h)=i$ leads to a contradiction. Let π be the permutation representation of $A(v)$ on the vertices of G whose distance from v is $\leqslant 2$. If
$\beta \in \operatorname{Ker} \pi$ then $\beta \in A(b, v, e)=\langle\alpha\rangle$. Since $\alpha^{2}=1$ and $\alpha(h)=i$ by hypothesis it follows that $\beta=1$, i.e., our permutation representation π is faithful. Let α^{\prime} and $\alpha^{\prime \prime}$ be the generators of $A(b, v, h)$ and $A(e, v, h)$, respectively. Then $\alpha^{\prime}(e)=j$ and $\alpha^{\prime \prime}(b)=k$. Hence $\pi(\alpha), \pi\left(\alpha^{\prime}\right), \pi\left(\alpha^{\prime \prime}\right)$ are three pairwise disjoint transpositions and they generate an elementary abelian group of order 8. It follows that $A(c, v, d, g)=A(c, v, d)$ is elementary abelian of order 8. Choose $\beta \in A(b, v)$ so that $\beta(g)=d$ and $\beta(h)=e$. Then $\beta \alpha(h)=\beta(i)=j$, $\alpha \beta(h)=\alpha(e)-e$ and hence $\alpha \beta \nsim \beta \alpha$. On the other hand $\alpha, \beta \in A(b, c, v)$ which is a conjugate of $A(c, v, d)$ and so $A(b, c, v)$ is elementary abelian of order 8 . This is a contradiction.

We have proved that $\alpha(h)=h$, i.e., α fixes every vertex at distance $\leqslant 2$ from v. It is clear that α is the unique element of A with this property. From now on we shall write \tilde{v} instead of this α.
(iii) Since \tilde{v} fixes all vertices of G at distance $\leqslant 2$ from v it is clear that $\alpha \tilde{v} \alpha^{-1}$ fixes all vertices of G at distance $\leqslant 2$ from $w=\alpha(v)$. The uniqueness part of (i) implies that $\alpha \tilde{v} \alpha^{-1}=\tilde{w}$.
(ii) In the proof of (i) we have shown that \tilde{v} is an involution. If $\alpha \in A(v)$ then (iii) gives $\alpha \tilde{v} \alpha^{-1}=\tilde{v}$, i.e., \tilde{v} belongs to the center of $A(v)$.
(iv) This follows from $\tilde{v} \neq 1$ and 5-regularity of A.
(v) If S is a 4-arc and $S(2)=v$ then \tilde{v} fixes S. Hence $\langle\tilde{v}\rangle$ must be the fixer of S since the latter has order 2 .

Lemma 2. Using the notation of Fig. 1 we have:

$$
\begin{array}{rlrl}
A(b, v, e) & =\langle\tilde{v}\rangle, & A(b, d) & =\langle\tilde{c}, \tilde{v}\rangle \\
A(c, d) & =\langle\tilde{c}, \tilde{v}, d\rangle, & A(c, v)=\langle\tilde{b}, \tilde{c}, \tilde{v}, \tilde{d}\rangle \\
A(v) & =\langle\tilde{b}, \tilde{c}, \tilde{v}, \tilde{d}, \tilde{e}\rangle . &
\end{array}
$$

Proof. We have $\tilde{c} \notin\langle\tilde{v}\rangle, \tilde{d} \notin\langle\tilde{c}, \tilde{v}\rangle, \tilde{b} \notin\langle\tilde{c}, \tilde{v}, \tilde{d}\rangle, \tilde{e} \notin\langle\tilde{b}, \tilde{c}, \tilde{v}, \tilde{d}\rangle$. The last statement is true because $\tilde{e}(c)=g$ and $\langle\tilde{b}, \tilde{c}, \tilde{v}, \tilde{d}\rangle \subset A(c)$. Since

$$
\left.\begin{array}{rl}
A(b, v, e) & \supset\langle\tilde{v}\rangle,
\end{array} \quad A(b, d) \supset\langle\tilde{c}, \tilde{v}\rangle, ~ 子, \tilde{d}, \tilde{c}, \tilde{v}\right\rangle, \quad A(c, v) \supset\langle\tilde{b}, \tilde{c}, \tilde{v}, \tilde{d}\rangle,
$$

and $\quad|A(b, v, e)|=2, \quad|A(b, d)|=4, \quad|A(c, d)|=8, \quad|A(c, v)|=16$, $|A(v)|=48$ the assertion of the Lemma follows.

