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Abstract

Many authors have used one-component plasma simulations in discussing the role of ion–ion correlations in reducing
opacities during the collapse phase of a supernova. In a multicomponent plasma in which constituent ions have eve
range ofN/Z ratios neutrino opacities are much larger, in some regions of parameters, than for the case of a one co
plasma.
 2005 Elsevier B.V.
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There exists an extensive literature concerning
role of ion–ion correlations in reducing the neutri
opacity in the region that collapses to form the sup
nova core[1–7]. These correlations are important,
virtue of the fact that typical neutrino wavelengths a
large compared to the Debye length. Beginning w
the standard model result for the coherent neut
scatteringfrom a single ionof chargeZ and neutron
numberN ,1

(1)
dσ0

dΩ
= G2

WC2E2
ν (1+ cosθ)

4π2
,

E-mail address:sawyer@physics.ucsb.edu(R.F. Sawyer).
1 We takeh̄, c, kB = 1 in what follows.
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where

(2)C = −2Z sin2 ΘW + Z − N

2
,

it is standard to express the ionic correlation effe
through a structure functionS(q). Then we write a dif-
ferential scattering rate for the neutrino,dγ /dΩ , as,

(3)
dγ (q)

dΩ
= dσ0

dΩ
nIS(q),

wherenI is the ion number density andq is the mo-
mentum transfer to the ions.

The calculations ofS(q) reported in[1–7] are all
based on a one component ionic plasma, the elect
being sufficiently degenerate in the regions of inter
as to form a virtually uniform background. In Ref.[7]
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the authors do attempt to simulate the multicom
nent case by using effective averaged paramete
the one-component model. But the present note
vides evidence that in the regions in whichS(q) � 1
and in which the nuclei have significant diversity
their N/Z ratios, these one-component plasma s
ulations give neutrino scattering rates that are m
smaller than those that would be obtained in a genu
multicomponent calculation.

We illustrate this for the case of a two compone
plasma with average number densitiesn1, n2, and nu-
clear chargesZ1, Z2. Taking into account the wea
currents of the ions alone, we write the operative v
tor (coherent) part of the neutral current couplings
neutrinos, as,

HI = GW

∫
d3x ψ†

ν (x)ψν(x)

(4)× [
λ1Z1n1(x) + λ2Z2n2(x)

]
,

where

(5)λ1,2 = 1

Z1,2

[
−2Z1,2 sin2 ΘW + Z1,2 − N1,2

2

]
,

andn1(x), n2(x) are the respective density operato
for the two varieties of ions. We obtain,

dγ (q)

dΩ
= G2

WE2
ν (1+ cosθ)

4π2

×
∫

d3x eiq·x[Z2
1λ2

1

〈
n1(x)n1(0)

〉
+ 2λ1λ2Z1Z2

〈
n1(x)n2(0)

〉
(6)+ λ2

2Z
2
2

〈
n2(x)n2(0)

〉]
.

The fact thatλ1 is different fromλ2 for different nu-
clear species, even if only slightly different, is the k
to what follows. The physical point is that neutrin
scatter from thefluctuationsof the quantity on the
RHS of(4), [λ1Z1n1(x)+λ2Z2n2(x)]. If λ1 = λ2 then
the fluctuations of this source strength are proportio
to the fluctuations in electric charge density, and
charge density does not like to fluctuate in theq = 0,
or long range, limit. (For the moment we assume t
the high electron degeneracy prevents any fluctua
of the electron density.) In the case of the two co
ponent plasma withλ1 �= λ2, the source strength fo
neutrino scattering, which isnot proportional to the
charge density,can fluctuate while leaving the ioni
charge density strictly zero.
To address this analytically, we begin in theq → 0
limit, where a simple argument based on statistical m
chanics suffices. Then we shall give the solution of
two component problem for allq at the Debye–Hücke
(DH) level of approximation. For orientation, we b
gin with the statement from Ref.[3] that the “correct
smallq behavior” of the structure functionS is given
for the one component plasma by,

S(q) =
[

3Γ

(aI q)2
+ 1

kBT

(
∂P

∂n

)
T

]−1

(7)= q2

κ2
+ O

(
q4),

whereΓ is the conventional plasma coupling const
and aI is the mean interionic spacing. In the fin
equality we have substituted the expression forΓ in
terms the Debye wave numberκ2 = e2Z2

I nI /T . The
limit (7) illustrates the reluctance of the single comp
nent plasma to fluctuate.

For the two-component plasma we define the p
tial squared Debye wave numbers for the resp
tive species asκ1,2 = e2 Z2

1,2 n1,2/T . In this case(7)
should be replaced by,

(8)lim
q→0

S
(
q2) = T (λ1 − λ2)

2κ2
1κ2

2

e2(κ2
1 + κ2

2)nIC2
,

whereC can now be taken as any average coup
constant factor for the two species. Note that the fa
nIC

2 in the denominator cancels when we calcul
the rate from(3).

