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Abstract-By examining the irreducibility of a certain recurrence, we show that the hypergeometric 
function of the title cannot be represented by gamma functions. 

1. INTRODUCTION 

The function F = 3F2(1) is one of the basic functions of mathematical physics and 
combinatorics. F is a five parameter family of functions, F: C’-+C. For certain values of 
these parameters F has a convenient series representation, 

F = 3F1 = z (a)k(b)k(c)k 

k=0 (eMfM! ’ 

e,f #O, -1, -2,.. ., Re(a + b + c - e -f) < 0, 

these restrictions being necessary to ensure the meaning and convergence of the series. 
However, the function has an analytic continuation in all its parameters, and F is analytic 
everywhere in C5 except where 

e,f=-m,e+f-a-b-c=-m,m=O,1,2,..., (2) 

see [9]. Further, the singularities of F are poles. 
For discussion of F and a survey of many of its interesting properties, see any of the 

references [2, 5, 81. 
For special values of its parameters, F may be represented in closed form, i.e. as a 

simple ratio of gamma functions; (I will assign a precise meaning to the expression “closed 
form” later). For instance if one of (a, b, c) equals e or f, two of the parameters cancel 
and F may be expressed as a ratio of gamma functions via the famous formula of Gauss 
([2], Vol 1, p. 104 (46)], which sums a 2F, of unit argument. Another such case is when 
e = 2a, f = (b + c + 1)/2. Then Fmay be summed by Watson’s formula ([2], Vol. 1, p. 189 

(6)) 

F 3 2 (3) 

Note, however, that the above is essentially a three parameter family of functions, since 
two of the parameters are linear combinations of the others. Many such formulas are 
known for F, but in all cases the functions represented are not general; rather, some of 
the parameters depend linearly on others. The references [5, 61 contain a fairly complete 
compendium of all those cases where F is known to be expressible in terms of simpler 
functions. 

In this paper I shall call the situation where the parameters a, b, c, e, f are not 
interrelated the case of the unrestricted F. It has long been wondered whether the 
unrestricted F could be written in terms of simpler functions, in particular, gamma 
functions, as in the case of Watson’s formula. (All the special cases in which F can be 
summed are of this type.) However, attempts to extend the results in [S, 61 in any dramatic 
way have led to failure. There seemed to be some barrier keeping us from writing the 

669 



670 JET WIMP 

unrestricted F in simple terms. But it was not clear exactly what constituted the barrier. 
As we shall see the “barrier” is, indeed, real. It is a consequence of the irreducibility of 
a certain linear difference equation. Recall, the expression 

~$/&)Y(nfk)=O, A,(n)A,(n)fO, n =0,1,2 ,.*., (4) 

is called a (homogeneous) linear difference equation (or recurrence relation) of order (r. 

Definition 1 
The equation (4) for y(n) with rational coefficients A,(n) is called optimal (or minimal) 

if v(n) satisfies no such recurrence of lower order.0 
A closely related concept is embodied in 

Definition 2 
The equation (4) with rational coefficients A,(n) is called irreducible if it has no 

solutions in common with an equation with rational coefficients of lower order.0 
(Obviously, the class of equations considered under these two definitions needs to be 

restricted for the definitions to be productive, since any function y(n) satisfies a difference 
equation of arbitrary order g. Requiring the equation to have rational coefficients seems 
to cover most cases of interest. Here we shall discuss exclusively difference equations with 
rational coefficients.) 

Clearly, a difference equation for a function y(n) is minimal if it is irreducible but not 
the other way around. Theoretical information on reducibility is almost non-existent. 
Demonstrating whether a given equation is reducible is usually exceedingly difficult, and 
often has to depend on techniques special to the particular equation. Our cases are not 
exceptions. It is clear, however, that a second order equation is reducible if and only if 
it has a solution which can be written in terms of gamma functions since a solution must 
satisfy the first order equation 

y(n) + r(n>y(n + 1) = 0, 

with r(n) rational and consequently 

m=ci”fi r(A,+n)/fi I-(p,+n), czo, 1#0. (5) 
j=O / j=O 

Conversely, any function of the form (5) satisfies a first order equation. 
My own work ([5], Vol. 2, p. 159 If) shows that the function 

F(n) zf 3F, 
n+a,n+b,n+c 

2n + e, n +f > 

satisfies a recurrence of order three with coefficients A,(n) which are rational in n. 
If a recurrence of order two could be found for F(n) and could be shown to be 

irreducible it would be established that F(n) could not be represented in the form (5). This, 
conceivably, could be used to establish that F(0) = F could not be written as a simple ratio 
of gamma functions. Recent work of Lewanowicz [4] on minimal recurrences for the 
coefficients for the expansion of a function satisfying a differential equation with 
polynomial coefficients, as well as results of Askey and Gasper [l], strongly indicated that 
F(n) satisfies a second order recurrence. In fact, the recurrence can be thought of as 
“interpreting” for noninteger n the recurrence given by ‘Askey and Gasper for V(k) in the 
expansion 

and is shown in exactly the same way. 
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I give this recurrence and prove that it is irreducible; the representation theorem for 
F(0) then follows in a straight-forward manner. 