Lemma 3. Using the notation of Fig. 1 we have

$$
\tilde{c} \tilde{v}=\tilde{v} \tilde{c} \tilde{c}, \quad \tilde{c} \tilde{d}=\tilde{d} \tilde{c}, \quad(\tilde{b} \tilde{d})^{2}=\tilde{c} \tilde{v}, \quad(\tilde{b} \tilde{e})^{3}=1
$$

Proof. The first two equalities follow from $\tilde{c}(v)=v, \tilde{c}(d)=d$ and Lemma 1(iii).
It is clear that $(\tilde{b} \tilde{d})^{2} \in A(b, d)$. By Lemma $2, A(b, d)=\langle\tilde{c}, \tilde{v}\rangle$. We have $\tilde{b}(d)=g$ and, say, $\tilde{b}(e)=h$. Then $(\tilde{b} \tilde{d})^{2}(e)=\tilde{b} d \tilde{b}(e)=\tilde{b} \tilde{d}(h)=\tilde{b}(i)=j$. Hence $(\tilde{b} \tilde{d})^{2}$ is neither 1 nor $\tilde{\mathrm{v}}$. Similarly $(\tilde{b} \tilde{d})^{2}(a) \neq a$ and hence $(\tilde{b} \tilde{d})^{2} \neq \tilde{c}$. But $A(b, d)=\langle\tilde{c}, \tilde{v}\rangle$ has only four elements $1, \tilde{c}, \tilde{v}, \tilde{c} \tilde{v}$. It follows then that $(\tilde{b} \tilde{d})^{2}=\tilde{c} \tilde{v}$.
Since $\tilde{b}, \tilde{e} \in A(v)$ and $\tilde{b}(c)=\tilde{b}(g)=d$ we must have $\tilde{b} \tilde{e}(b)-e$ or j. In both cases this vertex is fixed by \tilde{e}, i.e., $\tilde{e} \check{e}(b)=\tilde{b} \tilde{e}(b)$. Consequently, we have $\left(\tilde{b} \tilde{e}^{3}(b)=b\right.$. We claim now that $\tilde{b} \tilde{e}(b)=e$. Otherwise we would have $\tilde{b} \tilde{e}(\vec{b})=j$ and consequently $\tilde{j}=\tilde{b} \tilde{e} \tilde{b} \tilde{e} \tilde{b}$ by Lemma 1 (iii). Then $e=\tilde{c}(j)=$ $\tilde{c} \tilde{b} \tilde{e}(b)=\tilde{b} \tilde{c} \tilde{e} \tilde{c}(b)=\tilde{b} \tilde{\jmath}(b)$ because $\tilde{c}(b)=b$ and $\tilde{c} \tilde{e} \tilde{c}=\tilde{j}$ by Lemma 1 (iii). Replacing \tilde{j} by $\tilde{b} \tilde{e} \tilde{b} \tilde{e} \tilde{b}$ in $\tilde{b} \tilde{j}(b)=e$ we get $\tilde{\tilde{b}} \tilde{\tilde{e}} \tilde{b}(b)=e$, i.e., $\tilde{b} \tilde{e}(b)=e$ which contradicts $\check{b} \tilde{e}(b)=j$. Hence we have proved that $\tilde{b} \tilde{e}(b)=e$. It follows that $\tilde{e} \tilde{b}(e)=b$. Thus $\tilde{e} \tilde{b}(f)$ is a neighbour of b and consequently it is fixed by \tilde{b}, i.e., $\tilde{b} \tilde{b} \tilde{b}(f)=\tilde{e} \tilde{b}(f)$. It follows that $(\tilde{b} \tilde{e})^{3}(f)=f$. Hence $(\tilde{b} \hat{e})^{3} \in A(\vec{b}, v, f)$ and by 5 -regularity, $(\tilde{b} \tilde{e})^{3}=1$.

