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Let r3 be an intinite regular tree of valence 3. There exist subgroups B of 
Aut (r,) which are Sregular on r3, i.e., sharply transitive on the set of 5-arcs of 
r3. We prove that any two such subgroups are conjugate in Aut (r,). The pair 
(I’, , B) is a universal 5-regular action in the sense that if (G, A) is a pair con- 
sisting of a cubicalgraph G and a Sregular subgroup A of automorphisms of G 
then (G, A) can be “covered” by (r, , B) in a certain natural way. 

PRELIMINARIES 

This paper can be read independently from the previous papers with the 
same title. The terminology is standard; we only recall that an s-arc (s >, 0) 
in a graph G is a map S: (0, I,..., s} -+ G (=the set of vertices of G) such that 
S(i) is adjacent to S(i + 1) for 0 < i < s - 1 and S(i) # S(i + 2) for 
0 < i < s - 2. If S is an s-arc then its opposite s-arc s’ is defined by S(i) = 
S(s - i), 0 < i < s. 

In the whole paper G denotes a regular graph of valence 3 and A a subgroup 
of Aut(G) which is 5-regular. This means that the induced action of A on 
5-arcs of G is regular, i.e., sharply transitive. If zll ,..., uk are vertices of G then 
4, ,..., vk) denotes the subgroup of A consisting of all OL E A such that 
CX(VJ = vi for i = l,..., k. We say that A(v, ,..., vlc> is theBxer in A of the set 
{VI ,***, vlc>* 

Since (G, A) is 5-regular it is clear that the fixer of a vertex has order 
3 . 24 = 48 and the fixer of an s-arc (1 < s < 5) has order 25-s. Moreover, 
according to Biggs [l, p. 1261 these groups are unique up to isomorphism: 
If Fs is a fixer in A of an s-arc then 
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where 5, i L>, , C, are the symmetric group of degree n, the dihedral group 
of orkler 2n and the cyclic group of order n, respectively. Tliis claim in 
is based on the paper [5] of W. J. Wong in which only Unite primitive 
permutation groups are studied. 

e shall not rely on this claim but will reprove it here in the course of our 
study of A(v) and its action on vertices not far away from us Note that we 
do not require the action of A on vertices of G to be primitive. We also allow 
G to be infinite. In fact, our main results are about the case when G is an 
infinite tree. 

For some general results on the automorphism groups of trees the reader 
should consult a recent paper of J. Tits [3]. 

AIVIALC~AM 0~ Two VERTEX-FIXERS 

LEMMA 1. Let 2: be a vertex of 6. Then 

(i> there exists a unique non-trivial element 5 E A which$xes all vertices 
whose distai~cefro~ v is <2; 

(ii) C? is an kvolution and belongs to the center of&v); 
(iii) $ u E A and u(v) = w  then az7& = 6; 

( iv) if w  h a vertex at distance 3 from v then C(w) -# w; 

64 <z?) is the fixer of any 4arc S such that S(2) = v. 

P~oI$ Let a, b, c,... be the vertices of G as indicated on Fig. I. Since A is 
5-regular, the girth of G is 28, [I, p. 1131, and consequently ail these vertices 
are distinct. 

FIGURE I 

(i) The order of A(b, v, e) is 2 and let CL be its generator. Thus cx is an 
involution. Since q’g) = g we have either a(aZ) = h or c1(/rj = i. We shall 
show now that LX@) = i leads to a contradiction. Let 7~ be the permutation 
representation of A(v) on the vertices of G whose distance from u is ,(2. Hf 
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/3 E Ker rr then p E A@, V, e) = (a). Since 01~ = 1 and al(h) = i by hypothesis 
it follows that /3 = 1, i.e., our permutation representation rr is faithful. 
Let a’ and DI” be the generators of A@, 0, h) and A(e, z), h), respectively. Then 
oI’(e) = j and c?(b) = k. Hence I, ~(a’), ~(a”) are three pairwise disjoint 
transpositions and they generate an elementary abelian group of order 8. It 
follows that A(c, D, d, g) = A( c, U, d) is elementary abelian of order 8. 
Choose /3 E A@, U) so that /I( g) = d and ,8(h) = e. Then /kQz) = p(i) = j, 
c@(h) = a(e) = e and hence c@ # /Ia. On the other hand 01, p E A(b, c, V) 
which is a conjugate of A(c, z), d) and so A@, c, V) is elementary abelian of 
order 8. This is a contradiction. 

We have proved that a(h) = h, i.e., a: fixes every vertex at distance <2 
from D. It is clear that 01 is the unique element of A with this property. 
From now on we shall write d instead of this 01. 

(iii) Since 6 fixes all vertices of G at distance <2 from u it is clear that 
c&-l fixes all vertices of G at distance ,(2 from w  = a(v). The uniqueness 
part of(i) implies that &k-l = 3. 

