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1. INTRODUCTION

The object of this paper is to establish the existence of a residually finite
group 4 and a homomorphism 8 defined on A with some useful properties.
First of all, a copy of any countable group is embedded in 40. Second,
when 6 is restricted to certain subgroups of A to be defined in the sequel,
the kernel of @ is periodic. The group A arises in a natural way as a group
of automorphisms. Qur methods enable us to establish:

THEOREM A. Given any finitely generated group T generated by elements
of finite order, we may find a finitely generated residually finite group B= B,
generated by elements of finite order and a periodic normal subgroup K=K,
of B with B/IK~T. If T is finitely presented, K can be taken to be the normal
closure of a finite number of elements of B.

We note that if 7 is periodic the above implies that B is periodic so that
Theorem A provides a new tool in the study of periodic groups. (See [1]
for a beautiful discussion and a list of references.)

For example, an unresolved problem posed by Hanna Neumann
[4, p. 113] is the following: Can one find a prime p such that the verbal

group
{a,b; X7=1) (1

is not hopfian? Our methods together with the existence of a prime p with
(1) not residually finite (see [4, p. 113]) easily lead to:

THEOREM B.  Either the groups of (1) are not all hopfian for all p or we
can find a prime p and a residually finite periodic group R which has a
presentation of the form

R={a, b;a”=1,b"=1,W,=1,i=1,2,..5,
1
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2 R. HIRSHON

where the W, are certain words expressible as a product of pth powers and
such that R/R” is not residually finite.

Since any countable group can be embedded in a group generated by
two elements of finite order (see [2, proof of Theorem 104, p.283],
Theorem A has the

COROLLARY. Any countable group H is embeddable in a group B/K
where B is a residually finite group generated by two elements of finite order
and where K is periodic.

The above corollary leads to the construction of a wide class of
residually finite groups M such that the elements of finite order of M form
a normal subgroup. For example, if H is torsion free and M is a subgroup
of B with H =~ M/K, then the elements of finite order in M consist precisely
of K. If H is not residualy finite, K is clearly not a direct factor of M. If for
every countable torsion free group H we associate a fixed residually finite
countable group A=M as above this association is one-to-one on
isomorphism classes. That is, for countable torsion free groups H,, H,
H,~ H, implies H,~ H,.

Subgroups of residually finite groups are residually finite. If B is a group
generated by r generators b, and B has a homomorphism a onto the free
group F on r free generators x, with »,2 = x, then B is free and the b, are
free generators of B. These remarks together with the above corollary yield
a quick proof of the well-known fact that free groups are residually finite.
(See [2 p. 195]). A quick proof of the known result that free products of
cyclic groups of finite order are residually finite also follows. (See
Section 5).

2. THE CONSTRUCTION OF A
We begin with a finitely generated group G which may be decomposed

in a sequence of direct decompositions of the form

G=G,xGyx - xG,xF,, F,=G,, xF,,., nzl
We assume further that each G, is isomorphic to a proper direct factor
of G; and «; is an isomorphism of G, _, onto a proper direct factor of G,.

For example, we may begin with a finitely generated group G which has a
direct decomposition (see [3]),

G=AxB, Ax~ G~ B, G+#1.
If €,, ¢, are isomorphisms of G onto 4 and B, respectively, then for n>0,

G=BxBe, x BeZ x --- x Be" x Ae", Aet=Be[* ' x Ag|H!
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so that we may take G, = Be| ', F,=A&" "', n>1. The a, may be defined
in terms of ¢/, &,.
If we set G, =G, for all n, then for all k, | <k <n, we define G} by

Gy =(Gr, )%

We pictorially represent the first “five levels” below:
G, =Gy = Gy P Gy - G
G} -Gt
G} <G} -G}
G < G -G -G
G, <G} & G &G <G}

Let L? be a direct factor of G, such that L) #1 and

Gn::LZXG::+]’ Gn+11n:G:+]' (2)

Each L) determines L7, 1 <j<n, by using

n n
Ly=Ly, %.

We list below pictorially the relation between these subgroups and the «,

Li, L3 L} oLy L 6y
Pt too 1
L, Ly - L3 Ly Gy

1 too1 1
Ly i, Gy
toon 1
LyohL, G

t t

Ly, Gi+!