Theorem 1. Using notation of Fig. 1 we have
(i) $A(c, v)=\langle\tilde{b}, \tilde{d}\rangle \times\langle\tilde{c}\rangle=\langle\tilde{b}, \tilde{d}\rangle \times\langle\tilde{v}\rangle$ and $\langle\tilde{b}, \tilde{d}\rangle \cong D_{4}$;
(ii) $A(c)=\langle\tilde{a}, \tilde{b} \tilde{c}, \tilde{c} \tilde{v}, \tilde{d}\rangle \times\langle\tilde{c}\rangle,\langle\tilde{a}, \tilde{b} \tilde{c}, \tilde{c} \tilde{v}, \tilde{d}\rangle \cong S_{1}$ and $\langle\tilde{a}, \tilde{d}\rangle \cong D_{3}$;
(iii) $\langle\tilde{c}\rangle$ is the center of $A(c)$.

Proof. (i) Since \tilde{b}, \tilde{d} are distinct involutions, the group $\langle\tilde{b}, \tilde{d}\rangle$ is dihedral. By Lemma $3,(\tilde{b} \tilde{d})^{2}=\tilde{c} \tilde{v}, \tilde{b} \tilde{d}$ has order 4 and hence $\langle\tilde{b}, \tilde{d}\rangle \cong D_{4}$. The center of $A(c, v)$ is $\langle\tilde{c}, \tilde{v}\rangle$ and the center of $\langle\tilde{b}, \tilde{d}\rangle$ is $\tilde{c} \tilde{v}$. Thus we have the two direct decompositions stated above.
(ii) We claim that \tilde{a} normalizes the four-group $\langle\tilde{b} \tilde{c}, \tilde{\tilde{v}}\rangle$. Indeed, using Lemma 3,

$$
\tilde{a} \tilde{b} \tilde{c} \tilde{a}=\tilde{b} \tilde{c}, \quad \tilde{a} \tilde{c} \tilde{v} \tilde{a}=\tilde{c}(\tilde{a} \tilde{v})^{2} \tilde{v}=\tilde{c} \tilde{b} \tilde{c} \tilde{v}
$$

Similarly, \tilde{d} normalizes $\langle\tilde{b} \tilde{c}, \tilde{v} \tilde{v}\rangle$. By Lemma 3, $\tilde{a} \tilde{d}$ has order 3 and hence $\langle\tilde{a}, \tilde{d}\rangle \cong D_{3}$. Since $\langle\tilde{a}, \tilde{d}\rangle \cap\langle\tilde{c} \tilde{c}, \tilde{c} \tilde{v}\rangle=1$ the group $\langle\tilde{a}, \tilde{b} \tilde{c}, \tilde{c} \tilde{v}, \tilde{d}\rangle$ is a semidirect product and hence it is isomorphic to S_{4}. Since this subgroup together with \tilde{c} generates $A(c)$ we must have $\tilde{c} \notin\langle\tilde{a}, \tilde{b} \tilde{c}, \tilde{v} \tilde{v}, \tilde{d}\rangle$. Therefore $A(c)$ is a direct product as stated in the theorem.
(iii) This is immediate from (ii).

An amalgam is an ordered pair of groups (X, Y) such that $X \cap Y$ is a subgroup in each of X and Y and the induced group structures on $X \cap Y$ from X and from Y coincide.

Two amalgams (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ are isomorphic if there is a map $f: X \cup Y \rightarrow X^{\prime} \cup Y^{\prime}$ such that $f(X)=X^{\prime}, f(Y)=Y^{\prime}$ and the restrictions

$$
f_{X}: X \rightarrow X^{\prime} \quad \text { and } \quad f_{Y}: Y \rightarrow Y^{\prime}
$$

are group isomorphisms. We shall say that such a map is an isomorphism of these amalgams.

A special amalgam is an amalgam (X, Y) which is equipped with a map $\phi: X \cup Y \rightarrow X \cup Y$ such that $\phi(X)=Y, \phi(Y)=X$ and the restrictions

$$
\phi_{X}: X \rightarrow Y \quad \text { and } \quad \phi_{Y}: Y \rightarrow X
$$

are group isomorphisms. In particular, if (X, Y, ϕ) is a special amalgam then $X \simeq Y$.

