
Theoretical

ELSEVIER Theoretical Computer Science 145 (1995) 241-270

Computer Science

A polynomial-time computable curve whose interior
has a nonrecursive measure*

Ker-I Ko*

Department of Computer Science, State University of New York at Stony Brook,

Stony Brook, NY 11794, USA

Received August 1993; Revised April 1994
Communicated by P. Young

Abstract

A polynomial-time computable simple curve is constructed such that its measure in the two-
dimensional plane is positive. This construction is applied to prove the following two results: (1)

there exists a polynomial-time computable simple closed curve in the two-dimensional plane
such that the measure of its interior region is a nonrecursive real number; (2) there exists
a polynomial-time computable simple curve in the two-dimensional plane such that its length is
finite but is a nonrecursive real number.

1. Introduction

We investigate the problem of measuring the area of the interior of a given simple
closed curve in Iwz and the problem of measuring the length of a given simple curve in
[w*. For the first problem, we recall that the integral of a polynomial-time computable
real function f: [0, l] -+ [w is computable in polynomial time by an oracle machine
using a function 4 E #P as an oracle [2]. It implies that for any polynomial-time
computable, simple, closed, rectifiable curve r,’ the measure of the interior of r is also
computable in polynomial time relative to # P (see [l] for more details). In this paper,
we construct a polynomial-time computable function f: [O, l] + I@ whose image is
a simple, closed, nonrectifiable curve r, such that its interior has a nonrecursive
measure. In other words, the polynomial-time computability of the boundary for
a region does not even imply the computability of the area of the region.

*The main results of this paper has been announced in the abstract “Some Complexity Issues on the Simply
Connected Regions of the Two-Dimensional Plane” in Proc. 25th ACM Symp. on Theory of Computing.
1993.
* E-mail: keriko@sbcs.sunysb.edu Research supported in part by NSF grant CCR 9121472.
’ A curve r is called rectifiable if it has a finite length.

0304-3975/95/$09.50 Q 1995-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)00154-5

242 K.-I Ko / Theoretical Computer Science 145 (1995) 241-270

The second problem, the problem of computing the length of a given simple curve,
is called the coastline problem in [6]. It is recognized as a difficult problem since the
length of the given curve could actually be infinite. In this paper, we construct
a polynomial-time computable function f: [0, 11 + [wz whose image is a simple,
rectifiable curve having a nonrecursive length. This result justifies the difficulty of the
coastline problem: even if the length of the curve is finite, it is not necessarily
computable.

The computational model used in this study is that of Ko and Friedman [4] that is
based on the model of recursive analysis (see also [3] for a complete treatment).
Ref. [l] contains the formal definitions for the notion of polynomial-time computabil-
ity of two-dimensional regions.

The main ingredient of the proofs of the above two results is a modification of the
Peano space-filling curve. That is, we construct a simple curve r in polynomial time
that has a positive measure in [w’. This curve is not exactly the same as the classical
Peano space-filling curve since it is defined by a one-to-one function. Rather, it is very
similar to the curves constructed by Lebesgue [S] and Osgood [7] which have
recently found interesting applications in the construction of fractal sets 161. Such
a curve is called a Lebesgue-Osgood monster in [6]. Both of the main nonrecursive-
ness results are based on the construction of the Lebesgue-Osgood monster curves
and their variations. Although the idea of the construction is similar to Lebesgue’s and
Osgood’s original construction, we choose to present a precise definition of this
monster curve, since we need to show that such a construction can be done in
polynomial time. Furthermore, we need formal proofs for other properties of the
curve to obtain our main results.

We give a brief review of the computational model for real functions in Section 2.
The complete definition of our version of the Lebesgue-Osgood monster curve is
presented in Section 3, and the various properties of this curve are proved in Section 4.
Sections 5 and 6 contain the main results. The construction used for our first main
result has some other interesting application to the complexity theory of two-dimen-
sional regions developed in [l]. We prove this result in Section 7.

2. Polynomial-time computable real functions

In this paper, we will write z or (x, y) to denote a point in [w’. A directed line
segment L from q to z2 is denoted as line (zi , z2). The length of an interval I = [a, b]
is denoted as leng(1) and the length of a line’ segment L is denoted as leng(L).

The concept of polynomial-time computable real functions used in this paper is that
of Ko and Friedman [4] (see [3] for a complete treatment). The basic representation
system for real numbers is the set D of dyadic rational numbers; that is, the set of all
rationals which have finite binary representations. A real number x E IR! is represented
by a Cauchy function #I :N + D that binary converges to x in the sense that
(4(n) - x 1 < 2-“. A real number x is recursive if there exists a computable Cauchy

K.-I Ko / Theoretical Computer Science 145 (1995) 241-270 243

function 4 that binary converges to x. It is polynomial-time computable if there exist
a Turing machine M and a polynomial p such that for all inputs n > 0, M(n) outputs
a dyadic rational d in time p(n) such that 1 d - x (< 2-“. A sequence (x,} of real
numbers is polynomial-time computable if there exist a Turing machine M and
a polynomial p such that for all inputs n, k > 0, M(n, k) outputs a dyadic rational d in
time p(n + k) such that 1 d - xk) < 2-“.

Definition 2.1. A functionf: [0, l] -+ R2 is polynomial-time computable if there exist an
oracle Turing-machine M and a polynomial p such that for any oracle function 4 that
binary converges to a real number x E [0, 11, and any integer n as the input, the
machine M outputs, in time p(n), two dyadic rationals d1 and d2 such that
1 (d,, d,) - f(x)) < 2-“. In other words, the oracle machine computes the operator
that maps a Cauchy function for x to two Cauchy functions for f(x).

An equivalent definition for polynomial-time computable real functions f will be
used in this paper. We say a functionf: [0, l] + R2 has a polynomial modulus if there
exists a polynomial p such that) x - y) < 2- p(“) implies If(x) -f(y)1 ,< 2-“.

Proposition 2.2. A function f: [0, l] + lR2 is polynomial-time computable ifund only if

(i) f has a polynomial modulus and

(ii) there exist a Turing machine M and a polynomial p such that for any dyudic rational

d of length < n,2 and any integer n, M(d, n) outputs, in time p(n), two dyudic rutionuls

el and e2 such that I (el, e2) -f(d) (< 2-“.

A function f: [0, l] + R2 could also be defined as the limit of a polynomial-time
computable sequence of real functions.

Definition 2.3. A sequence (fn} of functions from [O, 1) to R2 is polynomial-time

computable if there exist a Turing machine M and a polynomial p such that for any
oracle function 4 that binary converges to a real number x E [0, l] and for any input
(n, k), M outputs, in time p(n + k), two dyadic rationals el, e2 such that

I (el, e2> -fkWI G 2-“.

Proposition 2.4. A function f: [0, l] + R2 is polynomial-time computable ifl there exists

a polynomial-time computable sequence { fn} offunctions from [0, l] to R2 such that for

some polynomial p, I f&,(x) -f(x)) < 2-” for all x E [0, 11.

3. The Lebesgue-Osgood monster

We are going to define a sequence {g,> of one-to-one functions from [0, l] to R2.
The functions g. are defined in such a way that its limit g exists and is also one-to-one.

*The length of a dyadic rational d is the length of its binary representation without trailing zeros.

244 K.-I Ko / Theoretical Computer Science I45 (1995) 241-270

Since the construction is very complicated, we first give a brief overview of the
construction.

Basically, each function g,, divides [O, l] onto 6” subintervals and maps each
subinterval into a short line segment in R2. These short line segments are uniformly
distributed in the square C-2,2] x C-2,2] so that they almost “cover” the whole
square. The function gn + 1 is then obtained from g,, by expanding each line segment
L of g,, into up to 6 more shorter line segments surrounding the original line segment
L. Thereby, they “cover” the square [-2,2] x [-2,2] even more densely. Further-
more, the expansion from gn to gn + 1 leaves the two functions sufficiently close so that

they eventually converge to a limit function g.
The above is the basic idea of the construction of a space-filling curve. To make the

functions gn and the limit function g to be one-to-one, however, we must modify the
construction to allow extra space between any two nonadjacent line segments of g. so
that the expansion of a line segment of gn to more shorter line segments of &+k, for
any k > 0, does not meet other parts of the expanded curves of g. +k. This requirement
makes the construction much more complicated, and also makes the resulting limit
function g not able to cover the whole unit square. We will, however, show that it is
possible to guarantee that g still covers a large portion of the square.

We now begin the formal construction. We first define three sequences of rational
numbers, which will be used to define the length of line segments of functions gn.

Definition 3.1. (a) For each n B 0, a2,,+ 1 = 5-” + 4- ’ ‘5 -‘“, and a2,, = 2a2,+ 1 =
2.5-n+ 2-1.5-2”.

(b) For each n > 0, fi2n+l = aZnfl = 5-” -t- 4-‘.5-2”, and /?2n+2 = 2-1.B2n+l =
2-l.5-n+g-l_5-2”

(c) For each n > 0, 82n+l = (24)-‘~5-‘2”-1’, and b2n+2 = 2-1.b2,+l.

We observe that these numbers satisfy the following properties.

Lemma 3.2. (a) For each n 2 0, ~,,+r = 2Cjm_n+l U2j + &+I.
(b) For euch n 2 0, CI, > I,“=,+, aj.

(c) For euch n > 1, fi2n = 2C7=,+1 Bzj+l + J2n.
(d) Foreachn~O,B,>Ci”=,+,Bj.
(e) For each n 2 1, CI, < bn < 3 .5-“‘2 and a,,.Bn > 5-(“-1).

Proof. (a)

2. f azj=4. f g2j+l = 4. f (5-j + 4-1.5-V)
j=n+l j=n+l j=n+l

4 5-C”+‘)
5-2(n+1)

= .___
1 - 5-l + ~ = 5-” + (24)-‘.5-2” = CX~,+~ - 82n+l.