)

G

n+1
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The arrows on the ith level above indicate the action of o, ,. We have

G, =L xLixLix - xL! '"xLi{xG*'
G: = LixL;xXLg lengrzr+1
Gy, = Lix -- x LY "xLix G
Goo= Ly XLy <Gt
G, = Lyx Gy
G = G

On the kth level above
Gr’:’+l___Lz+lXGz%2. (3)

By using {2) we define 6, as the projection of G, onto G"*'. The kernel
of #, is L". Consider the map 6,x, '. This maps G, onto G,,,. If L, is
the subgroup generated by the L/, j=n, then L, is the direct product of
the L]

. fn n+1
Ln_LnXLn X e

The complete preimage of L,,, under 6,2, ' is L,. Hence, G,/L,x
G, /L, ... If Lis the subgroup generated by the L, and if T, =G, L/L,
then 7,~G,/(G,nLY=G,/L, so that T,~T,,, for all n. Since G, is
finitely generated but L, is not finitely generated, T, # 1.

2.1, Permutation Automorphisms
Let G represent the subgroup of G generated by the G, so that G is the
internal restricted direct product

G=G, xG,xGyx -~

We now define a group A of automorphisms of G. We may quickly grasp
the idea which we will describe in further detail below by thinking of the
subgroup £, generated by the G7, i<i<n (which is an internal direct
product)

E,=G{xUYx --- xG),

as an external direct product of » copies of G so that E, has a group of
automorphisms S, which is obtained by permutation of coordinates. Here
S, 1s the symmetric group on n elements. S, can clearly be extended to a
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group of automorphisms of G by writing G=E, x E, and by defining the
action of S, on E, to be the identity. The idea is then to generate 4 from
the S, in a suitable manner.

2.2. Permutation Automorphisms in More Detail

If i < n we define an automorphism 67 of G which we call a transposition
of G7 and G, ,. The definition is as follows:

[

x0"=xa, ', xeG’

x0T = xa,, xeG? |

X0 =x, xell, i<j<n—1
x0] = x, xel!, i+1<j<n—1
X0 =x, xeG,, J#EL jFEI+ L

We write 0" = (G, G7, ) =(G’, |, G7). Clearly the 87, i <n, generate a
group of automorphisms of G which are isomorphic to S, the symmetric
group on # elements. If i <j< n, we define

(G, Gy=0"0" 0", =(G", G).

With these definitions, we may freely use notation borrowed from the
symmetric group. Thus

x= (G}, GS, G{(GY, GG, GY) (4)

is a well-defined automorphism of G. We call an automorphism generated
by the 67, 1 <i<n, an nth level permutation automorphism. Thus « above
is an 8th level permutation automorphism. The subscripts of an nth level
permutation automorphism are those i such that G, is moved. In (4), the
subscripts of « are 1, 2, 3, 4, 5, 6, 7. The subscripts of the identity
automorphism are the null set. Finally let y,, i=2, be a sequence of
automorphisms of G such that y,=1 or 7y, is an ith level permutation
automorphism and such that if i #j, the subscripts of y; and 7, are disjoint.
Then the product

= VaVaVac (5)

represents a well-defined automorphism of G in an obvious way. We call
a permutation automorphism of G. The group A4 consists of all auto-
morphisms generated by permutation automorphisms. Permutation
automorphisms of G on any level of the G7 induce corresponding
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automorphisms on lower levels. For example if « is as in (4) then «
restricted to the subgroup generated by the G}, 1 <i<9, is precisely

(G}, G3, GINGL, GG, GY).
We may note if k #J,
(G2, GINGE !, G ) = (Ly, L),

where (L}, L7) has the obvious meaning.

3. SOME PROPERTIES OF A

We point out that if y is an element of A4 then
xeG,; and xy€G, imply xy=x. (6)

Now we claim if y # | then we can find integers #, j, and s with j# s and
L}y=L}. To see this, by (6) we may first choose i such that G,y #G,.
Suppose 7 is a product of r permutation automorphisms y,, 1 <i<r. Let
iy =1 and let n, and i, be such that

nL, M
ik ’k_G"ku’

k=1,2,..,r

Let e be the maximum of the »n,. Then by the preservation of lower levels
property,

G:)k e = G‘ilkn and :"kyk = LZ. 41
for all k£, 1 <k <r. Hence
Gly=Gj and Liy=L; .