(ii) In the proof of(i) we have shown that d is an involution. If a E A(U) 
then (iii) gives &k-l = v”, i.e., d belongs to the center of A(v). 

(iv) This follows from v” f 1 and 5-regularity of A. 

(v) If 5’ is a 4-arc and S(2) = u then B fixes S. Hence (v”) must be the 
fixer of S since the latter has order 2. 

LEMMA 2. Using the notation of Fig. 1 we have: 

A@, v, 4 = (9, A@, d) = (Z, v”), 
A(c, d) = (E, 6, cl), A(c, v) = (5, E; $7, h), 

A(v) = (6, ?, 77, $ e”>. 

Proof. We have c” $ {a), d”$ {Z, v”), b” # {Z, v”, d), .? 6 (6, Z, d, d”). The last 
statement is true because Z(c) = g and (6, E; 6, d”) C A(c). Since 

and I A@, u, e)l = 2, ) A(b, d)] = 4, 1 A(c, d)l = 8, / A(c, v)\ = 16, 
1 A(v)/ = 48 the assertion of the Lemma follows. 

LEMMA 3. Using the notation of Fig. 1 we have 
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ProoJ The first two equalities follow from c”(u) = U, c”(d)~ = d ami 
Lemma I@). 

It is clear that (6d)2 E A@, d). By Lemma 2, A@, d) = (C, 5). We have 
6(d) = g and, say, 6(e) = h. Then (@)2(e) = 68(e) = &@I) = &‘<i) = j. 
Hence (@)2 is neither I nor d. Similarly (&@(a) i a and hence (6@ f ?. 
But A@, d) = (Z, 6) has only four elements 1, c”, d, E. It follows then that 
(&I)” = 2-z. 

Since & 2 E d(v) and 6(c) = b”(g) = d we must have k!(b) = e or j. In 
both cases this vertex is fixed by Z, i.e., &@) = &F(b). Consequently, we have 
(k)3(b) = b. We claim now that &Z(b) = e. Otherwise we would have 
k(b) = j and consequentIy 3 = k&6 by Lemma l(G). Then e = G”(j) = 
Z(b) = 6&T(b) = &b) because c”(b) = b and ZZ = j by Lemma I($. 
Replacing j by !&6 in 6”(b) = e we get C&&I) = e, i.e., k(b) = e which 
contradicts 8(b) = j. Hence we have proved that k(b) = e. It follows that 
Z&(e) = b. Thus .&b”(f) is a neighbour of b and consequently it is fixed by 6, i.e.: 
6&(f) = F(f). It follows that (&?)3(f) = J: Hence (k)” E A(b, v,f) and by 
5regularity, (&“)3 = 1. 

THEOREM 1. Using notation of Fig. 1 we have 

(i) A(c, v) = (6, d”> x (2) = (6, d”) x (5) and (b”, H) g D, ; 

(ii) A(c) = (5, k, ET, d) x <?), (4 k> S, d”) g S, and (Cz, d) g D, ; 

(iii) (c”) is the center of A(c). 

Proof. (i) Since 6, d” are distinct involutions, the group (& d) is dihedral. 
By Lemma 3, (&J)” = %, 6J has order 4 and hence (6, d”) G D, . The center 
of A(c, v) is (F, 6) and the center of (5, d”) is 5. Thus we have the two direct 
decompositions stated above. 

(ii) We claim that a” normalizes the four-group (SE, 25). Indeed, using 
Lemma 3, 

Similarly, d normalizes <& &7). By Lemma 3, & has order 3 and hence 
(4 d) E D, . Since (5,6) n (6” c, Z) = 1 the group (5,&E, 57, d) is a semi- 
direct product and hence it is isomorphic to S, . Since this subgroup together 
with E generates A(c) we must have c” $ (6, i%, EC, 6). Therefore A(c) is a 
direct product as stated in the theorem. 

(iii) This is immediate from (ii). 

An amaigam is an ordered pair of groups (X, Y) such that X n Y is a 
subgroup in each of X and Y and the induced group structures on X n Y 
from X and from Y coincide. 
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Two amalgams (X, Y) and (X’, Y’) are isomorphic if there is a map 
f: X u Y -+ X’ u Y’ such that j(X) = X’, f(Y) = Y’ and the restrictions 

fx: x + X’ and fy: Y + Y’ 

are group isomorphisms. We shall say that such a map is an isomorphism 
of these amalgams. 

A special amalgam is an amalgam (X, Y) which is equipped with a map 
$: X u Y--t X u Y such that 4(X) = Y, 4(Y) = X and the restrictions 

#,:X+Y and $,:Y+X 

are group isomorphisms. In particular, if (X, Y, r$) is a special amalgam 
then X s Y. 