Two special amalgams (X, Y, ϕ) and $\left(X^{\prime}, Y^{\prime}, \phi^{\prime}\right)$ are isomorphic if there exists an isomorphism of amalgams $f:(X, Y) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ such that $f \circ \phi=$ $\phi^{\prime} \circ f$.

Every 5 -arc S in G determines a special amalgam (X, Y, ϕ) as follows. Let $S(i)=v_{i}(0 \leqslant i \leqslant 5)$. Then we take $X=A\left(v_{2}\right), \quad Y=A\left(v_{3}\right)$. Note that $X \cap Y=A\left(v_{2}, v_{3}\right)$. Let $\alpha \in A$ be the unique automorphism such that $\alpha\left(v_{i}\right)=v_{5-i}(0 \leqslant i \leqslant 5)$. Then $\alpha^{2}=1$ and we have $\alpha A\left(v_{i}\right) \alpha=A\left(v_{5-i}\right)$ for $0 \leqslant i \leqslant 5$. In particular, we see that $\alpha(X \cap Y) \alpha=X \cap Y$. Let $\phi: X \cup Y \rightarrow$ $X \cup Y$ be defined by $\phi(\beta)=\alpha \circ \beta \circ \alpha$. Then we have constructed a special amalgam (X, Y, ϕ). Note that $\alpha^{2}=$ identity.

Theorem 2. The special amalgam defined above is unique up to isomorphism, i.e., it is independent of the choice of S and (G, A).

Proof. Using the above notation we have

$$
\begin{aligned}
X & =A\left(v_{2}\right)=\left\langle\tilde{v}_{0}, \tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}, \tilde{v}_{4}\right\rangle, \\
Y & =A\left(v_{3}\right)=\left\langle\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}, \tilde{v}_{4}, \tilde{v}_{5}\right\rangle, \\
X \cap Y & =A\left(v_{2}, v_{3}\right)=\left\langle\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}, \tilde{v}_{4}\right\rangle
\end{aligned}
$$

and

$$
\phi\left(\tilde{v}_{i}\right)=\tilde{v}_{\overline{5}-i} \quad \text { for } \quad 0 \leqslant i \leqslant 5 .
$$

Now the assertion is valid because of Theorem 1. More precisely, if (G^{\prime}, A^{\prime}) is also 5 -regular and S^{\prime} is a 5 -arc of G^{\prime} with $v_{i}^{\prime}=S^{\prime}(i), 0 \leqslant i \leqslant 5$ then it suffices to define the isomorphism $f:(X, Y, \phi) \rightarrow\left(X^{\prime}, Y^{\prime}, \phi^{\prime}\right)$ by sending \tilde{v}_{i} to \tilde{v}_{i}^{\prime} for $0 \leqslant i \leqslant 5$.

From now on we shall denote by (X, Y, ϕ) the special amalgam determined by'a 5 -arc in G. Explicitly, it is given by

$$
X=\left\langle x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle, \quad Y=\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\rangle
$$

where the defining relations for X are

$$
\begin{gathered}
x_{i}^{2}=1, \quad 0 \leqslant i \leqslant 4 ; \\
x_{i} x_{j}=x_{j} x_{i}, \quad 0 \leqslant i \leqslant j \leqslant i+2, j \leqslant 4 ; \\
\left(x_{0} x_{3}\right)^{2}=x_{1} x_{2} ; \quad\left(x_{1} x_{4}\right)^{2}=x_{2} x_{3} ; \quad\left(x_{0} x_{4}\right)^{3}=1 ;
\end{gathered}
$$

the defining relations for Y are

$$
\begin{gathered}
x_{i}{ }^{2}=1, \quad 1 \leqslant i \leqslant 5 ; \\
x_{i} x_{j}=x_{j} x_{i}, \quad 1 \leqslant i \leqslant j \leqslant i+2, j \leqslant 5 ; \\
\left(x_{1} x_{4}\right)^{2}=x_{2} x_{3} ; \quad\left(x_{2} x_{5}\right)^{2}=x_{3} x_{4} ; \quad\left(x_{1} x_{5}\right)^{3}=1 ; \\
X \cap Y=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle
\end{gathered}
$$

and

$$
\phi\left(x_{i}\right)=x_{5-i} \quad \text { for } \quad 0 \leqslant i \leqslant 5 .
$$

The Universal 5-Regular Action

Let (X, Y, ϕ) be the special amalgam constructed in the previous section. We shall use the generators $x_{i}, 0 \leqslant i \leqslant 5$ for X and Y and the defining relations given there.