If i#i ,, we may take n=e, j=1i, s=i,,,. If i=i,,, then by (6), y fixes
each element of G¢. However,

G=LixLi*'x -  x L ' x Gt

Since G,y # G, there must be a w, iSu<e—1,and x, xe LY, with xy¢ LY.
Hence y moves LY. However, the image of LY under any element of A
is L;.for some p. Hence we must have Lyy= L}, i#p. This proves the
assertion.

We may now state

THEOREM 1. A is a residually finite group.
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Proof. 1 y€ A, then y induces a permutation y, on the groups L7. If we
set

U,={L" L% . L"]

nf

7 permutes elements of U, for each n. Consequently 7, may be viewed as
an element in the unrestricted direct product

S;x8;x8y%x -+,
where S,, above is the symmetric group on elements of U,. Consequently

= (7)

7%

may be viewed as a homomorphism from A4 into a subgroup of the
unrestricted direct product of symmetric groups. By our remarks preceding
Theorem 1 if y#1, then y,#1 so that the map in (7) is actually an
isomorphism so that we see that 4 is embedded in a residually finite group.

Remark. A is of cardinality of the continuum.

4. THE HOMOMORPHISM 8

Any permutation automorphism y either fixes the L7 or permutes the L.
Hence Ly = L for all ye A. Hence if y € 4, y induces an automorphism 7 of
G/L. Namely if ge G, (glL)7=(gy)L. Moreover the map 6 defined by

¥

is a homomorphism on A. Since
G/L=(G,L/LYx(G5L/L)x ---

and if 7;,=G,L/L is as in Section 2, we may view § as a homomorphism

of A4 into the automorphism group of the group 7 generated by the 7,. T

is the direct product of the 7,. If 7 is a permutation automorphism and
7v=G] then

T,=G,L/L=G'L/IL—> Gl L/L=G,L/L=T,.

Hence T,7=T, and we see 7 may be viewed as a permutation of the
symbols 7. 7 is obtained from y by following subscripts. For example if in

(5), 72i=(G§:’ G%f-, th Vaa=1Liz1,

T=(T,, To) (T, T NTs, Tg)---
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To summarize, in the sequel # will be interpreted as a homomorphism
defined on A such that if ye€ 4 and y0 =7 then § is a permutation on a
infinite countable set of symbols, T, i > 1.

5. Grours GENERATED BY ELEMENTS OF FINITE ORDER

In this section we study infinite groups 7 which can be generated by a
finite number of elements of finite order. By using the right representation
of T we may assume without loss of generality that T is an infinite
permutation group on a countable number of symbols. To conform with
notation of the previous section, it i1s convenient to assume that 7 is an
infinite permutation group on symbols

T].Tz, T} (8)
If1=(T,,T,, .., T,)is a permutation of the symbols (8) which is a cycle
of order g, let n be the maximum of the integers i,, /5, ... i,. Define fe 4 by

i=(G}. Gl G7). (9)

i T

Suppose T has r generators 1,, 1 <i<r, where ¢, is of order d,. Hence each
1, 1s expressible in terms of a product of disjoint cycles U, on the symbols
(8). The order of any cycle in this product is a divisor of d,. We express this
decomposition of 7, into disjoint cycles by writing

L, =U,UpU;---.

Define y,€ 4 by

Clearly then y,0=1, 1<i<r, and y, has the same finite order as ¢,. If
A= A4, designates the subgroup generated by the y,, 4¢ = T. We note that
if T is a free product of cyclic groups (7;) of finite order then 6 is an
isomorphism on A. For in this case there is a homomorphism 6, from T
onto A with 7,6, =+, so that 00, = 1.

5.1. Kernel 9 4

We claim that kernel 8 ~ 4 is a periodic group. Let ye 4 and write

L B2 o E EPTIINT €
VETRYE T W=1300 1

it iy
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for suitable ¢;, £,=1 or ¢,= — 1. Suppose 00 = 1. We examine the effect of
y on an arbitrary G, . Define u,, 1 <k <g+1, by

e

T,—T 1<k<yq.