Two special amalgams (X, Y, 4) and (xl, Y’, 4’) are isomorphic if there 
exists an isomorphism of amalgams f: (X, Y) --+ (X’, Y’) such that f 0 # = 
4’ ox 

Every 5-arc S in G determines a special amalgam (X, Y, 4) as follows. Let 
S(i) = vi (0 < i < 5). Then we take X = A(Q), Y = A(Q). Note that 
X n Y = A(v, , Q). Let 01 E A be the unique automorphism such that 
a(vJ = vSPi (0 < i < 5). Then 01~ = 1 and we have o”A(v& = A(vg-J for 
0 < i < 5. In particular, we see that a(X n Y)a = X n Y. Let $: X U Y + 

XU Ybe defined by 4(/I) = 010/3 0 01. Then we have constructed a special 
amalgam (X, Y, $). Note that 01~ = identity. 

THEOREM 2. The special amalgam defined above is unique up to isomor- 
phism, i.e., it is independent of the choice of S and (G, A). 

Proof. Using the above notation we have 

X = A(v,) = (6,) Cl , C2, B, , a,), 

Y = A(vJ = (Cl , E7, , 6, , a4 , a,), 

X n Y = A(v, , v3) = (a, , k& , Zi3 , Q) 

and 

&) = f&-i for 0 < i < 5. 

Now the assertion is valid because of Theorem 1. More precisely, if (G’, A’) 
is also 5-regular and S’ is a 5-arc of G’ with vi = S’(i), 0 < i < 5 then it 
suffices to define the isomorphism f: (X, Y, 4) --f (xl, Y’, 4’) by sending ‘u”$ 
to a; for 0 < i < 5. 

From now on we shall denote by (X, Y, 4) the special amalgam determined 
by,a 5-arc in G. Explicitly, it is given by 

x = <X0,%, %,X3,X*), y = (Xl 2 x2, x3 2 x4 3 x5) 
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where the defining relations for X are 

x.2 = 1 z , O<i<44; 

xixj = xjxi ) O<i<j<i+I&j<4; 

c%lx3)2 = XIX, ; (xxxq)2 = X2X3 ; (x&)3 = P ; 

the defining relations for Y are 

and 
+(xJ = xgei for 0 < i < 5. 

THE UNIVERSAL ~-REGULAR /dxxoN 

Let (X, Y, +) be the special amalgam constructed in the previous section‘ 
We shall use the generators xi , 0 < i < 5 for X and Y and the defining 
relations given there. 

Let H be the free product with amalgamation of X and Y with amal- 
gamated subgroup X n Y. The map $: X w  Y +- X w  Y can be extended 
in a unique way to an automorphism of H which we denote again by 4. It is 
clear that +2 = 1. Let B be the semi-direct product of H and the cyclic group 
C’, = ( y} of order 2 where y acts on H as the automorphism 4. Thus we 
have yzy = C&Z) for z E H. With the usual identifications we have that X 
and Y are subgroups of H and H is a normal subgroup of B. 

Let r, be the graph whose vertex set is the set B/X of all left cosets ax, 
a E B and in which two vertices aX and bX are connected by an edge if and 
only if a-% E XyX. Every b E B induces a bijection & of 
plication, i.e., &,(aX) = baX. It is clear that &, is an au 
for each E E B and that the map B + Aut(r,) which sends b to 46, is a group 
monomorphism. Hence we may consider B as a subgroup of Aut(~~~. 
clear that the action of B on I’, is vertex-transitive. 

THEQREM 3. F, is a connected regular graph of valence 3. IPhe group 
5-regular on F, . 

.Prooj Since yXy = Y it is clear that X and y generate, B. This implies 
that r, is connected. Since B is vertex-transitive the graph S3 is regular. 
The fixer in B of the vertex X is the subgroup % of B. The valence of t 
vertex X is equal to the number of left cosets of X contained in XjlX. This 

582Wz6/3-3 
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number is the same as the index of yXu n X = X n Yin X, which we know 
is 3. Thus J-‘, is a regular connected graph of valence 3. 

The three vertices adjacent to X are yX, x0 VX and x,x,x, yX. The element 
x,x, E X fixes the vertex X and permutes cyclically the three vertices adjacent 
to X. The element y interchanges the adjacent vertices X and yX and hence B 
is l-transitive on r, . 

The cosets 

are consecutive vertices of a 5-arc in r, . The element x, fixes the first five of 
these vertices and moves the last one. This is proved by simple computations: 

The last inequation holds because x5x1x5 # X. Indeed since (x1, xJ3 = 1, 
x,x,x, E X implies x,x,x, E X. This is impossible since x1 E X but x, 6 X. 