Eq. (8) can be derived from the basic principles
statistical mechanics, following the steps of Section
“theory of multicomponent fluctuations”, of Ref.[8]
and enforcing in addition a constraint of complete
cal neutrality of the plasma. We only sketch those c
siderations here, beginning from the construction
the limit, in a purely classical treatment, of the me
of quadratic forms in the Fourier components of flu
tuationsδni(q),

(9)lim
q→0

〈
δni(q)δnj (−q)

〉 = T
∂ni

∂µj

(Vol).

For the free energy density functional needed
evaluate the derivatives with respect to the chem
potentials,µi , we take just the kinetic term plus th
simplest term that ensures complete local neutra
when a parameter,b → ∞. This interaction is an en
ergy per volume ofV = b(Z1n1+Z2n2−ne)

2/2. The
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densities of species #’s 1 and 2, are now given by,

n1 = 2 exp
[
T −1[µ1 − bZ1(Z1n1 + Z2n2 − ne)

]]

(10)×
∫

d3k

(2π)3
exp

(
− k2

2MT

)
,

and

n2 = 2 exp
[
T −1[µ2 − bZ2(Z1n1 + Z2n2 − ne)

]]

(11)×
∫

d3k

(2π)3
exp

(
− k2

2MT

)
.

After taking the logarithms of(10) and (11)we dif-
ferentiate to obtain the matrix∂µi/∂nj , which is then
inverted to provide the RHS of(9), which when sub-
stituted in(6) yields the result(8)in theb → ∞ limit.

To address theq2 dependence at the DH level w
begin by defining a set of density correlators,

(12)Ki,j (q) = T −1
∫

d3x eiq·x 〈ni(x)nj (0)
〉
,

as the polarization functions, whereT is the tem-
perature. In the absence of the Coulomb interact
of the particles in the plasma we would have si
ply Ki,j = T −1δi,j 〈ni〉, that is, a diagonal matrix with
number density values on the diagonal.

It is almost always useful to define “proper” p
larization parts; graphically in a perturbation dev
opment for the correlator these are sums of gra
for Ki,j that are individually not divisible into un
connected pieces by cutting one Coulomb line. T
reconstitution of the complete correlator from the
proper polarization parts, which we designate asΠi,j ,
is fairly straightforward, and there are various la
guages for carrying it out. A complete and eleg
derivation and statement of the results, in the case
classical plasma, is given by Brown and Yaffe[9]. We
quote Eq. (2.110) of this paper, with minor changes
notation, for the case of any number of ionic specie2

eaebKab(q) = eaebΠab(q)

−
[∑

c

eaecΠac(q)

]

(13)×
[∑

c

ebecΠbc(q)

]
G(q),

2 In the definition(12) we added an extra factor ofT −1, as com-
pared to the definition in Ref.[9]. The development in Ref.[9] did
where,

(14)G−1(q) ≡ q2 +
∑
a,b

eaebΠab(q),

and ea ≡ eZa is the charge of nuclear speciesa. To
obtain the Debye–Hückel level result we insert
lowest order answer for the proper polarization pa
and evaluate them atq = 0, giving Z2

i e
2Πi,j (0) →

δi,j κ
2
i , where κ2

i = e2Z2
i ni/T , the contribution of

the ith ionic species to the total Debye screen
(wave-number)2. We should emphasize, however, th
(13) holds to all orders in the plasma coupling;
non-perturbative derivation of this result is given
Ref. [9].3

In the RPA approximation, we can, of cours
employ simple graph-summing methods of qu
tum many-body theory, as presented, for example
Ref. [10], to regain the classical result(13). Going be-
yond the strictly classical, we can then add fluctuati
in electron density to the picture; the degenerate e
trons were taken as a uniform gas in the derivat
of (8). At the DH level we need only the square of t
electron screening wave number,

(15)κ2
e = e2 ∂

∂µe

ne ≈ e2
(

3

π

)1/3

n
1/3
e ,

where the last approximation is that of complete
generacy.

Now we use(13) for the case of the three specie
two kinds of ions plus electrons, in the DH appro
mation, to obtain, the ion–ion correlators,

K1,1 = κ2
1

e2

q2 + κ2
2 + κ2

e

q2 + κ2
1 + κ2

2 + κ2
e

,

not assume a uniform neutralizing background, as we did; assu
instead a neutral system consisting of Boltzmann particles of
signs of charge. However, the formalism and equations are app
ble to our case, at the classical level, with the exceptions of sum
based on neutrality of the sea of particles that enter explicitly. Id
tical results can be obtained from the usual finite temperature
approach to the many-body problem; we shall explicate the con
tion in (20) and the discussion that follows. In this latter approa
the correlatorsK(q,ω) and their building blocksΠ are the Fourier
coefficients ofτ -ordered products (τ = imaginary time), and the ap
proximation with the same structure as(13) is called the RPA or the
ring approximation.