1 - 5-2

K.-I Ko 1 Theoretical Computer Science 145 (1995) 241-270 245

(b) It is clear that a, Zz 2a,+ 1. If n is odd then, from (a),

a, > f
j=(n+1)/2

(za2j) 3 j=tgl, ca2j + a2j+l) = j=$+l ‘je

If n is even then, by above,

a,2 2a,+i >a,+, + C Uj.

j=nt2

(4 82. = 2_la2,-1, and by (a) above, is equal to

~~a2j+2-162~-l=~~2~2j+l+62~=2~Bij,,+6,~.
j=n

(d) Similar to (b).
(e) It follows from simple calculations. 0

Next, we define an infinite, ordered tree T that is to be used to define the relation
between line segments of gn and line segments of gn + 1.

Definition 3.3 (Tree T). There are three type of nodes in T: type A, type B and type C.
Each node in Thas one of 8 labels: ru, rd, Iu, Id, ur, ul, dr, dl. The root is a type-A node
with label ru. Each type-A node with label xy has 6 children:

(1) the first and sixth children are of type A and have label yx,
(2) the third and fourth children are of type A and have label px,
(3) the second child of type B and has label xji, and
(4) the fifth child is of type B and has label xy,

where $i is the complement of y in the sense that {y, p} = {u, d} or { y, v} = {I, r>. Each
type-B node with label xy has 3 children:

(1) the first child is of type A and has label xv,
(2) the second child is of type C and has label xy, and
(3) the third child is of type A and has label xy.

Each type-C node with label xy has 3 children:
(1) the first child is of type A and has label $ix,
(2) the second child is of type B and has label xy, and
(3) the third child is of type A and has label yx.

The top of the three T is shown in Fig. 1.
The label of a node u in the tree T is denoted by label(v) and its first character is

denoted by labeli(The character labelr(u) is used to denote the direction of
a directed line segment L, associated with u (to be defined later). The label r means that
the line segment L, is horizontal and pointing right; the label I means that the line
segment L, is horizontal and pointing left; the label u means that the line segment L, is
vertical and pointing upward; the label d means that the line segment L, is vertical and

246 K.-I Ko / Theoretical Computer Science 145 (1995) 241-270

ru

ur

ur rd dr dl dr dr

Fig. 1. The top part of tree T. In the above, a 0 denotes a type-A node, a @ denotes a type-B node and
a * denotes a type-C node.

pointing downward. We say a node u in Tis a horizontal node if labeli E {r, I>, and it is
a vertical node if label,(u) E {u, d}. (The second character of label(u) often, but not always,
denotes the direction of the line segment of the right neighbor of u.) The following lemma
shows the pattern of the directions of L, based on the depth of the node u.

Lemma 3.4. Let u be a node of depth n.

(a) If u is of type A or type C, then u is a horizontal node if and only if n is even.

(b) If u is of type B, then u is a horizontal node if and only if n is odd.

Proof. We prove the lemma by induction on n. First, the root is of depth 0 and of type
A and is horizontal.

For the inductive step, let u be a type-A node of depth n > 0. If its parent u is of type
A or type C, then from the definition of the tree T we know that u is a horizontal node
if and only if u is a vertical node. Thus, from the inductive hypothesis, u is horizontal if
and only if n is even. If its parent u is of type B then, from the definition of the three T,
u is horizontal if and only if u is horizontal. Again, by the inductive hypothesis, u is
horizontal if and only if n is even.

Next, assume that D is of type B. Then its present u must be either of type A or of
type C. In either case, u and u must be both horizontal or both vertical, It follows from
the inductive hypothesis that u is horizontal if and only if n is odd.

Finally, assume that u is of type C. Then its parent u must be of type B and u and
v must be both horizontal or both vertical. Again, by the inductive hypothesis, we
conclude that u is horizontal if and only if n is even. 0

K.-I Ko / Theoretical Computer Science 14.5 (1995) 241-270 241

For each node u of type B or of type C, let ant(u) denote the lowest ancestor u of
v such that all nodes between node u and node u, including node u, are not of type A.
(Thus, ant(v) are always of type B.) We let k, denote the depth of ant(u). For instance,
assume that w. is of depth n and of type A, and that for each i S 0, Wi+ 1 is the second
child of Wi, then all nodes Wi, i 2 1, have anc(wi) = w1 and k,, = n + 1. Note that if
u is of type B or C and its parent u is also of type B or C, then k, = k,.

Now we will define functions gn. For each n > 0, the function gn is defined in terms
of the nodes of T of depth n. For each node u of the three T of depth n, we are going to
define an interval I, = [a”,b,] and a directed line segment L,. The function gn is the
function that maps each interval I, linearly to the line segment L,. These intervals
I, and line segments L, of any node u of depth n 2 0 will satisfy the following
properties.
(1) The direction of the line segment L, is determined by label 1 (u) as described above.
(2) For any type-A node u, leng(Z,) = 6-“, with uU = i - 6-” for some i 2 0.

(3) For any type-A node u, if u is a horizontal node then leng(L,) = GI, and if u is
a vertical node then leng(L,) = P,,.

(4) For any type-B or type-C node u, leng(Z,) = 6-kU - 2C;-k,+l 6-j and a, = i.6-”

for some i 2 0

(5) For any type-B node u, if u is horizontal then leng(L,) = a, + &, - 6,; and if u is
vertical then leng(L,) = /Zn + Bk, - 6,.

(6) For any type-C node u, if u is horizontal then leng(L,) = a,+ 1 + i&, - 6,+ 1 ; and if
u is vertical then leng(L,) = fin + 1 + dk, - 6, + 1.

(7) For each n 2 0, the intervals I, of all nodes u of depth n form a partition of
the interval [0, l] in the sense that if u1 and u2 are two neighboring nodes at
depth n, then the end point of I,, is identical to the starting point of I,,.
Furthermore, the line segments L, also have this property; that is, if u1 and u2 are
two neighboring nodes at depth n, then the end point of L,, is identical to the
starting point of L,,.

Definition 3.5. We define I, and L, recursively as follows: First, for n = 0, I, = [0, l]
and L, is the line segment define from (- al, 0) to (al, 0) (i.e., L, = line((- al, 0),

(al, 0))). Next, for any depth-n node u, we assume that I, and L, have been defined
and satisfy the above properties. We define I, and L, for each child w of u as follows:

Case 1: u is of type A. Then, we have leng(Z,) = 6-” and a, = j- 6-” for some j b 0.
Let Wi, 1 < i < 6, be the 6 children of node u. Divide I, into 6 subintervals each
of length 6-(“+l), and let Z,i be the ith subinterval, 1 d i < 6; that is,
I,,,, = [(6j + i - 1)6-‘“+“, (6j + i)6-(“+‘)I.

We describe the six line segments L,,, 1 < i < 6, by their starting points, their
directions and their lengths:
(i) The line segment L,, begins at the starting point of L,, and for i = 2, . . . ,6, the line

segment L& begins at the end point of L,i _ , .
(ii) For each i = 1, . . . , 6, the line segment Lwi goes toward the direction of label,(wJ

and has length equal to a,+ 1 if wi is horizontal and equal to /I?” + I if wi is vertical.

248 K.-I Ko 1 Theoretical Computer Science I45 (1995) 241-270

For instance, if label(u) = ru, and L, = line((x, y), (x + a,, y)) for some x, y E R,

then we have

L,, = line(<x, Y>, <x, Y + B.+ I >),

L,,=line((x,y+B,+1>,(x+a,+l,y+B,+l>),

L,, = line((x + a,+19 Y + Bn+l>, <x + h+l,y)),

L,, = line(<x, + an+l,y), (x + a,+i,y - /L+I>),

L,,=line((x+a,+l,y-B,+1>,(x+2a,+1,y-B,+1>),

L,, = line((x + 2a,+l,y - A+I>, <x + k+l,y)).

Fig. 2(a) shows the relation between functions go and gl, which is similar to the
relation between L, and L,,‘s in the above example.

Case 2: u is of type B or type C. Let the three children of u be wl, w2 and w3. Assume
that I, = [a,, b,]. Then, we let I,, = [a,, a, + 6-(“+l)], I,, = [a, + 6-(“+l),
b, - 6-(“+1)] and I,, = [b, - 6-(“+‘), b,].

The three line segments L,i, i = 1, 2, 3, are defined as follows:
(i) L,, begins at the starting point of L,, and Lwi, i = 2,3, begins at the end point of

L,,_,;
(ii) Lwi, i = 1, 2, 3, goes toward the direction of labeli(

(iii) leng(L,,) = leng(L,,) and it is equal to a,,+ 1 if w1 and w3 are horizontal, and
equal to Pn+ 1 if they are vertical; and

(iv) If u is of type B, then leng(L,,) = leng(L,) - 2 .leng(L,,), and if u is of type C, then
leng(L,,) = leng(L,).

For instance, Assume that label(u) = ru, and L, = line((xl, y), (x2, y)), for some
x,,~~,y~R,~~<~~.1fuisoftypeB,then

L,, = lind<xl,y), (x1 + an+lT~)),

L,, = lind(xl + a.+l,y), (x2 - a,+l,y)),

L,, = lW<+ - a,+1, y>, <x2, y>).

If u is of type C, then

L,,=line((x,,y),(x,,~-B,+l>),

L,, =line(<x,,y- Pn+l>, (XZ,Y - Bn+l>),

L, = line((x2,~-8.+1>,<~2,~>).

The above completes the definition of I, and L,. In the following, we verify the
above 7 properties of the intervals I, and line segments L,. Since we defined them
recursively, we only need to verify that if I, and L, satisfy these properties, then I,, and
L,, of all its children Wi also satisfy these properties.

K-I Ko / Theoretical Computer Science 145 (1995) 241-270 249

(1) We define the direction of L, based on label,(u).
(2) and (3) Clear from the definition.
(4) We prove this by induction on the depth n. Assume that v is of depth n > 0 and

is of type B or C. Let u be its parent node.
Case 1: u is of type A. Then, leng(Z,) = 6-‘“- ‘), and leng(Z,) = 6-“. Note that k, = n

and so the property (4) holds.
Case 2: IJ is of type B or C. Then leng(Z,) = 6-k - 2 C;it+ 1 6-j, where k = k, = k,.

Thus, leng(Z,) = leng(Z,) - 2.6-” = 6-k - 2Cyzk+i 6-j, where k = k, = k,.