Throughout I will tacitly assume that the parameters of the F under consideration are 
such that the function makes sense. Even when this is not true, however, simple 
redefinitions and limit procedures always result in expressions which do make sense. Thus, 
in the interests of simplicity, I will not clutter the paper with rather synthetic restrictions 
on a, b, c, e, f. 

2. AN EXPANSION IN JACOBI POLYNOMIALS AND THE BASIC RECURRENCE 

RELATION 

The following expansion, due to Fields and myself, can be found in ([S], Vol. 2, p. 29 (1)): 

G(x) = f W)P,(X)> 
?I=0 

where 

G(x)~,F,(‘~ I!$), 

C(n) fEf (a),(b), 
(e)h + p)ZF2 

n+P+l,n+a,n+b 

2n+y+l,n+e > 

The expansion converges for - 1 < x < 1 when G is defined, u, /? are real, a > - 1, /I > - 
and 

Re(e-a-b)+cz+l,Re(e-a-b)+;+: 1 >O, 

as can be deduced from the formulas ([2], Vol. 1, p. 108 (l), Vol. 2, p. 212 (3)). However, 
the convergence of (6) is not really relevant since, once a recurrence is developed for C(n), 
the permanence principle of functional equations can be used to extend the validity of the 
recurrence to complex a, /?, a, b, e. For a discussion of this principle, see [9]. 

The formulas ([2], Vol. 1, p. 56 (l), Vol. 2, p. 169 (14)) show G satisfies 

(l-x2)y”+[(2e-a-b-1)-(a+b+l)xjy’-aby= (7) 

and p,, satisfies 

(1 - X2)ZN + [(j? - a) - (y + l)X]Z’ + n(n + y)z = 0. (8) 