3 When we go beyond the lowest approximation, the off-diago
parts of the proper polarization matrix do not vanish.
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K1,2 = −κ2
1κ2

2

e2
,

(16)K2,2 = κ2
1

e2

q2 + κ2
1 + κ2

e

q2 + κ2
1 + κ2

2 + κ2
e

.

We have not written down the expressions for the
maining three independent elements of the correl
matrix Ke,e,K1,eK2,e, since we are still addressin
only the effects of the electron fluctuations on t
baryonic fluctuations that determine the contribut
of the baryonic current to the rates. If we were to
clude the weak couplings of the neutrinos to electro
there would be a piece of the amplitude from neutrin
electron interactions that interferes coherently with
baryonic current, for very small values ofq, and we
would need these correlators to calculate the effe
However, we shall argue below that values ofq for
which this occurs are too small for the interference
be of interest.

Using(16) and (12)in (6) we obtain,

(17)
dγ (q)

dΩ
= (

4π2)−1
G2

WE2
ν (1+ cosθ)W(q)

where,

W(q) = T

[
λ2

1κ
2
1(q2 + κ2

e )

e2(q2 + κ2
1 + κ2

2 + κ2
e )

+ λ2
2κ

2
2(q2 + κ2

e )

e2(q2 + κ2
1 + κ2

2 + κ2
e )

(18)+ (λ1 − λ2)
2κ2

1κ2
2

e2(q2 + κ2
1 + κ2

2 + κ2
e )

]
.

We note that in the free-particle limit of(18), char-
acterized byq/κ → ∞, and for the case of ions wit
a common value ofZ, we then obtainS(q) = 1. But
q/κ remains quite small in any domain of interest
the present problem. Note also that we recapture(8) as
theq, κe → 0 limit of (18).

We estimate the numerical importance of our
multi-component effects for a case in which the d
sity is 1012 g cm−3, the composition, on the averag
is nickel, and the temperature is 4 MeV. For algebr
simplicity we take the neutron number in both comp
nents to be the same and also set sinθW = 1/2; for
the nuclear charges we takeZ = 28(1 ± δ) so that
λ± = 1 ± δ/2. Then we haveκ2

1 ≈ 870 (MeV)2 and
κ2
e ≈ 18 (MeV)2. The ratio of rate, with our effects in

cluded, to the one component plasma rate is then g
to leading approximation in the parametersδ, κe by,

(19)
W(q, δ, κe)

W(q,0,0)
≈ 1+ [

1740δ2 + 18
](1 MeV

q

)2

.

Thus when the measure of nuclear diversity,δ, is
very small, we find a doubling of the one-compon
plasma result for a neutrino momentum transfer
4 MeV, coming from the electron density fluctuation
Forδ = 0.1 we obtain a tripling. Larger diversity para
meters will give much bigger enhancements, as wo
the choice of a smaller value ofq.

The point of this exercise was to evaluate the
tential impact of our corrections, not to deal with
realistic mix of isotopes. In the real problem we hav
complex mix of nuclei, and there are a wide variety
possibilities for the components. In addition, in eva
ating the potential impact, we need to incorporate
whole scenario of neutrino production through el
tron capture in the dynamic environment just to kn
which regions ofq are most important. The part o
the spectrum of neutrino momenta that dominates
lepton loss rate is dynamically determined, and i
clearly centered in a lower energy part of the sp
trum than the 3T range that we think about in th
usual energy transport problems. This comes ab
first through the fact that the opacity is much less
the lower energy neutrinos, and secondly becaus
the repopulation of these states through electron
ture by nuclei.

Even worse, from the standpoint of using our
sults, is the fact that already in the parameter
gion which we used in our numerical example abo
the plasma is moderately strongly coupled, with
value Γ = 8.8. In this case we expect the DH r
sults will become inaccurate asq is increased be
yond a certain point. Determining this point requir
a computational approach. Looking at the “mole
lar dynamics” results of Luu et al.[11] for the one-
component case, plotted in Ref.[12] for exactly the
parameters which we used above, we see, for ex
ple, that (forT = 4 MeV) DH works fairly satisfac-
torily at q = 6 MeV, but is low by a factor of ten
at q = 18 MeV. Of course, since both the DH an
“molecular dynamics” approaches will give very d
ferent results in the multi-component case than in
single-component case, the guidance provided by
above example could be regarded with suspicion. T
we believe that an essential preliminary to doing r
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physics in this problem is to do Monte Carlo stud
of the correlators for a two-component plasma, w
both the diagonal and off-diagonal terms in the d
sity correlators determined with fairly high precisio
since we now understand that when we substitute th
results into(6) there will be near cancellation of th
terms, for smallq.