(5) and (6) We prove these properties together by induction on the depth n. Assume
that u is of depth n and is of type B. Let IJ be the parent node of u.

Case 1: n is even. Then, by Lemma 3.4, u is a vertical node.
Subcase 1.1: u is of type A. Then, we know that u is vertical, leng(L,) = /I,,_ 1 and

k, = n. It follows from the definition that leng(L,) = /3. = fin + bky - 6,.
Sub&se 1.2: u is of type C. Then, by the inductive hypothesis, u is vertical and

leng(L,) = /?,, + 84 - 6,. From the definition, leng(L,) = leng(L,) = fin + dky - 6, be-
cause k, = k,.

Case 2: n is odd. The proof is similar to Case 1, except that u is a horizontal
node.

Next, assume that u is of depth n and is of type C. Then its parent u must be of type
B. Further assume that n is odd, then both u and u are vertical. From the inductive
hypothesis, leng(L,) = fl._ i + 84 - d,_ 1. By the definition, leng(L,) = leng(L,) -
2/l” and, by Lemma 3.2(c), it is equal to

bn-1-28n-6~-1+~ky=2 f Bn+2j+8k,=Bn+l+8k,-6n+l,

j=l

since k, = k,. The case when n is even can be verified in a similar way (by Lemma
3.2(a)).

(7) It suffices to show that for each node u, the end point of L,, of the last child wi of
u coincides with the end point of L,. This is just a routine check with the definition.
For instance, assume that u is of type A and is horizontal and L, =

line((x, y), (x + a,, y)). Then, it is easy to check that the end point of L,, is

(x + 2a,+l,y). From Lemma 3.4, we know that the depth n of u is even, and so

2x,+ 1 = a,. Thus, the end points of L,, and L, are identical. We omit the checking of
other cases.

Definition 3.6 (Functions gn). For each node u of depth n, we define gn to be the
function that maps I, linearly to L,. From property (7) above, we can combine all
these gn together to form a continuous, piecewise linear function gn from [0, 1) to I??.
We let Z, be the curve defined by gn on [0, 11; that is, Z. = g.([0, 11).

We show the functions gi , g2 and the first half of g3 in Fig. 2. From this figure, it is
easy to see the pattern of the functions gn.

Next, we prove that the limit of g. exists.

250 K.-I Ko / Theoretical Computer Science I45 (199.5) 241-270

first half of g3.

Lemma 3.7. Let v be a node of depth

6-(“+‘). leng(Z,)- ’ - leng(L,). Then, yv d

vertical.

function gn_, . (a) gl. (b) g2. (c) The

n 2 1 and of type B or type C. Let yv =

u, + 1 if v is horizontal, and yu < Bn + 1 if v is

Proof. Assume that v is of type B and k, = n. Further assume that u is horizontal.
Then from properties (4) and (S), leng(Z,) = 6-” and leng(L,) = ~1,. It follows that
6-(“+‘)=leng(Z,)-‘.leng(L,) = 6-l.a,, < a,+i. Similarly, if k, = n and v is vertical,
then 6-(“+1).leng(ZV)-1 .leng(L,) = 66’.Pn < /&,+r.

Now we consider the nodes v with k, d n - 1. In the following, we let k denote k,,

and observe that

leng(Z,)=6-“-2. i 6-j>f.6-k.
j=k+l

Now we further assume that v is of type B and is horizontal. Then, we have, from
Property (5), that leng(L,) < a, + bk < ~1, + 3 - Yk. Thus,

yv = 6-(“f”~leng(Z,)-‘~leng(L,) < 6-(n+1)*2.6k*(a, + 3*5-k)

< (18)-l .a, + 6-‘9Jk < (18))‘.cr, + 5-“.

(In the above, we have used the fact that k < n - 1.) It can be verified by a simple
calculation that (18)- ’ - M, + 5 -” c a, + 1, and so the lemma follows.

The other cases when v is of type B and is vertical, or when u is of type C, can be
proved in a similar way. (Note that if u is of type C then k, must be less than n.) We
omit the details. 0

To see that {g.> converges to a continuous function g, we first observe that {g,(t)}
converges for all endpoints t of I, of any node v of depth n.

K.-I Ko / Theoretical Computer Science 145 (1995) 241-270 251

Lemma 3.8. Zfu is a node of depth n 2 0, and t is an endpoint of L,, then g.(t) = g,,+k(t)

for all k > 0.

Proof. Immediate from property (7). 0

Now we consider the general cases.

Lemma3.9. Foranyn>Oand any tE[O,l], Ign(t)-gn+l(t)l ~a~!,+~ +/?n+l.

Proof. From Lemma 3.8, we may assume that t E [a,, b,) for some node u of depth n.

We consider three cases.
Case 1: o is of type A. Then, from the definition of gn+ 1, it is clear that

IM) - 9n+r(t)l G a,+1 + Bn+i.
Case 2: u is of type B. Let the three children of u be wl, w2 and w3. Since gn is linear

on [a,, hl and gn+ 1 is linear on [a,i, b,J, i = 1,2,3, and since g,(x) = g,,+ i(x) for
x = a, and x = b,, we only need to show that Is,,(t) - gn+I(t)(< a,+1 + /?n+l for
t = b,, and t = a,,. By the symmetricity of the function gn+ 1 on I,, we actually only
need to verify this for t = b,,.

First assume that u is horizontal. We observe that L,, is just the initial segment of
L, of length a, + 1. ThwifG4 = gn+lW = <x,y),thenc~+~@,,) = <x + a,,+l,y).
Also, by the linearity of gn on I,, we know that g,(b,,) = (x + y”, y), where
y0 = leng(Z,,).leng(Z,)-’ .leng(L,). By Lemma 3.7, yv < a,+t, and so

Ign(bw,) - gn+l(&,)l = la”+1 - ~“1 G a”:,+l.
The case that u is vertical can be proved in a similar way.
Case 3: u is of type C. Let the three children of u be wl, w2 and w3. Again, like Case

2, we only need to show that lg.(t) - g,+I(t)l d a,,, + /3n+l for t = b,,.
Assume that u is horizontal, and hence n is even. Also assume that g,(a,) =

gn+ l(a,) = <x9 Y>. Then g.+ I (b,,) = (x, Y + A,+ I >, and g,(b,,) = (x + IL, Y>. There-

fore, by Lemma 3.7, I g,(b,,) - a,+ I (k,) I G IL + B,+ I < a,+ I + A+ I.
The case of the vertical nodes u can be proved in a similar way. 0

Theorem 3.10. The sequence { g.} converges to a continuous function g such that for all

t E CO, 11, I s(t) - b(t) I G a, + A.

Proof. This follows immediately from Lemma 3.9:

l~(t)-~~(t)l~j~~lsi(r)-~j+l(t)l~ f (aj+l+Bj+lJcan+8”.
j=n

(In the above, the last inequality follows from Lemma 3.2(b) and (4.) 0

We let r be the curve defined by g on [0, 11; that is, r = g([O, 11).

252 K.-I Ko / Theoretical Computer Science 145 (1995) 241-270

4, Properties of the monster curve

4.1. Polynomial-time computability

We first show that {g,,} is a polynomial-time computable sequence of functions, in
the sense of Definition 2.3. It follows then from Lemma 3.9 that g is also polynomial-
time computable.

Lemma 4.1. (a) if a, b E [0, l] satisfy 1 a - bl < 6-“02-~ for some n, k > 0, then

Is,(a) - gn(b)l G 31X.2-~.
(b) Zf u, b E [0, l] satisfy 1 a - b(< 6-nfor some n > 0, then Is(a) -g(b)/ < 7&.

Proof. (a) Since g,, is linear on the interval [i- 6-“, (i + 1)6-“-J, for each 0 < i < 6” - 1,
we only need to show that if a = i-6-* and b = (i -t 1)6-” for some 0 < i < 6” - 1,
then 1 g”(u) - g,,(b) I < 3/$, We consider three cases.

Case 1: [a, b] = I, for some type-A node u of depth n. Then, it is clear from the
definition that 1 g,(u) - g,(b) I < max(cl,, j$} = fin.

Case 2: [a, b] E I, for some node u that is of depth n and is of type B or type C.
Then, lg.(u) - g”(b) I = 6-” ‘leng(Z,)- ’ -leng(L,). By Lemma 3.7, we see that I g,(u) -

g&N G 6-max{an+i, Bn+d < 38,.
(b) I s(a) - g(b) I 6 I s(a) - s,(a) I + Ig@) - g,(b) I + I s,(a) - g.(b)l < 48, +

3#?” = 78”. 0

Theorem 4.2. (a) (g,,} is a polynomial-time computable sequence.

(b) g is polynomial-time computable.

Proof. Part (b) follows from part (a) and Theorem 3.10. For part (a), we note that the
above lemma showed that { gn} has a uniform polynomial modulus. From Proposi-
tion 2.2, and from the linearity of g,,, we only need to show that the discrete function
4 that maps any pair (n, i), 0 < i < 6” - 1, to gn(i*6-“) is computable in time p(n) for
some polynomial p. (Note that (i-6-Y 0 < i < 6” - l> includes all endpoints of I, for
all nodes u of depth n.) But this follows directly from the definitions of I, and L,.
Namely, to find g,(r) where T = i-6-” for some i, we recursively determine the node

vk of depth k with r E Zk and compute I,, and L,,, according to I,,_,, L,,_, and
label(uk_ 1). Apparently, this is a polynomial-time procedure. 0

4.2. One-to-oneness

To establish the one-to-oneness of functions g. and function g, we need a, more
precise estimation of the distance between two line segments L,, and L,,. For any
horizontal line segment L with the endpoints (aI, b) and (at, b), al < a2, let

box(L, CT, T) = {(x, y): a,-a<x<uz+a,(y-b(<r)

K-I Ko / Theoretical Computer Science 145 (1995) 241-270 253

and for any vertical line segment L with the endpoints (a, b,) and (a, b2), bI < b2, let

box(L,a,z)=((x,y):(x-al<o,bI-z<y<bb2 +z}.