Let H be the free product wilh amalgamation of X and Y with amalgamated subgroup $X \cap Y$. The map $\phi: X \cup Y \rightarrow X \cup Y$ can be extended in a unique way to an automorphism of H which we denote again by ϕ. It is clear that $\phi^{2}=1$. Let B be the semi-direct product of H and the cyclic group $C_{2}=\langle y\rangle$ of order 2 where y acts on H as the automorphism ϕ. Thus we have $y z y=\phi(z)$ for $z \in H$. With the usual identifications we have that X and Y are subgroups of H and H is a normal subgroup of B.

Let Γ_{3} be the graph whose vertex set is the set B / X of all left cosets $a X$, $a \in B$ and in which two vertices $a X$ and $b X$ are connected by an edge if and only if $a^{-1} b \in X y X$. Every $b \in B$ induces a bijection ϕ_{b} of $B \mid X$ by left multiplication, i.e., $\phi_{b}(a X)=b a X$. It is clear that ϕ_{b} is an automorphism of Γ_{3} for each $b \in B$ and that the map $B \rightarrow \operatorname{Aut}\left(\Gamma_{\mathrm{s}}\right)$ which sends b to ϕ_{b} is a group monomorphism. Hence we may consider B as a subgroup of $\operatorname{Aut}\left(T_{3}\right)$. It is clear that the action of B on Γ_{3} is vertex-transitive.

Theorem 3. Γ_{s} is a connected regular graph of valence 3 . The group B is 5-regular on Γ_{3}.

Proof. Since $y X y=Y$ it is clear that X and y generate B. This implies that Γ_{3} is connected. Since B is vertex-transitive the graph Γ_{3} is regular. The fixer in B of the vertex X is the subgroup X of B. The valence of the vertex X is equal to the number of left cosets of X contained in $X y X$. This
number is the same as the index of $y X y \cap X=X \cap Y$ in X, which we know is 3 . Thus Γ_{3} is a regular connected graph of valence 3 .

The three vertices adjacent to X are $y X, x_{0} y X$ and $x_{0} x_{4} x_{0} y X$. The element $x_{0} x_{4} \in X$ fixes the vertex X and permutes cyclically the three vertices adjacent to X. The element y interchanges the adjacent vertices X and $y X$ and hence B is 1 -transitive on Γ_{3}.

The cosets

$$
x_{0} y X, \quad X, \quad y X, \quad x_{5} X, \quad y x_{0} x_{5} X, \quad\left(y x_{0}\right)^{2} x_{5} X
$$

are consecutive vertices of a 5 -arc in Γ_{3}. The element x_{3} fixes the first five of these vertices and moves the last one. This is proved by simple computations:

$$
\begin{gathered}
x_{3} x_{0} y X=x_{0}\left(x_{0} x_{3}\right)^{2} x_{3} y X=x_{0} x_{1} x_{2} x_{3} y X=x_{0} y X, \\
x_{3} X=X, \quad x_{3} y X=y x_{2} X=y X, \quad x_{3} x_{5} X=x_{5} x_{3} X=x_{5} X, \\
x_{3} y x_{0} x_{5} X=y x_{0} x_{2} x_{5} X=y x_{0} x_{5}\left(x_{5} x_{2}\right)^{2} X=y x_{0} x_{5} x_{3} x_{4} X=y x_{0} x_{5} X, \\
x_{3}\left(y x_{0}\right)^{2} x_{5} X=y x_{0} x_{2} y x_{0} x_{5} X=y x_{0} y x_{3} x_{0} x_{5} X=\left(y x_{0}\right)^{2}\left(x_{0} x_{3}\right)^{2} x_{5} X \\
=\left(y x_{0}\right)^{2} x_{1} x_{2} x_{5} X=\left(y x_{0}\right)^{2} x_{1} x_{5}\left(x_{5} x_{2}\right)^{2} X \\
=\left(y x_{0}\right)^{2} x_{1} x_{5} x_{3} x_{4} X=\left(y x_{0}\right)^{2} x_{1} x_{5} X \neq\left(y x_{0}\right)^{2} x_{5} X .
\end{gathered}
$$