HE o

Hence T,,(;0)=T,,  , so u,,,=u,. Define automorphisms 4, of G as
follows: If u, =u, , ,, let 3, be the identity automorphism of G. If w, # u, , ,

let 5, be that cycle of 1 that contains a u, subscript, say

LS

5, =(G™, G™ ...). (10)

" R Ta|

Let 6 be the product of the d,, 1 <i<g¢. Let n be any positive integer.
Then one may verify that the effect of 8" on G, is precisely the effect of ;"
on G, . This follows from the fact that a permutation automorphism cither
leaves a particular G, fixed or acts on that G, via its unique cycle that has
an i subscript and from the fact that «, =u_, ,. Now we examine J, using
* of Section 3. Note (J,),=1 or else (3,), has a representation in the
unrestricted direct product of the S, such that for r = n,, the component of
(94), In S, is obtained from (10) as

(L' LT ...

117 Mg

Consequently the component of d, in any S, may be viewed as a permuta-
tion on d or fewer symbols where 4 is the sum of the d,, I <4 <g. Hence
if e=d!, 6, =1sothat 6“=1 and so y“=1 on G,,. Since ¢ is independent
of u,, y“=1. This proves the assertion. We remark that the same proof
shows that if 4 is any subgroup of A4 generated by a finite number of
permutation automorphisms of finite orders, then A~ (kernel§) is
periodic. Also, we note that kernel 8, in itself, is not a periodic group. For
example, if

2, = (G}, GING, G5, GINGL. G5, Gy GoNG g, G11. G5, 13, G3) -

%= (G, GG, GS. GG, G, G, GGG, G1YL G5 Gy, GRY) -
then clearly a,6 = 2,6 so that (x,2, ')0 = 1. However,

ayay =LY LINLS, L3 LG, L5 Ly, L)L, Ly, Li3, LS, Lig) -

so that x,2, ' has infinite order.

5.2. Finitely Presented T

If T is finitely presented, we claim that

THEOREM. (Kernel )~ 4 is the normal closure of a finite number of
elements of A.
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Proof. Suppose T has a finite number of defining relations w,=1,
1 <i<n, where w,=w,(1,,1,,..,1,) is a word in the ¢, Let N be the
normal closure in A of the elements W, =w, (7, 73+ . 7,)» 1 €£i<n. Then
w,0 =1, so w, is in the kernel of 6. Also the map 6,

L3N
induces a homomorphism from T onto A/N. But the map 6, defined by
N — 0

induces 2 homomorphism from 4/N onto T and 0,0, =1 so that 8, is an
isomorphism. Consequently if ye 4 and 70 = 1, then y € N. Hence

(kernel )~ A= N.

6. SOME CONCLUDING REMARKS

The work of the previous section concludes the proof of Theorem A of
the Introduction. In addition we have shown that if 7 has r generators ¢,,
| €i<r, with respective finite orders d,, 1 <i<r, then A4 has r generators
v,, 1 <i<r, with respective orders d,.

Finally we would like to make some remarks on the unresolved problem
of [4, p. 113] posed by Hanna Neumann. If R is any group let R" be the
subgroup of R generated by nth powers. The problem of Hanna Neumann
may be stated as follows: If F is the free group on two generators can one
find a prime p such that F/F” is not hopfian? By [4, p.113], we may
choose a prime p such that the verbal group

Ry=<a),b: X"=1)

1s not residually finite. From our present work, let R be a residually finite
group generated by two elements a and b of order p and let 8 be a
homomorphism of R onto R, with a periodic kernel and with a0 =a, and
b8 =b,. We examine the structure of R assuming that R, is hopfian. For
this purpose, let R, be the group

Ry={a,,bi;al=b7=1}

and let 8, be a homomorphism of R, onto R with a,0,=a, b,08,=2>,. First
let us examine the kernels of 8, and 6. Clearly R{ is in the kernel of 6,6
and R,/RY~ R,. If R, is hopfian this implies that if K is the kernel of 6,0
then K= R{. On the other hand ifre Rand rf =1, let r e R, with r,0, =1,
so that r,8,0=1. This implies that r, € R{ so re R”. Hence the kernel of
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0 is precisely R”. Also since R is residually finite but R/R” is not, there
exists an element re R with r” # 1. By using the fact that the kenel of 0, is
contained in K we see that the kernel of 6, consists of elements which are
expressible in R, as products of pth powers. Translated to R, this means
that R has a presentation of the form

R=C{ah;a"=1,b"=1,w,=1) (11)

for a certain set of words w; where each w; is expressible as a product of
pth powers. Since 8 has a periodic kernel and R, is periodic, R is periodic.
This concludes the proof of Theorem B of the Introduction.

Finally, T would like to thank Professor F. Pickel for some comments.
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