Lemma 4.3. Let v be a node of depth n.
(a) Zf n is odd and v is horizontal, or ifn is even and v is vertical (and so v is of type B),

then gn+ 1 [Iv] E box(L,, 0,O).
(b) Zfn is even and v is horizontal, then gn+I [Z,] c box(L,, 0, bn+I).
(c) Zf n is odd and v is vertical, then gn+ i [I,] c box@,,, CC,+ i, 0).

Proof. Immediate from Lemma 3.4 and the definition of gn+ 1. 0

Fof each integer n > 0, define

CT” = c O?Zjv T*= C BZj+l,

Zjan+l Zj+lan+l

and let Box(v) = box&, CT”, T.), if v is of depth n.

Lemma4.4.Zfn>Oiseven,then2a,=a,+,-6,+1 and2T,=b,-&.Zfn>Ois
odd, then 20, = a, - 6, and 2r, = /?n+I - c?“+~.

Proof. It follows immediately from Lemma 3.2. q

Lemma 4.5. Let v be a node of depth n. Then, g[ZJ E Box(v).

Proof. Leta,,k=C,+,,2j.,+kQ2jand~,,k=C,+,.2j+~~.+k82j+~.Weproveby

induction that for all k >, 1, g,+k[Z”] E box(L,, a n,k, r,,k). First observe that the case

k = 1 has been proved in Lemma 4.3.

Next, assume that gn+k[Z”] C box(L,, 6,,k, rn,k), and consider gn+k+i [Z,] for all
depth-(n + k) descendants w of v. We consider 3 cases.
(1) If n + k is odd and w is horizontal, or if n + k is even and w is vertical then, from

Lemma 4.3(a)Y 8” + k + 1 [Iwl c bWL, o,o) = &v = g.+k [&VI c box(L, %.k, 0n.k)

c box &> %k+l, %,k+l)*

(2) If n + k is even and w is horizontal, then, from Lemma 4.3(b), gn+k+ i [Z,] c

box(Lw,O,fi.+k+i) and hence it is contained in box&, a.,&, r,,k + &+k+ i) =

box&, a,,k+l,r,,k+l).
(3) If n + k is odd and w is vertical, then, from Lemma 4.3(c), gn+k+i [I,,,] c

box(Lw,a”+k+1,0)~box(L”,a,,k+a,+k+,,z”,k)= (Lu~%k+l~%,k+l)~ It fol-

lows that g[ZJ G Box(v). 0

Lemma 4.6. Zf w is a child of v, then Box(w) c Box(v).

Proof. Again, we check this by 3 cases. Assume that v is of depth n.
(1) If n is odd and v is horizontal, or if n is even and v is vertical, then L, c

box(L,, 0,O) = L,. Furthermore, it is clear that a,+ 1 f an and r,+ 1 < T”, and it
follows that Box(w) E Box(v).

254 K.-I Ko 1 Theoretical Computer Science 145 (I99.5) 241-270

(2) If n is even and u is horizontal, then L, c box(L,, 0, /I,,+ r). Furthermore, we
can check that 6, + i = rr,, and r,+ 1 = z, - /I.+ 1, and it follows that
Box(w) G Box(u).

(3) If n is odd and u is vertical, then L, E box(L,, CI,+ i, 0). Furthermore, we can check
that rs,+i = a, - c(,,+~ and r,+i = z,, and it follows that Box(w) c Box(v) 17

Lemma 4.7. Assume that u1 and u2 are two nodes of depth n.

(a) 1f u1 and u2 are not neighbors, then Box(ui) n Box(u,) = 8.
(b) Zfui and u2 are neighbors, then Box(ui) n Box(u,) has measure 40,~,.

Proof. (a) We prove this by induction on n. First, if n = 0, then there is only one node.
Assume that n > 1 and the parents of u1 and u2 are a1 and u2, respectively.

Case 1: u1 and u2 are not neighbors. Then, by the inductive hypothesis,
Box(uJ n Box(u,) = 0. Since, by Lemma 4.6, Box(ui) E BOX(ui)y for i = 1,2, it follows
that Box(q) n Box(u2) = 8.

Case 2. u1 = u2. We consider three more subcases.
Subcase 2.1: ui is of type A. Then, it is clear that L,, and L,, have either a horizontal

distance 2 CI, or a vertical distance 2 /In. We observed from Lemma 4.4 that u, > 20,
and /In > 22,, and so the distance between the two line segments L,, and L,, are big
enough to prevent Box(u,) from meeting Box(u,).

Subcase 2.2: u1 is of type B. First assume that u1 is horizontal, and hence n is even.
Then, ui and u2 must be both of type A and L,, and L,, must be subsegments of
L,, and have distance d = c1,+ 1 + Bk - 6,+ 1 = 20, + bk (Lemma 4.4), where
k = k,, < n - 1. Therefore, Box(u,) n Box(u2) = 0.

The same argument works for the case of the vertical ui. More precisely, the
distance between L,, and l,, is d = j?,, + 1 + dk - 6, + 1 = 22, + 6,.

Subcase 2.3: u1 is of type C. This case is similar to Subcase 2.2. We omit the details
of the verification.

Case 3: u1 and u2 are neighbors. Then, we claim that the distance between L,, and
L,, is, like Subcase 2.1, at least CI, in the horizontal direction or j,, in the vertical
direction. From this claim, the lemma can be proved as in Subcase 2.1.

The claim can be verified by inspection in the following subcases:
Subcase 3.1: Both u1 and u2 are of type A. Then, we can check, from the definition

of the tree T, that u1 and u2 must have the same label, and hence must lie in the same
horizontal or vertical line. Therefore, the relation between L,, and L,, is like that in
Subcase 2.1.

Subcase 3.2: One of ai or u2 is of type B or C. Then, ui and u2 must have a common
parent node w. By expanding the subtree of T rooted at w, we can check that the claim
holds for L,, and L,,.

(b) The line segments L,, and L,, meet at one endpoint (x,,, yO) and are either both
on the same line or are perpendicular to each other. In either case, the intersection of
Box(v,) and BOX(Q) is the rectangle R = {(x, y): 1 x - x0 1 < cn, (y - y. 1 d t,,>,

whose measure is 40,,2,. 0

K.-I Ko / Theoretical Computer Science 145 (1995) 241-270 255

Theorem 4.8. Functions g,, and function g are one-to-one functions.

Proof. First consider g., n 2 0. Let t1 # t2 be two points in [0, 11. Let u1 and u2 be the
two depth-n nodes such that tl E I,, and t, E I,,.

Case 1: u1 = u2. Then g. is linear on I,, so g,,(ti) # g,(tz).
Case 2: u1 # v2 but they are neighbors. Then, g. maps I,, u I,, to two consecutive

line segments L,, and L,,. Note from the definition of tree T, label,(v,) and labelI
are never complementary if u1 and u2 are neighbors. Thus, L,, and L,, meet only at
one endpoint. So, g,(tl) # gn(t2).

Case 3: v1 # v2 and they are not neighbors. Then, by Lemma 4.7,

Box(vi) n Box(v,) = 0, and so g&i) # gn(t2).

Next, we consider function g. Let ti # t2 be two points in [0, 11. For each n 2 0, let
u,, 1 and u,,~ be the depth-n nodes such that tl E Z,,,I and t2 E Z,,,2.

Case 1: There exists an integer n such that v,, 1 and v,,~ are distinct and are not
neighbors. Then, by Lemma 4.7, Box(v,, i) A Box(v,, 2) = 8, and so g(tl) # g(t2).

Case 2: For every integer n, v,, 1 = v,,~. Let d = (tl - t2 1 and v = v,, 1. Then,
leng(Z,J > d for all n 2 0. So, for sufficiently large n, v, must be of type B or type C.
Let the highest type-A node containing tl and t2 be vk. That is, for all n 2 k + 1,
k,,, = k + 1. Then, we can see that leng(Z,J < 6-k and leng(L,J 2 &+l for all
n 2 k + 1. Thus, for each n B k + 1, 1gJti) - gn(t2)I = d*leng(Z,J-‘.leng(L,,,) >
d.6k.6k+l > 0. Thus, Ig(tl) - g(t2)) > d.6-k.6k+l >O.

Finally, we claim that the above 2 cases are exhaustive, and hence the theorem is
proven. To prove the claim, we assume, by way of contradiction, that neither case holds.
Then, it must be true that for sufficiently large n, u,, 1 # v,,~ and they are neighbors. It is
easy to observe that it also must be true that for sufficiently large n, both v,, I and u,, 2
are of type A, because the two neighboring children of two neighboring nodes must be
of type A. But this is not possible, because then the distance between t1 and t2 is smaller
than leng(Z_) + leng(Z_) = 2 - 6-” for all n, and must be 0. q

4.3. Length of the curves

Recall that Z. is the curve defined by function gn in Section 3. In this subsection, we
show that the sequence {I,} of the length of Z,, is a polynomial-time computable
sequence. To prove this result, we define the following values about the tree T:

a,, = the number of type-A nodes v at depth n, n 2 0;
b, = the number of type-B nodes v at depth n, n 2 1;
c, = the number of type-C nodes v at depth n, n 2 1;
b,,i = the number of type-B nodes v at depth n with k, = i, 1 < i < n;
c,,i = the number of type-C nodes v at depth n with k, = i, 1 < i < n.

Then, we observe from the definition of gn that if n 2 1 is even then

In=a,.a,+b,(B,-6,)+c,(cr,+l --an-~)+ f: (bn,i+ cn,i)si9
i=l

(1)

256 K.-I Ko 1 Theoretical Computer Science I45 (1995) 241-270

and if n 2 1 is odd then

L = an*Bn + b”(a, - 6”) + cn(Bn+~ - a,- I + E (bn,i + c,,i)6i*
i=l

(2)

Therefore, the sequence { 1, > is a polynomial-time computable sequence as long as the
sequences {a,}, {b,}, {c,>, {b,,i} and {c”,i} are polynomial-time computable.

Lemma 4.9. The following holds for all n > 1 and 1 < i < n:

(a) a, = 4.5”_1.

(b) n
b = (5” - 1)/3 if n is even,

i (5” + 1)/3 if n is odd.

(4
” =

(5”-l - 1)/3 if n is odd,

(5”-l + 1)/3 if n is even.