Putting the expansion (6) in (7) and using (8) and a bit of algebra shows we must have 

~~~C(n)~[(2e-a-b-l+~-~)+(~-a-b)x~~-[n(n+y)+ablp,}=0. (9) 

Now 

XPA = (XP,)’ - pn, 
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so (9) can be 
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-a - 

d,zfa +b -ab -n(n 

I now a 

LEMMA 

For all except isolated values of a, b, 

(11) 

(12) 

where 

p’I fzf 2(n + l)(n + y)/p.n + y)(2n + y + l), 

p2 fif (/3’ - a2)/(2n + y - 1)(2n + y + l), 

p3 Ef 2(n + a)(n + /3>/(2n + y - 1)(2n + Y), 

VI Ef 2(n + y)/(2n + y)(2n + y + I), 

v* ftf 2(a - /?)/(2n + y - 1)(2n + y + l), 

v3Ef -2(n + cr)(n + /?>/(n + y - 1)(2n + y)(2n + y - 1). 

These relations hold for n 2 0 provided one interprets p _ 1 = 0. 
Proof. These results are well known. (11) is merely a restatement of the recurrence for 

p,,, and (12) is due to Askey and Gasper [ 11.0 
Differentiating (11) and substituting the result along with (12) into the sum (9) and 

setting the coefficient of p: to zero, which must be true since (p;} is an orthogonal system, 
gives a recurrence of second order for C(n): 

THEOREM 1 

For all except isolated values of a, /I, a, b, e, C(n) satisfies the recurrence 

o,(n)u(n - 1) + a2(n)u(n) + a,(n)u(n + 1) = 0, n 2 1, (13) 
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u, zf -2(n + y - l)(n + a - l)(n + b - 1)/(2n + y - 1)(2n + y - 2) 

o2 Ef e, + e,/(2n -t y - l)@ + 

e,~ffe-~-b-l_(P_ 
2 

e2 = v(y + 1 - 2a)(y + 1 - 26), 

x (2n + y + 1)(2n + y + 21.0 

Letting n+n + 1 produces a recurrence of the form (3) but it is more convenient for 
our purposes to allow (13) to stand as written. It is also convenient to allow the parameters 
of C(n) to stand as they are, rather than making the identifications /I + 1 -+a, etc., to get 

F(n). 

3. OTHER SOLUTIONS AND THEIR ASYMPTOTIC BEHAVIOR 

Before proceeding it is necessary to analyze in detail the recurrence (13) including the 
nature of its solutions and their asymptotic behaviors. Since the computations are very 
tedious, I will spare the reader the messy particulars, sketching only briefly the arguments. 

Let 

b,zfa + 1, b2zfy + 1 -a, b,Z’y + 1 -b, a,Efy + 1 -e, 

def(2n + y)l-(n + y)I--(n + y + 1 - b,,)(- 1) 
Gin) = 

r(n + B + l)I(n + 6,) 

x A* 
1 - b, - n, 1 - b, + n + y, 1 - b, + a, 

1 - b,, + b,, 1 - 6, + b2, 1 - b,, + b3 > 
, h = 1,2,3, (15) 

where the (*) indicates the denominator parameter corresponding to 1 is to be deleted. 
That C,(n) satisfies the recurrence (13) may be shown as follows. Let x = a + 1 - e and 

write 

C,(n) Ef 2 A,(n)(x),. 
k=O 

Substituting this in the recurrence, using the fact that (x)k satisfies x(x)k = (x)~+ 1 - k(x), 
and equating like coefficients of(x), yields, essentially, a polynomial of degree 3 in k. It is 
easily seen that this polynomial is 0 when k = n + a, n + a + 1, -n - p, and, further, that 
the coefficient of k3 is zero. Thus the polynomial vanishes identically so C,(n) is, indeed, a 
solution of the recurrence. 

Making the substitution u*(n) = (fl + l),u(n)/(r), yields a recurrence invariant under 
the change of variable n -+ -n - y. Thus u *( - n - y ) must also be a solution, and this can 
be used to show that 

def 

G(n) = 
T(n + yy-(n + y + 1 - e)IVn + y + 1) _ 

I+ + y + 1 - a)r(n + y + 1 - b)T(n + a + l)r(n + p + 1) 

x 34 
-a-n,a-y-n,b-y-n 

l-y-24&?-y-n > 
(16) 
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is also a solution of (13). But the functions C, C,,, C., with argument x instead of unity satisfy 
a recurrence of third order ([5], Vol. 2, Section 12.2, p. 135) and so any four of them are 
linearly dependent (in n). Thus C,, C, satisfy the recurrence. By the same reasoning, another 
solution is 

def (- 1)“(2n + r)T(n + r)I(n + e - 1) 
Cdn 1 = 

r(n+fi+l)T(n+y+2-e) 3F2 ( 

B+2-e,a+l-e,b+l-e . 

n+y+2-e,2-e-n > 

(17) 

The standard techniques of asymptotic analysis[lO] show the recurrence for C(n), see 
(13), has a basis of solutions u,, u2, with the properties 

U,‘Vnel 1 l+p’+E?+ . . . 
n n2 I 

) n-co, 

U2N(-l)“nS2 
1 

l+p:+p:+ . . . n n2 
I 

) n-rco, (18) 

The asymptotic behavior of C(n) can easily be determined from the formula ([5], Vol. 
2, p. 104 (10)). (The work of Fields[3] also provides the required result.) We conclude that 
C(n) is a constant multiple of ui and, in fact, 

C(n) - 
2GT(~+l--b+e)ns, 

www (19) 