We return to the question of the role of electro
As we saw in(19), the electron density fluctuation
do lead to some appreciable effects in the case
single nuclear constituent, even in the absence o
electron–neutrino coupling. The physics is that
densities of ions and electrons fluctuate together. T
comes without cost in Coulomb energy; this effec
inhibited by the large bulk modulus for the degener
electron sea, but still can be significant.

There are also contributions to opacity from ele
tron–neutrino interactions. These have been estim
in Ref. [13], and appear to be numerically small co
pared with the ionic part, in the domain that w
used for our above estimates. There are two rea
for this: (a) the ionic terms start with the advanta
of the coherence factor, of orderN (not N2, since
the electron number is larger than the ionic nu
ber by approximately a factor ofN/2); (b) electron
degeneracy severely limits the final electron sta
available in a neutrino scattering. That said, we n
that the calculations of Ref.[13] which were carried
out for an electron gas at zero temperature, pro
bly give a significant underestimate of theν–e scat-
tering rate. If we are scattering thermal neutrin
from a degenerate electron gas at temperatureT ,
there are more final electron states available near
Fermi surface, due to the diffuseness of this surfa
than there would be from calculating the volume
the region of non-overlap between aT = 0 Fermi
sphere and the sphere displaced by a momen
q where q ≈ T . This becomes even more the ca
for sub-thermal neutrinos. Thus improved calculatio
of the electronic current contributions may be in
der.

As we remarked before, we did not include a
electron scattering contribution in the coherent par
the calculation summarized in the result(18). Strictly
speaking, it belongs there for very small moment
transfers,q � T , that is, when the energy transf
is negligible. A more analytic form of this remark
that when the energy variable is introduced, the mu
component RPA equations are still of the form(13)
where Πi,j (q,ω) is now energy dependent. How
ever, the rates are no longer given directly by in
grals overKi,j (q,ω) but rather by integrals involv
ing,

(20)
1

1− exp(−ω/T )
Im

[
Ki,j (q,ω)

]
.

When the prefactor in(20) can be approximated a
T/ω, then the energy part of a phase space integra
gives exactly the integral over the imaginary part of
correlator which, through the dispersion relation, p
duces the real part evaluated at zero energy, as in(6).
But for the values ofq that matter in the present ca
the expansion of the prefactor is not justified for t
electron contributions, because a thermal neutrino
liding with a relativistic electron will typically transfe
an amount of energy of orderT .

In any case, we find that in the regions of inter
the ionic current and electronic current contributio
do not interfere very much, at least at the RPA lev
We add a caveat however; in a strongly coupled pla
we see no reason for the rates coming from the
kinds of neutrino interaction to separate so neatly. T
could provide a further complication to a future Mon
Carlo calculation aimed at settling the issues raise
the present Letter.

There is a close relation between the above
velopments on neutrino scattering and some imp
tant corrections to Compton scattering in a hydrog
plasma. Indeed, the photon–electron interaction
produces the Thomson limit is almost identical in fo
to the neutrino–ion interaction in the present Let
The calculation again demands the careful consi
ation of a two component plasma, and the mech
ics is parallel to that presented in the present Le
The effects are actually important in the calculat
of Compton opacities in the solar interior. This su
ject was discussed in a number of references ove
years. Boercker[14] carried out the calculation tha
appears to be completely correct, obtaining signific
corrections that are incorporated into the solar op
ity codes that are in use today. When we go to sligh
more extreme conditions than those in the solar in
rior, a density of 1 g cm−3 and temperature of 106 K,
for example, in a hydrogen plasma, we find, using
analog of(8),
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(21)S(qtherm) ≈ S(0) = κ2
I

(κ2
I + κ2

e )
= 1

2
,

where nowκI ≈ κe.4

Recapitulating some of the conclusions of this L
ter, we found that theq = 0 limit of the structure
function is generally non-zero, in contrast to the co
clusions of the large literature that uses “effectiv
one-component plasmas of some kind. The answe
S(0), for the case of frozen electrons and any num
of ionic species, can be found simply from energe
arguments using basic statistical mechanics, and
when it is relatively small it protects against the d
matic suppressions found in the current literature.
note that the results are in complete contradiction
the results of the procedures for ionic mixtures p
posed in Ref.[3] and recently used in Ref.[7]. For
application to supernovae, we need the extension t
niteq in the strong coupling regime. This should beg
with the numerical investigation of the reliability o
the RPA results(18) for the case of a classical plasm
with two ionic components and for a variety of plasm
coupling strengths.

4 In the solar interior we are not in the region in which the limiti
form q → 0 can be applied. Ref.[14] deals with the completeq
dependence.
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