(4 bm,i =
if n - i is odd,

if n - i is even.

(4
if n - i is even,

if n - i is odd.

Proof. We can prove these relations together by induction on n. First, we observe that

a0 = 1, ar = 4, a2 = 20;

bl=bI,l=2, bz=b2,2=8, b,,,=Q

Cl = Cl.1 = 0, c2 = c2,1 = 2, C2,J = 0.

Thus the above relations (a)-(e) hold for n = 1,2 and i = 1,2.
Now let k > 2 and assume that the relations (a)-(e) hold for all n < k and 1 Q i < k,

and consider the case n = k + 1.
(a) We observe that each depth-k, type-A node has 4 type-A children and each

depth-k, type-B or type-C node has 2 type-A children, and there is no other way to
produce type-A nodes at depth k + 1. Therefore, we have ak+ r =
4.ak + 2(bk + CJ = 405~.

(b) We observe that each depth-k, type-A node has 2 type-B children and each
depth-k, type-C node has 1 type-B child, and there is no other way to produce
type-B nodes at depth k + 1. Thus, bk+l = 2.ak + ck = 2-4-5k-’ + (gk-’ & 1)/3
= (gk+ ’ f 1)/3, where f is + if k is even and + is - if k is odd.

(c) We observe that each depth-k, type-B node has 1 type-C child, and there is no
other way to produce type-C nodes at depth k + 1. Thus, ck+1 = bk = (sk + 1)/3,
where + is + if k is odd and k is - if k is even.

(d) Assume that i < k + 1. Then, each depth-(k + I), type-B node v with k, = i is
a child of depth-k, type-C node u with k, = i. Therefore bk+ I,i = ck,i = 0 if k - i is
even, and bk+l,i = ck,i = 2Ui-1 if k - i is odd.

K.-I Ko 1 Theoretical Computer Science 145 (1995) 241-270 251

If i = k + 1, then each depth-(k + l), type-B node u with k, = k + 1 is a child of
a depth-k, type-A node. There are 2 such children for each depth-k, type-A node.
Therefore, bk + 1, k + 1 = 2~2~.

(e) Similar to (d). 0

The exact length I, of the curve r, can now be computed from the above lemma.
The following calculation is to be used in the next section.

Let H, be the set of all horizontal nodes u in T that have depth n, and V, be the set of
all vertical nodes u in T that have depth n. Also let Ii”’ be the total length of all line
segments L, with u E Z-Z, and $,“) be the total length of all line segments L, with u E V,.

Lemma 4.10. (a) For any even n > 0, IF) = 3 5”/2 + n/6 + O(l), and I,? = 2 5”” +
5n/12 + O(1).

(b) For any odd n > 0, 1:“) = 4 5(“+1)12 + n/6 + O(1) and I!“) = s5(n+1)‘2 +
5n/12 + O(1).

Proof. (a) From Lemma 3.4 and formula (I), we know that

”
ICh’=ua +c (a n nn n n+l - &+I) + C G,isi

i=l

= ~j.5”-‘(2.5-“‘~ + 45-7 + 5”-i+ ’ (5-n/2 + $5-n _&5-n)

= 3 5n/2 + &n + CA,

whereO<c,<:andO<c:,< 1. Also,

1:’ = b,(fi, - 6”) + i b,,i6i = b.(fln - 6,) + C 2Ui_16i
i=l l<i~n,ieven

5” - 1
=T($5- (n/Z-i) + &5-(n--2) _ $g5-(n-3))

+ lGi;icvcn 8.5i-2.&.5-(i-3)

=25”1’+ftn+d,,

whereO<d,< 1.

258 K.-I Ko / Theoretical Computer Science I45 (1995) 241-270

(b) The calculation is similar, we omit the details. Or, alternatively, we notice that
I(“) = &$‘!! 1 if n is odd, and lAhJ = l,$‘!/ 1 if n is even. For instance, we observe that each
horizontal node u of type A has exactly two horizontal child nodes wl, w2 of type
B with leng(L,,) = leng(L,,) = leng(L,)/2. Also, each horizontal node u of type C has
exactly one horizontal child node w of type B such that leng(L,) = leng(L,). There-
fore, for each even n 2 0, the total length of horizontal line segments at depth n + 1 is
equal to that at depth n. Similar observations show that for each odd n 2 1, the total
length of vertical line segments at depth n + 1 is equal to that of depth n. 0

Corollary 4.11. Let n 2 1 and let 1. be the length of the curve r,,. Then,
5n’2 < 1, < V2 + l.

Proof. We note that, for even n > 0, the term O(1) in Lemma 4.10(a) is actually
bounded by 1. Thus, 1, = 6”’ + I,$“’ is very close to 3 5”‘2 and it is easy to check that the
above inequality holds even for small n. 0

Corollary 4.12. The sequence {l,,} of the lengths of the curve r, is a polynomial-time

computable sequence.

4.4. Measure of the monster curve

For any set S E Hz, we let p*(S) denote its outer measure in lR2, and let p(S) denote
its Lebesgue measure if S is measurable. Recall that r is the curve computed by
function g in Section 3. Since r is a closed set in [w’, it is measurable. In this sub-
section, we show that p(r) = 5. We first introduce the following notion of Minkowski
measure. For any point z E Iw2 and any E > 0, we let N(z; E) be the open neighborhood
of center z and radius E. For any set S c Iw2 and any E > 0, we let N(S; E) =
UZEsN(z; E) (called a Minkowski sausage in [6]). Note that for any set S c Iw2,
N(S; si) c N(S; si) c N(S; s2) if .sl < s2.

Definition 4.13. For any set S E Iw2, the Minkowski measure of S is m(S) =

inf,, e P*(N(S; s)).

The Minkowski measure m(S) of a set S is at least as large as the outer measure
p*(S), but it is not necessarily equal to p*(S). However, the two quantities are equal if
S is bounded and closed.

Proposition 4.14. Zf S c F-Z2 is bounded and closed, then m(S) = ,u(S).

Proof. It is clear from the definition that m(S) 2 p(S). Assume, by way of contradic-
tion, that m(S) > p(S). Let 6 = m(S) - p(S). Choose an open set Q that contains S and
has p(Q) < p(S) + 6/2. Then, for each z E S, there is an E, > 0 such that N(z; E,) c Q.
The collection {N(z; EJ},,~ forms an open covering for S. Since S is bounded

K.-I Ko / Theoretical Computer Science 145 (199.5) 241-270 259

and closed, there is a finite subcovering of S: {N(zi; s,,)}:,i. Note that

p(lJ= lN(zi; GJ) 6 P(Q) < P(S) + d/2-
Note that each N(zi; sZi) has a finite boundary. Let 4 be the sum of the length of the

boundaries of these neighborhoods. Choose an E > 0 such that e - E < 6/2 and E < E,,
for all i, 1 < i < k. Then, consider the set T = lJz= iN(Zi; E,, + E). We observe that for
any z E S, z E N(Zi; E,() for some i, 1 < i < k, and SO N(z; E) E N(Zi; cZi + E) z T. Thus,

CL(T) B m(S).
On the other hand, we see that E * G < 6/2 implies that

This is a contradiction. 0

Recall that H, (and V,) denotes the set of all horizontal (and, respectively, vertical)

nodes in tree T that are of depth n. We consider the sets B, = UveH,vY, Box(u). We

note that each B, is a closed set and so is measurable. From Lemmas 4.6 and 4.5, we
know that B1 2 B, 2 ... z r. Therefore, { p(B,)) is a nondecreasing sequence of real
numbers each greater than p(r). It implies that lim,, m p(B,) exists and is 2 p(r). The
following lemma shows that this limit is actually equal to p(r), and it allows us to
calculate p(r) easily.

Lemma 4.15. lim,,, @?,) = p(r).

Proof. Let b = lim, + m p(B,). We have already seen that b 2 p(r). Assume, by way of
contradiction, that p(r) = b - 6 for some 6 > 0. Then, by Proposition 4.14,
m(r) = b - 6. That is, there exists an E > 0 such that p(N(r; E)) < b - 6/2. Choose an
integer n > 0 such that tl, + /In + cr, + rn < E. Note that for each point z E B,, there is
a point g,(t) in r, such that 1 z - g”(t) 1 < CT” + z,. It follows that there is a point g(t) in
r such that

I z - g(t) I G Iz - h(t) I + I g(t) - g,(t) I d gn + 7, + a, + Bn 6 E,

where the second inequality follows from Theorem 3.10. This implies that
B, G N(T; E) and so leads to a contradiction: p(B,) < b - b/2. Therefore, we may
conclude that p(r) = b. Cl

Theorem 4.16. p(r) = 5.

Proof. Recall that ljh) = C,,,nleng(L,) and 1,$“’ = C,,rnleng(L,). We claim that
CL(&) = 2r,1ih) + 2a,I!$ + 40~“. The proof of the claim is as follows: For each u E H,,

p(Box(u)) = 22, - leng(L,) + 4a,z,, and for each u E I’., p(Box(u)) = 20, -leng(L,) +
40,~“. Note from Lemma 4.7 that two neighboring boxes Box(u) and Box(u) have

260 K.-I Ko 1 Theoretical Computer Science 145 (199s) 241-270

an intersection of size exactly 4a,r,, and two nonneighboring boxes have an empty
intersection. Thus,

A&) = c ABoxM) + c @ox(u)) - 4c,r,(I H, I + I v, I - 1)

veH, WV.

= C 22,. leng(L,) + C 2a, - leng(L,) + 46,~”
van, WV”

= 22 Ifh’ + 20 nn Ith) + 40 r nn n “9

where I H, I and I Vn 1 denote the sizes of H, and V., respectively.
Thus, from Lemmas 4.10 and 4.4, we have, for each even n > 0,

0”) = (A - &Y3) + @,+ 1 - &I+ 1) C? + 4%J,

= (3 5-“‘2 + ~5-“)(~5”‘2 + in + O(1))

+ (5_“‘2 + & 5_“)($5”‘2 + An + O(1))

= 5 + O(n. 5-“‘2).