except for isolated values of the parameters. Since clearly, 

C,(n)=2(-l)“n’2(1 +O(n-‘)}, n+oo, 

C, must be a constant multiple of u2(n). Further, C,, C,, C,, C, are linear combinations of 
u, and u2. 

4. THE REDUCIBILITY OF A SPECIAL RECURRENCE 

I will need only a particular case of (13), that is, where LY = /I. Making this specialization 
and letting 

(a + 1Mn) 
u(n)‘f(2ar + l),(n + a ++)’ 

gives the recurrence 

- (n + a - l)(n + b - l)v(n - 1) + 2(2e - a - b - l)(n + 01 + f)u(n) 

+ (n + 2a + 2 - a)(n + 2u + 2 - b)u(n + 1) = 0. (20) 

A solution proportional to C is 

D(n)Ef 
(a),(b), 

2Ycr + $),(e), 3F2 

n+ct+l,n+u,n+b 

2n + 2cr + 2, n + e 
(21) 

From (18) it follows that this recurrence has a basis of solutions ur, v2 with the behavior 
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U*(n)+-l)“n~2 
i 

+$+$+ . . . 
I 

) n+oo, 

4$2(a+b-e-a-l), &~f2(e-cr-2). 

THEOREM 2 
The recurrence (20) is reducible only if either 

(9 p&+1-a)+p,(a+l-b)=p,+o!+l+e-a-b 
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(22) 

(23) 

or 

(ii) pl(a + 1 - a) +pz(~ + 1 - b) = p3 + c( + 2 - e, (24) 

for integer pl, p2, p3 2 0. 
Conversely, when p, or p2 = 0 or 1, the equation is reducible. For case (i) the solution is 

a multiple or limiting case of D and of the form 

a!I r(n + Aj) 

j= 1 r(n + 20! + 2 - Aj)’ 

(25) 

where M, Aj are appropriate constants. For case (ii) the solution is of form above times 
(- l)“, and corresponds to one or more of the functions C,, (see (15), (17)). 

Proof. The difference equation is reducible iff a solution can be written in the form (5). 
Since there is a basis of solutions of the equation having the behavior rI N n$l, u2 N (- l)% @2 
we must have p = q and either 1 = 1 or 1 = - 1. Since the equation is invariant under the 
substitution n + -n - 2u - 1 and since this substitution preserves the asymptotic character 
of either kind of solution, any solution must be of the form (29, or (25) times (- 1)“. To 
prevent the trivial cancellation of factors, assume 

Ai#2a +2-S, 1 Ii,jIp. (26) 

Take the first case. Substituting (25) in the recurrence produces the requirement that a 
polynomial in n vanish identically. This will happen if and only if it vanishes identically in 
the complex variable 

zdAfn +a + l/2. 

Let 

/I Ef u + 312 - p, 

for any parameter p. That polynomial equation in n becomes the polynomial equation in z, 

- (z - Z)(z - 6) n (z + qz + 5 - 1) 

+ 2(2e - CI - 6 - 1)z I-I (z - &><z + x,) 

+ (z + fi)(z + 6) n (z - 4 + l)(z - 4) = 0, (27) 

with the requirement 

l-&Z& 
CAMWA Vol. 9. No. S-C 
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which comes from (26). Putting z = &, shows that either 1, = a, & = 6, or 1, = - 4. for some 
j. Thus we may group the 4. Assume the last p, are equal to ci, the p2 before that equal to 
band only these 5 take those values. We have 

-(z - a)(~ - &>(z + a)“‘(~ + a - l)pl(z + w(z + 6 - l)p2 I-‘I (z + Q(z + 5 - 1) 

+ 2(2e - a - 6 - l)z(z - a)“‘(~ + ayqz - 6yqz + b)p2fl(z - $><z + 5) 

+(~+a)(z+b)(z-a)P~(z-a+1~~(z-6)P2(z-6+~)~~~(-~+~~(-~+~-~)=o. 

Nowletz=~~.Thisshowsthat~,=l-aorl-6oraor6or~,=-5forsome5inthe 
product. The first four possibilities are ruled out. Thus assume the last. Without loss of 
generality, let & = -,&. The term (z + &)(z - &) can now be factored out of every product, 
leaving the terms, respectively, 

(z+&l)(z+1~-l)n, (z+1,)(z+&;)n, (Z+&+l)(Z+&+l)n. 
j=3 j=3 j=3 

Now let z = 5. This means that X3 = 1 - a, 1 - 6, a, 6, 1 - &, 1 - & or -4 for somej 2 3. 
Of these, only the last can occur. Thus, let & = -& and factor out from each term 

(z + 5)(z - 5). 
Continuing to factor out factors in this fashion gives an equation where the products 

above are, respectively, replaced by the products 

2P3 2P3 

jKp+4--I), l-I 

2P3 

(2 + 41, n (z +  &+ 11, 
j=l j=l 

and Is,,, = -& Thus Z% I.= 0. 
J-1 J 

Now equate the coefficient of z 2P~ + 2P2 + 2P3 + ’ to zero. This gives the necessary condition 

(23). 
In the cases mentioned in the converse statement of i), the equation is reducible. For 

instance let p, = p2 = 0; then e = a + b - tl - 1 -p3. Assumep, non-integral at first and use 
formula ([5], Vol. 1, p. 104 (lo)), dividing the result by I( -p3). The result is a 3F2 with one 
numerator parameter = -p3. Thus it terminates and is a rational function of n. But any 
rational function of n may be written in the form (5). 