Since B is l-transitive and we have found a S-arc whose all vertices but the 
last are fixed by x3 , it follows that B is 5-transitive. Since the order of the 
fixer X of the vertex X is 4X it is clear that B must be 5-regular. 

THEOREM 4. Let (G, A) be apair consisting of a connected regular graph G 
of valence 3 and a group A of automorphisms of G which is 5-regular. Then there 
exists a surjective group homomorphism #: B -+ A and a graph covering map 
8: I’, -+ G such that the diagram 

commutes for every b E B. 

Proof. Fix a 5-arc S in G and define the corresponding special amalgam. 
By Theorem 2 it is isomorphic to the special amalgam used to define the 
group H. In fact we shall assume that this special amalgam is identical with 
(X, Y, 4). By the universal property of generalized free products there exists 
a unique group homomorphism $J,,: H -+ A which is identity on X u Y. Let 
01 E A be the unique automorphism such that OL 0 S is the 5-arc opposite to S. 
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Then 1.9 = 1 and C$ is the restriction of the map /3 -+ 010 p 0 IY. to X u Y 
It is easy to check that &,( yhy) = &,@)a for all kz E H. Therefore there 
exists a unique group homomorphism +: B + A such that $I( y) = a and # 
extends #,, . Since A = (X, Y, 4) this homomorphism is surjective. 

Let S(2) = ZI and define a map 6,: B -+ G by B,(b) = #(b)(v). 
X = A(v) we have for x E X that 

Thus BO induces a map 0: r, + G such that &ax) = O,(u). Now we 

e(btjgx)) = e(bd)) = e,(ba) = +(bu)+) 

= 9w $(4(v) = www4 = ~(b)(eta~), 

i.e., the diagrams mentioned in the theorem are commutative. 
Let aX and bX be two adjacent vertices of r, . Then a-lb E XyX, i.e., 

a-lb = cyd for some c, d E X. We have 

where w  = S’(3) = a(v). Since ~1 is adjacent to PV and c E X, 2; and c(w) are 
adjacent. Consequently O(aX) = #(a)(v) is adjacent to 8(6X). 

Let b’X be also adjacent to aX but b’X f bX. Then we can write a-%’ = 
e”yd’ with c’, d’ E X. We find that B(b’X) = #(a) c’(w). We claim 
O(b’X) i 8(bX), i.e., c’(w) # c(w). Otherwise we would have C-V E A(w)= Y 
and so ye+c’y E X. Then b-lb’ = (acyd)-l(ac’yd’) = d-‘-lyc+‘yd E X giving 
a contradiction b’X = bX. 

Since both rs and G are regular of valence 3 the facts established above 
imply that 6’ is a covering map and the theorem is proved. 

THEOREM 5. P3 is a tree. 

Proof. Let G be any regular 3-valent graph and A a 5-regular group of 
a~tomor~hism of 6. Let T be an infinite regular 3-valent tree and zc IF -+ 
a covering map. By Theorem 3 of [2] the group A can be lifted to T. In 
particular, there exists a subgroup of Aut(T) which is j-regular. The universal 
property of (r, ) B) shows that there is a covering 0: -ip + T and hence kc 
must be also a tree. This completes the proof of Theorem 5. 

TIBEOREM 6. Let A be any j-regular subgroup ofAut(.C,). F’en A and 
conjugate ijz Aut(T,S. 

.Pvoo$ We have two j-regular pairs (r, , II) and (.F, ) A). 
there is a covering map i3: r, --f rs and a surjective group h 
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#: ‘B + A such that z/~(b)0 = Bb for ‘every b E B. But 6 must be an auto- 
morphism of I’, and hence #(b) = $bO-1. This shows’that z/ is an iso- 
morphism and that 6BtV = A. 

Remaik.. .Similar results are valid for s-regular groups of automorphisms 
. 

‘of cubical graphs when s = 1,2, 3,4. Ifs = 2 or 4 there exist, two conjugacy 
classes of s-regular subgroups of Aut(r,). 

Of course, it is well-known that there are no s-regular groups of auto- 
morphisms of cubical graphs for s > 5. For a short and beautiful proof of 
this see the note [4] of R. Weiss. 

An open question. A doubly infinite arc in r, is a map S: ,Z -+ r, (=the set 
of vertices of r,>, where 2 is the set of integers, such that S(i) and S(i + 1) 
are adjacent and S(i + 1) f S(i - 1) for all i E 2. Every subgroup A of 
Aut(I’,) acts naturally on doubly infinite arcs of r,: if 01 E A and S is a doubly 
infinite arc in I’, then CL sends S to a 0 S which is again a doubly infinite arc. 
The question is the following: Does there exist a subgroup ,of Aut(r,> which 
is sharply transitive on doubly infinite arcs of I’,? 
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