If follows that ,u(T) = lim,,, p(B,,) = 5. Cl

5. The area problem

In this section, we construct a polynomial-time computable functionf: [0, l] + R2
defining a simple, closed curve rJ such that the measure of the interior S of r, is
nonrecursive. We first give an overview of the idea of the construction. Let Tss be
the boundary of the square [0, l] x [-1,O). The curve r, is to be obtained
from r,, by substituting a simple curve A, for a line segment L, E [0, l] x (01,
where L,‘s are pairwisely disjoint. Pick a recursively enumerable but nonrecursive
set K. The curves A, are defined in such a way that if n E K, then A, is of measure 0
and is symmetric with respect to its center and so its substitution for L, does not
change the measure of the interior of rsq. On the other hand, if n 4 K, then A, is
a scaled-down image of the monster curve f that has a measure c - 2- 2n for some
rational constant c > 0. Since r and hence A, is symmetric with respect to its center,
its substitution for L, decreases the measure of Tss by (&SC .2-2”. Together, the
change from rsq to r, then decreases the measure by c~C~~~~-(~“+~), which is
a nonrecursive real number.

We first extend the functions g. and g to the domain [-4, 31: gn and g map [-4, 0]

linearly to the line segment Lo = line((-2,O), (-al, 0)), and they map [l, $1 linearly
to the line segment L1 = line((ai, 0), (2,0)). We keep the names r. and r for the
curves defined by gn and g, respectively, on [-3, 31. We observe that these extended
curves are still one-to-one.

K.-I Ko / Theoretical Computer Science 145 (1995) 241-270 261

Theorem 5.1. (a) Functions gn, n > 1, and g ure one-to-one on C-6 $1.
(b) The ranges offunctions gn and g on domain (-4, f) are contained in the interior of

the square [-2,2] x [-2,2].

Proof. (a) It is easy to verify that g1 is one-to-one on C-f, $1. For n > 2, consider
a node u of depth n. If u is not the leftmost node of depth n, then L, and L,, have either
a horizontal distance > 01, or a vertical distance > /I,,. Thus, by the same argument as
in Lemma 4.7, Box(v) n Lo = 8, and hence gn on I, does not meet Lo. If t, is the
leftmost node of depth n, we can show, by a simple induction, that gn on I, meets
Lo only at the point (-a,, 0). The relation between gn and L1 is similar. This shows
that gn is one-to-one on C-4, $1,

For the function g, we have just proved that for any k > 2, Box(u) n Lo = 0 for all
but the first node II of depth k. It follows that if t E (0, l] then g(t) $ L,,. The relation
between g and L1 is similar. We conclude that g is one-to-one on [-4, 3-J.

(b) The curves defined by g. and g on [0, 11 are contained in Box(uc), where u. is
the root of the tree T. We observe that cr,, = C,?!, azj < 2 = 2 - a1, and
z vg = ~jm_~B*j+l < 2. Thus, Box(uo) is contained in the interior of the square
[-2,2]x[-2,2]. 0

Now we are ready to define the functions Let K be a recursively enumerable but
nonrecursive set of integers. Let M be a Turing machine that recognizes set K, that is,
M(n) halts if and only if n E K. For each n E K, let T(n) be the number of moves made
by M before it halts on input n. Without loss of generality, assume that 0 4 K and that
T(n) > n + 2 for all n E K.

For each n 2 1, we define two linear mappings G, : R + R and F, : Rz -+ R2 as
follows:

G,(t) = 2”+‘t -3,

F,((x, y)) = (2-‘“+3’x + 3.2~‘“+“, 2-‘“+3’y).

Note that G, maps the interval [2- (“+I) 2-“1 to the interval [-3, $1 and F, maps the
square [-2,2] x [-2,2] to the square’[2-(“c1), 2-“1 x [-2-(“+‘), 2-(“+‘)I.

Definition 5.2 (Function f on [0, 11). (1) On [i, 11, f maps [f, 41 linearly to the line
segment line((f, 0), (LO)); f maps [?J, $1 linearly to the line segment line((1, 0),

(1, -1)); f maps LX21 1’ mearly to the line segment line((1, -l), (0, -1)); and
fmaps [i, l] linearly to the line segment line((O, -l), (0,O)).

(2) f(O) = (09 0).
(3) For each n$ K, n > l,f(t) = F,(g(G,(t))) if t E: [2-(“+l), 2-“1.
(4) For each nEK,f(t) = F,(gTtnj(G,(t))) if t E [2-(“+l), 2-“1.

We prove that this functionf satisfies our needs.

262 K.-I Ko / Theoretical Computer Science 145 (1995) 241-270

Theorem 5.3. This function f is one-to-one except f (0) = f (l), and hence defines a simple

closed curve I’.

Proof. Immediate from Lemma 5.1. 0

Theorem 5.4. The function f is polynomial-time computable.

Proof. First we prove that f has a polynomial modulus. That is, we need to find
a polynomial p such that 1 tl --t2) < 2-p(k) implies (f(tl) -f(tz)I < 2-k. Since f is
piecewise linear on [i, 11, we only need to show this on CO,;].

We let p(k) = 5k + 15. Fix an integer k > 0 and assume that tI, t2 E [O, J] and
1 t1 -tz I < 2-pCk).

Case 1: tl, t2 E [0,2- (k+2)]. Then, both f (tI) and f(t2) are in the rectangle
[O, 2-(k+2)] x [- 2-(k+4), 2-(k+4)], and so) f (tI) -f(t2)) < 2-(k+1).

Case 2: tl , t2 E [2 - ~+l) 2-“1 for some n < k + 1, n $ K. In Theorem 4.1 (b), we

provedthatifJa-bI~6~kthenIg(a)--(b))~7P,~2-(k-5’.SoItl-12) < 2-M)

implies) G&J - Gn(t2)) < 6-(k+4), and hence

If(tl)-f(tz)l =2-(“+3). Ig(G,(t,)) - g(Gn(t2))l d 2-(“+3).2-(k-1) < 2-(k+2).

Case 3: tl, t2 e [2- (“+I) 2-‘7 for some n 6 k + 1, n E K, with T(n) < k. In Lemma
4.1(a), we have shown hat if I a - b I d 6- 7~“). 2-k, then I e&4 - gdb) I 6
38 T(nj.2-k 6 3(3 .5-T’“)‘2).2-k < 2-(k+T(n)-4). Thus, I tl - t2) < 2-p(k) implies that
I G,(t,) - G,(t,) I 6 2-4k < 6-T(“).2-k, and hence

If(t1) -f&)1 = 2-(“+3) ~IsdWd - gdWz))l

< 2-c n+3).2-(k+T(n)-4) < y(k+l)
\

Case 4: tl, t2 E [2- (“+l) 2-“1 for some n < k + 1, nEK, with T(n) > k. From
Theorem 3.10, we know thit I ST(“)(x) - g(x) (6 2/?,,,,,. Therefore, by Lemma 4.1 (b),

I a - b I < 6-k implies I g&a) - gTtnJ(b) I < I g(a) - g(b) (+ 4&, < llj$ < 2-(k-6).
So, this case can be proved similar to Case 2.

Case 5: None of the above, Assume that tl < t2 and t2 E [2-(“‘l), 2-‘7 for some
n < k + 1. Then, we must have tl E [2- (“+2), 2-(“+l)]. Thus, both pairs (tl, 2-(“+l))
and (2-(“+ l), t2) must satisfy conditions of Cases l-4. It follows that If (tl) -f (t2) l <
If(h) -f (2- @+U)I + If(2-W”)) _f(t2)(< 2-(k+U + 2-(k+l) = 2-k.

The above completes the proof that f has a polynomial modulus on [O, i]. From
Proposition 2.2, we only need to show thatf is polynomial-time computable on dyadic
rational points t E [O, 11. This can be done by the following algorithm.

Algorithm forf: On an dyadic rational input t, to compute f (t) within an error 2-k,
we perform the following steps:
(1) If t E [0, 2-‘k+1)] then output (0,O).
(2) If t E [J, 11, then compute f (t) from the definition off directly.

K.-I Ko / Theoretical Computer Science I45 (1995) 241-270 263

(3) If t E [2- (“+l) 2-“1 for some n, 1 < n < k, then simulate M(n) for k + 2 moves.
(3.1) If M(n) ‘does not halt in k + 2 moves, then output a point z such that

1 z - F,(g(G,(t)))l < 2-(k+ ‘).
(3.2) Otherwise, if M(n) halts inj < k + 2 moves, then output a point z such that

IZ - F”(gj(G,(t)))l < 2-(k+1).
End of Algorithm

The above algorithm is correct within an error 2-(k+1) in case (3.2), and in the case
(3.1) when n 4 K. The only place where possible extra errors may occur is in case (3.1)
when nEK. In this case, we must have r(n) > k + 2 and hence, by Case 4 above,

I g(W)) - gdG@Nl G 2Lh G 2bk+2. Therefore,

I Z -_I-@) 1 G 1 Z - FnMW)))l + IFn(dW))) - ~k?Tcn,(Gn(#)l
< 2-Wfl) + 2-(“+3)‘2,&+2 < 2- (k+l) + 2-01+3).6.5-(k+2)/2

< 2-(k+l) + 2--W+l) = 2-k q

Lemma 5.5. The real number I = 1, 4 K 2-‘” is nonrecursive.

Proof. Assume by way of contradiction that r is recursive. Then, consider the
following procedure to determine for each n 3 1 whether n E K.

We will decide whether n E K recursively. Suppose that we have already decided
whether k E K for all k < n. Then, we form the number r, = Ck..n,k p K 2- 2k. Then, we
compute an approximation value s to r such that Is - r I < 2-(2”+3). If
s < r + 2-(2n+1), then we decide that n E K, and otherwise n .$ K.

No”te that if n$K, then r, + 2-“‘< r, and so s 2 r - 2-(2n+3) > r, + 2-‘” -
2-(2n+3) >)., + 2-(Zn+l) and the decision of the above procedure is correct.
If nEK, then r<r,+CFC.+l 2-2k = r, + (l/3).2-‘” < r, + 3*2-(2”+3). Thus,
s < r + 2-(2n+3) < r, + 4.2-(2n+% = r, + 2-@“+U, and the decision of the above

procedure is again correct.
Therefore the above procedure correctly decides whether n E K or n 4 K. This

contradicts our assumption that K is nonrecursive. 0

Theorem 5.6. The interior of the curve r, dejned by f on [0, l] has a nonrecursive
measure.