The rest of the proof is similar.0 

5. REPRESENTATION THEOREMS 

I now proceed to a description of what I will call a closed-form expression for a 
hypergeometric function. 

Let g: C”-+C and 

g(x + n(1, 1, . . . , l))=g(x)+&, n =0,1,2 )...) 

where 6 E 6(g) is a rational number. Such a function will be called a uniciul. 
Note any linear function with rational coefficients is a unicial. 
Of course, any definition of such a concept as “closed-form” reflects a personal prefer- 

ence, but the definition incorporated in the following theorem covers all those cases where 
F is known to be summable. 

THEOREM 3 

The unrestricted k + rFk( l), k > 0, can be written in the form 
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where K, L, tj, oj are unicial functions of some or all of the parameters, 6(K) = 0, if and only 
ifk = 1. 

Proof Note that if such a representation is possible for some p > 1, it is possible for F. 
This follows by allowing a sufficient number of numerator parameters to cancel denomi- 
nator parameters. 

Thus it is sufficient to show such a representation cannot hold when k = 2. I shall 
actually show more, namely, the alternate 

THEOREM 4 
Watson’s formula (3) cannot be generalized. 
Proof. By “generalized” I mean the following formula cannot hold for unrestricted a, b, 

c, e, 

3F2 = K/IL fi r(tj) fi r(Oj), 
j=l i j=l 

(29) 

where K, L, rj, wj are unicials in a, 6, c, e, 6(K) = 0. Assume otherwise, then 

W(n) Ef 3F, 
a+n,b+n,c+n 

2a + 2n, e + n > 
=KAL+” fir(tj+rjn) 

j=l 

where p, rj, sj are rationals. Let 

p zf sup {denominator rj, sj], 

when rj, sj are expressed in lowest terms. Clearly, W(n + p - l)/IV(n - 1) is rational in n. 
Making an obvious identification of parameters shows that D(n) (see (21)) satisfies the 
equation 

t(n - 1) - r(n)f(n + p - 1) = 0, (30) 

where r(n) is rational. This, obviously, is not possible when p = 1 for then (30) would violate 
the fact that (20) is irreducible. Assume p > 1. The functions 

h(n)=71V(n), 1 oh sP, (31) 

are all solutions of the equation, rch being a p th-root of unity. Furthermore, they are linearly 
independent, since their Casorati determinant is proportional to the van der Monde 
determinant of the rr,,, which cannot vanish. (One can easily construct from t,, real linearly 
independent solutions.) 

The solutions (31) have complete asymptotic expansions 

th(n)-7cin41 
1 

l+a’+a2+ ..., , 
n2 i 

n+co, 
n 

& = 2(a + b - e - CI - 1). 

Since (30) has a solution in common with the irreducible equation (20), it must admit 
every solution of (20) ([7], p. 336). Thus it must have a solution 

u2(n)-(-l)“n6Z 
i 

1+-+“2*+ ... 6 
n n2 I 

, n-+cO, 

f& = 2(e - c( - 2). 

But no linear combination of the t,, can furnish, in general, a solution with this behavior, 
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since taking linear combinations will change the power of n by integer values. For instance, 
let e be irrational, a, b, CL rational. (Note in this case (23), (24) reveal that the equation is, 
indeed, irreducible). On the other hand, when 41 and b2 differ by integers, such a possibility 
may occur, for instance, e = (a + b + 1)/2. This gives an F summed by Watson’s formula. IJ 

There is a slick alternate proof for p = 2 that does not depend on asymptotic analysis. 
Then the equation (30) becomes 

t(n - 1) - r(n)t(n + 1) = 0. 

But irreducible equations are unique, hence the middle term of (20) must vanish, which 
means e = (a + b + 1)/Z. 

Of course, the theorem is applicable only in general, and does not tell us when any 
particular F has a closed-form expression. The following result, a weak form of a converse 
for the previous theorem, is of interest. 

THEOREM 5 

Let the equation (13) be reducible. Then F can be written in terms of gamma functions. 
Proof. If the equation is reducible, then it must have a solution of the form (5). But this 

can happen only when p = q, and either 1 = 1 or - 1. For A = 1, the solution represented 
must be a multiple of C(n). This implies 

’ CAjj>rz 

C(n)= Cmjy(Ili)n. 

Using the. asymptotic formula for C(n), (19), gives 

F = 2lYj)T(e +f - a - b - c) p r(L,) 

r(b)Vc) 
n- 

, = I VPji)’ 

When 1 = - 1, the solution must be a multiple of C,(n) - 2( - 1)%‘#‘2, and this case is argued 
similarly. 0 
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