The last inequation holds because $x_{5} x_{1} x_{5} \notin X$. Indeed since $\left(x_{1}, x_{5}\right)^{3}=1$, $x_{5} x_{1} x_{5} \in X$ implies $x_{1} x_{5} x_{1} \in X$. This is impossible since $x_{1} \in X$ but $x_{5} \notin X$.

Since B is 1 -transitive and we have found a 5 -arc whose all vertices but the last are fixed by x_{3}, it follows that B is 5 -transitive. Since the order of the fixer X of the vertex X is 48 it is clear that B must be 5 -regular.

Theorem 4. Let (G, A) be a pair consisting of a connected regular graph G of valence 3 and a group A of automorphisms of G which is 5 -regular. Then there exists a surjective group homomorphism $\psi: B \rightarrow A$ and a graph covering map $\theta: \Gamma_{3} \rightarrow G$ such that the diagram

commutes for every $b \in B$.
Proof. Fix a 5 -arc S in G and define the corresponding special amalgam. By Theorem 2 it is isomorphic to the special amalgam used to define the group H. In fact we shall assume that this special amalgam is identical with (X, Y, ϕ). By the universal property of generalized free products there exists a unique group homomorphism $\psi_{0}: H \rightarrow A$ which is identity on $X \cup Y$. Let $\alpha \in A$ be the unique automorphism such that $\alpha \circ S$ is the 5 -arc opposite to S.

Then $\alpha^{2}=1$ and ϕ is the restriction of the map $\beta \rightarrow \alpha \circ \beta \circ \alpha$ to $X \cup Y$. It is easy to check that $\psi_{0}(y h y)=\alpha \psi_{0}(h) \alpha$ for all $h \in H$. Therefore there exists a unique group homomorphism $\psi: B \rightarrow A$ such that $\psi(y)=\alpha$ and ψ extends ψ_{0}. Since $A=\langle X, Y, \phi\rangle$ this homomorphism is surjective.

Let $S(2)=v$ and define a map $\theta_{0}: B \rightarrow G$ by $\theta_{0}(b)=\psi(b)(v)$. Since $X=A(v)$ we have for $x \in X$ that

$$
\theta_{0}(b x)=\psi(b x)(v)=\psi(b) \psi(x)(v)=\psi(b)(x(v))=\psi(b)(v)=\theta_{0}(b) .
$$

Thus θ_{0} induces a map $\theta: \Gamma_{3} \rightarrow G$ such that $\theta(a X)=\theta_{0}(a)$. Now we have

$$
\begin{aligned}
\theta(b(a(X)) & =\theta(b a X))=\theta_{0}(b a)=\psi(b a)(v) \\
& =\psi(b) \psi(a)(v)=\psi(b)\left(\theta_{0}(a)\right)=\psi(b)(\theta(a X)),
\end{aligned}
$$

i.e., the diagrams mentioned in the theorem are commutative.

Let $a X$ and $b X$ be two adjacent vertices of Γ_{3}. Then $a^{-1} b \in X y X$, i.e., $a^{-1} b=c y d$ for some $c, d \in X$. We have

$$
\begin{aligned}
\theta(b X) & =\psi(b)(v)=\psi(a c y d)(v)=\psi(a) c \alpha d(v) \\
& =\psi(a) c \alpha(v)=\psi(a) c(w)
\end{aligned}
$$