Proof. The square Tss = [0, l] x [- 1, 0] has measure 1. For each n E K, the curve
defined byfon [2- (“+l) 2-7 is of measure 0 and is symmetric with respect to the
point (3 - 2-(“+‘), 0), an: so this part of the curve does not change the measure of the
interior of Tr.

For each n # K, the curve defined byf on [2- ln+ ‘) 2-7 is the image of the curve
r under the linear transformation F,; let us call it LI,: The measure of the curve /i, is
2-2(n+3).P(r)= 5.2- . (2n+6) Notice that the curve A, is also symmetric with respect

264 K.-I Ko / Theoretical Computer Science 145 (1995) 241-270

to the point (3.2- (“+ ‘) 0). Therefore, half of the curve A, lies inside the square r,,

and that contributes to’a decrease of the measure of the interior of Tr. That is, the
effect of f on [2- (“+ ‘) 2-7 is a decrease of the interior by a measure of
$.5.2-(‘“+@ = 5 - 2-(‘” 7). Thus the area of the region inside r, is

1- c 5.2-
n+K

(Zn+7) = 1 - & “$ 2-z”,

which is nonrecursive by Lemma 5.5. 0

6. The length problem

In this section, we construct a polynomial-time computable, simple curve which is
of finite length but whose length is a nonrecursive real number. As in Section 5, we let
K be a recursively enumerable but nonrecursive set of nonnegative integers. We also
let M be a Turing machine accepting K, and for each n E K, let Z’(n) be the number of
moves for M(n) to halt. Without loss of generality, we assume that 0, 1, 2 $ K and
r(n) > n + 2 for all n E K.

For each n > 2, let I, be the length of the curve r,, defined by function gn on [0, 11.

Note that we proved in Corollary 4.12 that {In} is a polynomial-time computable
sequence. For each n E K, define

1” = 2-2”.(3.I*(“) - 1)-l.

From Corollary 4.11, we know that 5T(n)‘2 c IT(“) < 5r00/2 + 1 Therefore , 5r00/2 - 1 <

(2/5)1,,,, - 1 < ST(“)” + ‘, and hence

2-2”.5-(r(f0/2+1) < d n < 2-2n.5-(%)/2-1)

Next we define, for each n E K, two linear mappings G,: R + R and
F,:[-2,2]x[-2,2]+iR2asfollows:

G _i+t-2-n
)I- 2 21, ’

F”((X, y)) =
(

41
4$.X + 2-“,7.y

>
.

For each n E K, let J, = [2-” - A,,, 2-” + A,]. We observe that for each no K, G,
maps the interval J, to the interval [O, 11, and F, maps the square [- 2,2] x [- 2,2]
to the square Qn = [2-” - S&/5,2-” + s&/5] x [- 8&/5,8&/5]. By Theorem 5.1 (b),
we see that F, maps all curves r and r,,,, m B 0, into square Q.. Since, for n E K,
1, G 2-2n.5-(T00/2-1) < 2-(n+3) (note that n E K implies that n 2 3), the square
Qn does not overlap with any other square Q,,, for all n, m E K. In addition, F, maps the
line segment line((- al, 0), (al, 0)) to the line segment line((2-” - I,, 0),
(2_” + A,, 0)).

K.-I Ko / Theoretical Computer Science 145 (1995) 241-270 265

Now we define the functionf on [0, l] as follows:
(1) If t $ J,, for any n E K, then let f(t) = (t, 0).
(2) If t E J, for some n E K, then letf(t) = F.(gT(nj(G,(t))).

Lemma 6.1. The function f defined above is polynomial-time computable.

Proof. We first show thatfhas a polynomial modulus on [0, 11. We are going to show
that if 1 tl - t2 1 < 2-q(k), then jf(ti) -f(t2)I < 2-k, where q(k) = 8(k + 2). Let us fix
an integer k > 0. Assume that I tl - t2 I ES 2-q(k), and consider the following cases:

Case 1: Both ti an t, are not in J, for any n E K. Then, If(ti) -f(t2) I =

It1 - tz I < 2-lk+*).

Case 2: Both ti and t2 are not in J, for some n E K with T(n) 2 k -I- 3. Then both

f(ti) and f(t2) are in the square Q,,. Thus, lf(ti) -f(t2)I < #)A. <
2-(2n-5).5-r(n)/* G 2-T(n) g 2-(k+*)*

Case 3: Both ti and t2 are in J, for some n E K with T(n) < k + 2. In Lemma 4.1(a),
we have shown that if 1 a - b I G 6-T(“).2-k then I gTcn) (a) - gT&b) I < 3j&) . Zek.

Thus, I tl - t2 I < 2-q(k) implies

IGn(tl) - Gn(t2)l < $!! < 2-8(k+*).2*n-1.5T(“)/*+l
”

< 2-W+2),4Tln) 6 6-T’“‘.2-k.

It follows that

If(ri) -f(r2)1 Q +r&G.(t,)) - gr&G&))l < +3&,.2-‘< 2-(‘+*).

Case 4: tl E J, for some n E K and t2 E I,,, for some m E K with m > n. Let t3 be the
right endpoint of J, and t4 be the left endpoint of J,. Then, all 1 tl - t3 1,) t3 - t4 I and

It4 - t2 l are bounded by 2-4’k’ and the pairs (tl , t3) and (ta, t2) satisfy the condition of
either Case 2 or Case 3, the pair (t3, t4) satisfies the condition of Case 1. Thus, we have

If@I) -f@*)I Gfh) -f(t3)I + If@s) -f(GI + I”N2) -fkdI

< 3.2k+2 < 2-k.

Case 5: tl is in J, for some n E K, and t2 is not in J, for any m E K. This case can be
proved similar to Case 4.

The above completes the proof that f has a polynomial modulus. To see that f is
polynomial-time computable on dyadic rationals, we consider the following algo-
rithm for f:

Algorithmforf: On the dyadic rational input t, to computef(t) within an error 2-k,
we perform the following steps:
(1) If t E [O, 2-Ck+ l) + 2-(k+3)] then output (t, 0).
(2) If t $ [2_” - 2-(“+*), 2-” + 2-(“+*)I for any n zs k, then output (t, 0).

266 K.-I Ko 1 Theoretical Computer Science 145 (1995) 241-270

(3) If t E [2_” - 2-(“+2), 2-” + 2-(“+2)-J f or some n 6 k, then simulate M(n) for
k moves.
(3.1) If M(n) does not halt in k moves, then output (t, 0).
(3.2) Otherwise, if M(n) halts in k moves, then we have found T(n) < k. We

determine whether t E J,. (a) If t $ J(n), then output (t, 0). (b) Otherwise, we
output a point z such that 1 z - F,(gr&G,(t))) I < 2-k.

End of Algorithm

To see that the above algorithm forfis correct, we verify the following cases:
(a) If t E [0, 2-(k+1) + 2-(k+3)] then f(t) is either (t, 0) or is in Q,, for some ncK,

n > k + 1. In either case, If(t) - (t, 0) 1 < (?)A, < (q).2-(Zk+2) 6 2-k.
(b) If t $ J,, for any n E K, then the above algorithm must output the correct point

(t, 0) (in Case (l), (2), (3.1) or (a) of (3.2).
(c) If t E J, for some n E K, n < k and T(n) < k, then the above algorithm must enter

Case (3.2.b) and the output is correct within an error 2-k.
(d) If t E J,, for some n E K, n < k and 7’(n) > k, then the above algorithm outputs

(t, 0) in Case (3.1). Note that bothf(t) and (t, 0) are in Q. and so

/j-(t)- (t,O)] < 32&/5 < 2-(2”-5).5-T(“)‘2 < 2-=(“)< 2-k.

Finally, we verify that the above algorithm can be implemented in polynomial time.
We note that steps (l), (2) and (3.1) can all be done in time polynomial in k. In Case
(3.2) we have already found T(n) < k, and so we can compute IT(“) and hence A,, and
also gTcnj in polynomial time. This completes the proof of the lemma. cl

Lemma 6.2. The length of the curve I’; defined by function f on [0, l] is not a recursive
real number.

Proof. Suppose that n E K. Then, the curve defined byfon the interval J, is the image

of the curve rTcnj under the linear transformation F,. The length of the curve rTcnj is
1 Ttnj, and the function F, shrinks it by the factor 4&/5. Thus, the length of the curve
r; between 2-” - An and 2-” + 1, is 412,1,,,,/5. Therefore, the total length of the curve
r$ is

1 - c 21, + 1 ;. IT(“) .A, = 1 + c 211, (5 2 1

IIEK IlCK IIEK

T(“) -I)= 1 +;K2-(?

which is not recursive (Lemma 5.5). 0

Thus, the following theorem is proven.

Theorem 6.3. There exists a polynomial-time computable, one-to-one function
f: [0, l] + R2 that dejines a simple curve ri such that r$ has ajnite length but its length
is a nonrecursive real number.

K.-I Ko / Theoretical Computer Science 145 (199.5) 241-270 261

7. The membership problem

In Section 5, we proved that the interior S of the curve Tr has a nonrecursive
measure; thus, the membership problem for set S is, intuitively, not recursive either, for
otherwise we could compute its measure by a sampling technique. In this section we
prove, however, that the membership problem for S is still polynomial-time solvable, if
we relax our requirement on the membership algorithm on points close to the
boundary. That is, we prove that the set S is polynomial-time recognizable in the

following sense.
For any set S c R2, let xs(z) = 1 if z E S and xs(z) = 0 if z 4 S, and let Ts be the set of

all points z in lR2 such that for all E > 0, the neighborhood N(z; E) intersects with both
S and the complement of S.

Definition 7.1 (Chou and Ko Cl]). A set S E R2 is polynomial-time recognizable if
there exist a two-oracle Turing machine M and a polynomial p such that for any
oracles 4, II/ that binary converge to x and y, respectively, and for any input n, M@*‘(n)

outputs xs((x, y)) correctly whenever (x, y) has a distance > 2-” to Ts.

The notion of polynomial-time recognizability, and its relation to other notions of
polynomial-time computability of sets in lR2, as well as their applications, are dis-
cussed in [11. (For instance, from [l], we can conclude that the interior S of Tr is not
polynomial-time approximable.)

Before we prove our main result, we first consider a simpler region. We extend
the curve r defined by function g on [- 4, +] to a simple closed curve by adding the
curve &, to it, where & is the boundary of the square [- 2,2] x [- 2,0] with the
top line segment removed. We still call this new curve r. Similarly, we extend r, to
include &.

Lemma 7.2. The interior S of the curve r is polynomial-time recognizable.

Proof. In the following we present a recursive algorithm to determine whether a point
z belongs to the set S. It suffices to consider the points z = (x, y) for some dyadic
rationals x and y in D, since for each point zr , we can find such a dyadic point z close
to it such that if zr has a distance 2 2-k to r then z has a distance > 2-‘k+1) to r.
(The following algorithm follows the notations of Sections 4.2 and 5.)

Algorithm for S. Assume that the input consists of a dyadic point z and an integer
k > 0. (The algorithm is expected to compute xs(z) if z has a distance greater than 2-“
to the curve r.) Initially, we construct the box Box(@ where v0 is the root of the tree
T. Then we determine whether z is in Box(uO). If not, then we can easily determine
whether z is in S or not in S. (More precisely, z is in S iff z is in the square
[- 2,2] x [- 2,0].) Next, for each n, 1 < n < k + 4, we recursively do one of the
following:

268 K.-I Ko / Theoretical Computer Science 14s (1995) 241-270

(1) Find three neighboring nodes Vi, i = 1,2,3, of depth n (where ui is the left neighbor

ofai+lt i = 1,2) such that z E Box&) - Box(ur) u Box(+); or
(2) Find four neighboring nodes Vi, i = 1, 2, 3, 4, of depth n (where Ui is the

left neighbor of Vi+ r, i = 1,2,3) such that z E [BOX(Q) n Box(u,)] -

[Box(u,) u Box(u,) J; or
(3) Determine that z $ Box(u) for any node u of depth n; then determine whether z is in

the interior of r, and halt.
(In the above, by finding a node u1 we mean to find the node type of ul, the endpoints
of the line segment L,,, and Iabel(u

Assume that after k -t 4 steps, we are in either case (1) or case (2); then we output
that z E S.

End of Algorithm.

We first show that the above recursive steps can be done in polynomial time. We
first assume that we have already found four neighboring nodes uir i = 1, 2, 3, 4, of
depth n such that z E [BOX(Q) n Box(u&] - [Box(us) u Box(u,+)], and we want to do
either (I), (2) or (3) with respect to depth n + 1. To do so, we first generate all children
u of the nodes u2 and u3, and determine whether z is in the box Box(u). Note that for

each node u, the size of the box Box(u) is easily computable from its definition, as long
as the node type, the endpoints of L, and label(u) are known. By Lemmas 4.6 and 4.7,
we know that there are at most two nodes u of depth n + 1 such that z E Box(u).
Furthermore, if there are two such nodes, then these two nodes must be neighbors. So,
if such nodes exist, we can determine either case (1) or case (2).

Assume that z $ Box(u) for all children nodes u of ua and u3. Then we have reached
case (3). Let ul, . . . , Uj be the children nodes of nodes u2 and u3. Then, the line segments
L ul, . . . , Luj form a section of the curve r “+ 1 that cuts through Box(u,) n Box(u,) and
divides it into 2 regions. (By Lemma 4.7, there is no other line segment of r.+r in
BOX(Q) n BOG.) This curve is a directed curve such that the “right-hand side” of
the curve is the interior of the curve r,, + 1, and the “left-hand side” is the exterior. So,
we just determine whether z is in the “right-hand” region of Box(u& n Box(uJ or is in
the “left-hand” region, and output accordingly.

The above gave a polynomial-time implementation of the step n + 1 of the above
algorithm, assuming we were in case (2) at step n. The case when we were in case (1) in
step n can be implemented in a similar way. We omit the details.

It is left to show that the above alborithm is correct. First we show that if we reach
case (3) within k + 4 steps, then the decision must be correct (i.e., if we halt at step
n + 1, then z is in S iff z is in the interior of r ,, + r). This is actually quite obvious: if we
were in case (1) at step n, then the curve r within the area Box(us) n Box@& must lie
within the union of Box(u) over all children nodes u of v2 and v3. Therefore, z is not on
the curve r. Furthermore, the orientation of the curve r and r,,, 1 are identical, and so
z is in the interior of r iff it is in the interior of r,, 1.

Next we claim that if z has a distance 6 > 2-k to the curve r then z $ Box(u) for any
node u in tree T of depth k + 4. This claim implies that we must reach case (3) before

K.-I Ko / Theoretical Computer Science 145 (1995) 241-270 269

the step k + 4, and so the algorithm must be correct as long as the distance between
z and r is greater than 2-k. To see this, we assume, for the sake of contradiction, that
z is in Box(u) for some node u of depth m = k + 4. Then, there is a point z, on the line
segment L, such that

Furthermore, from Theorem 3.10, there is a point z. on the curve r such that

Iz0- Z,16a&l-/!&<2-(k+1) . Together, we conclude that the distance between z and
zo, and hence the distance between z and the curve r, is less than 2-k. This contradicts
our assumption, and so the claim is proven. q

Corollary 7.3. The interior S, of the curve r,,, is polynomial-time recognizable.

Proof. We make the following simple modification to the algorithm of Lemma 7.2: If
m < k f 4 and the original algorithm does not halt in m - 1 steps, then in step m,
compute r,,, within the relevent boxes (BOG in case (1) and BOX(Q) n BOX(Q) in
case (2)) and determine precisely whether z is in T,,,.

Note that if the original algorithm halts in case (3) at step n < m, then the decision is
correct, since the difference between r,,, and r. only affect points z in Box(v) for some
nodes v of depth n. Also, if m < k + 4 and the original algorithm does not halt by step
m - 1, then our modification recognizes z precisely. Finally, if m > k + 4 and the
original algorithm does not halt in case (3) by step k + 4, then we can see, by an
analysis similar to that in Lemma 7.2, that there is a point z. in r,,, such that
1 z - z. I < 2-k and so z has a distance less than 2-k to T,,, and the correctness of the
algorithm is irrelevant. 0

Now we consider the curve r/ defined by function f on [0, l] of Section 5.

Theorem 7.4. The interior S of the curve Ts defined in Section 5 is polynomial-time

recognizable.

Proof. For any dyadic point z E Rz and any integer k, we determine whether z is in the
interior of rr as follows:
(1) If z E [O, 2++4q x [- 2- (k+6), 2-(k+6)], then the distance between z and r/ is less

than 2-(k+3), and we output 1.
(2) If z is not in the square E, = [2-(“+i), 2-“1 x [- 2-(“+2), 2-(“+2)] for any

n < k + 3, then determine z is in S itf z is in the square [O, l] x [- 1, 01.
(3) If z is in E, for some n < k + 3, then simulate Turing machine M on input n for

k + 4 moves. Define z1 = F; l(z), where F, is the linear transformation defined in
Section 5; i.e., if z = (x, y), then z1 = (2”+3(x - 3.2-‘“+2’, 2”‘3.y).
(3.1) If M(n) halts in k + 4 moves, then we know k + 4 2 T(n). We apply the

algorithm of Corollary 7.3 to determine whether z1 is in the interior of
rT(,,) with respect to the error parameter k.

270 K.-I Ko / Theoretical Computer Science 145 (1995) 241-270

(3.2) If M(n) does not halt in k + 4 moves, then we apply the algorithm of Lemma
7.2 to determine whether z1 is in the interior of r with respect to the error
parameter k.

Assume that z has a distance > 20k to Ts. Then, in case (3.1), it is easy to see that z1
has a distance > 2-k.2”+3 > 2-‘k-” to the curve rTcnj. Furthermore, z1 is in the
interior of rTtnj iff z is in the interior of Tf. So the algorithm works correctly when the

distance between z and Tr is greater than 2 -k. Similarly, the algorithm works correctly
in the subcase of (3.2) when n $ K.

Finally, in the subcase of (3.2) when n E K, we have T(n) > k + 4. We claim that if
z has a distance > 2-k to T, then zr is in the interior of rTcnj iff zi is the interior of r.
The correctness of the algorithm then follows.

To see that the claim is true, we note that rTtnj and r has the relation that

(gT&t) - g(t)/ < 2.&,, < 6.5-T(“)‘2 < 2-k.

Thus, a point z2 in the interior of one curve but in the exterior of the other curve must
ave a distance d 2-k to both curves. Since z has a distance 2 2-k to Tr, z1 has
a distance 2 2-(k-“-3) to rTtnJ. This implies that z1 must be in the interior of both

curves or in the exterior of both curves. 0

Acknowledgements

The author has benefited greatly from many insightful comments and suggestions
of Professor Arthur Chou. The author is grateful to the anonymous referee for
pointing out a technical error in the first draft of the paper.

References

Cl] A. Chou and K. Ko, Computational complexity of two-dimensional regions, SIAM J. Comput., to
appear; see also: A. Chou and K. Ko, Some complexity issues on the simply connected regions of the
two-dimensional plane, Proc. 34th IEEE Symp. Foundations of Computer Science (1993) l-10.

[2] H. Friedman, On the computational complexity of maximization and integration, Adv. in Math. 53
(1984) 80-98.

[3] K. Ko, Complexity Theory of Real Functions (Birkhiuser, Boston, MA, 1991).
[4] K. Ko and H. Friedman, Computational complexity of real functions, Theoret. Comput. Sci. 20 (1982)

323-352.
[S] H. Lebesgue, Sur le problbme des aires, in Lebesgue, H., Oeuvres Scientifiques, Vol. IV (Enseignement

Mathbmatique, Geneve, 1903) 29-35.
[6] B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983).
[7] W.H. Osgood, A Jordan curve of positive area, Trans. Amer. Math. Sot. 4 (1903) 107-l 12.