where $w=S(3)=\alpha(v)$. Since v is adjacent to w and $c \in X, v$ and $c(w)$ are adjacent. Consequently $\theta(a X)=\psi(a)(v)$ is adjacent to $\theta(b X)$.
Let $b^{\prime} X$ be also adjacent to $a X$ but $b^{\prime} X \neq b X$. Then we can write $a^{-1} b^{\prime}=$ $c^{\prime} y d^{\prime}$ with $c^{\prime}, d^{\prime} \in X$. We find that $\theta\left(b^{\prime} X\right)=\psi(a) c^{\prime}(w)$. We claim that $\theta\left(b^{\prime} X\right) \neq \theta(b X)$, i.e., $c^{\prime}(w) \neq c(w)$. Otherwise we would have $c^{-1} c^{\prime} \in A(w)=Y$ and so $y c^{-1} c^{\prime} y \in X$. Then $b^{-1} b^{\prime}=(a c y d)^{-1}\left(a c^{\prime} y d^{\prime}\right)=d^{-1} y c^{-1} c^{\prime} y d^{\prime} \in X$ giving a contradiction $b^{\prime} X=b X$.

Since both Γ_{3} and G are regular of valence 3 the facts established above imply that θ is a covering map and the theorem is proved.

Theorem 5. Γ_{3} is a tree.
Proof. Let G be any regular 3 -valent graph and A a 5 -regular group of automorphism of G. Let T be an infinite regular 3-valent tree and $\pi: T \rightarrow G$ a covering map. By Theorem 3 of [2] the group A can be lifted to T. In particular, there exists a subgroup of $\operatorname{Aut}(T)$ which is 5 -regular. The universal property of $\left(\Gamma_{3}, B\right)$ shows that there is a covering $\theta: \Gamma_{3} \rightarrow T$ and hence Γ_{3} must be also a tree. This completes the proof of Theorem 5 .

Theorem 6. Let A be any 5-regular subgroup of $\operatorname{Aut}\left(\Gamma_{3}\right)$. Then A and B are conjugate in $\operatorname{Aut}\left(\Gamma_{3}\right)$.

Proof. We have two 5 -regular pairs $\left(\Gamma_{3}, B\right)$ and $\left(\Gamma_{3}, A\right)$. By Theorem 4 there is a covering map $\theta: \Gamma_{3} \rightarrow \Gamma_{3}$ and a surjective group homomorphism
$\psi: B \rightarrow A$ such that $\psi(b) \theta=\theta b$ for every $b \in B$. But θ must be an automorphism of Γ_{3} and hence $\psi(b)=\theta b \theta^{-1}$. This shows that ψ is an isomorphism and that $\theta B \theta^{-1}=A$.

Remark. Similar results are valid for s-regular groups of automorphisms of cubical graphs when $s=1,2,3,4$. If $s=2$ or 4 there exist two conjugacy classes of s-regular subgroups of $\operatorname{Aut}\left(T_{3}\right)$.

Of course, it is well-known that there are no s-regular groups of automorphisms of cubical graphs for $s>5$. For a short and beautiful proof of this see the note [4] of R. Weiss.

An open question. A doubly infinite arc in Γ_{3} is a map $S: Z \rightarrow \Gamma_{3}(=$ the set of vertices of Γ_{3}), where Z is the set of integers, such that $S(i)$ and $S(i+1)$ are adjacent and $S(i+1) \neq S(i-1)$ for all $i \in Z$. Every subgroup A of $\operatorname{Aut}\left(\Gamma_{3}\right)$ acts naturally on doubly infinite ares of Γ_{3} : if $\alpha \in A$ and S is a doubly infinite arc in Γ_{3} then α sends S to $\alpha \circ S$ which is again a doubly infinite arc. The question is the following: Does there exist a subgroup of $\operatorname{Aut}\left(\Gamma_{2}\right)$ which is sharply transitive on doubly infinite arcs of Γ_{3} ?

References

1. N. BIGGS, "Algbraic Graph Theory," Cambridge Univ. Press, Liondon/New York, 1974.
2. D. Z̄. Drokovíd, Automorphisms of graphs and coverings, J. Combinatorial Theory Ser. B 16 (1974), 243-247.
3. J. Trrs, Sur le groupe des automorphisms d'un arbre, in "Essays on Topology and Related Topics," Springer-Verlag, 1970, Berlin/New York, 188-211.
4. R. M. Weiss, Uber s-reguläre Graphen, J. Combinatorial Theory Ser. B 16 (1974), 229-233.
5. W. J. Wong, Determination of a class of primitive permutation groups, Math. Z. 99 (1967), 235-246.

[^0]: * This work was supported in part by NRC-Grant A-5285.

