Residually Finite Extensions of Periodic Groups

R. HIRSHON

Polytechnic University, 333 Jay Street, Brooklyn, New York 11201

Communicated by D. A. Buchsbaum

Received January 24, 1990

1. Introduction

The object of this paper is to establish the existence of a residually finite group A and a homomorphism θ defined on A with some useful properties. First of all, a copy of any countable group is embedded in $A\theta$. Second, when θ is restricted to certain subgroups of A to be defined in the sequel, the kernel of θ is periodic. The group A arises in a natural way as a group of automorphisms. Our methods enable us to establish:

THEOREM A. Given any finitely generated group T generated by elements of finite order, we may find a finitely generated residually finite group $B = B_T$ generated by elements of finite order and a periodic normal subgroup $K = K_T$ of B with $B/K \approx T$. If T is finitely presented, K can be taken to be the normal closure of a finite number of elements of B.

We note that if T is periodic the above implies that B is periodic so that Theorem A provides a new tool in the study of periodic groups. (See [1] for a beautiful discussion and a list of references.)

For example, an unresolved problem posed by Hanna Neumann [4, p. 113] is the following: Can one find a prime p such that the verbal group

$$\langle a, b; X^p = 1 \rangle$$
 (1)

is not hopfian? Our methods together with the existence of a prime p with (1) not residually finite (see [4, p. 113]) easily lead to:

THEOREM B. Either the groups of (1) are not all hopfian for all p or we can find a prime p and a residually finite periodic group R which has a presentation of the form

$$R = \langle a, b; a^p = 1, b^p = 1, W_i = 1, i = 1, 2, ... \rangle,$$

where the W_i are certain words expressible as a product of pth powers and such that R/R^p is not residually finite.

Since any countable group can be embedded in a group generated by two elements of finite order (see [2, proof of Theorem 10.4, p. 283], Theorem A has the

COROLLARY. Any countable group H is embeddable in a group B/K where B is a residually finite group generated by two elements of finite order and where K is periodic.

The above corollary leads to the construction of a wide class of residually finite groups M such that the elements of finite order of M form a normal subgroup. For example, if H is torsion free and M is a subgroup of B with $H \approx M/K$, then the elements of finite order in M consist precisely of K. If H is not residually finite, K is clearly not a direct factor of M. If for every countable torsion free group H we associate a fixed residually finite countable group $\bar{H} = M$ as above this association is one-to-one on isomorphism classes. That is, for countable torsion free groups H_1 , H_2 $\bar{H}_1 \approx \bar{H}_2$ implies $H_1 \approx H_2$.

Subgroups of residually finite groups are residually finite. If \bar{B} is a group generated by r generators b_i and \bar{B} has a homomorphism α onto the free group F on r free generators x_i with $b_i\alpha=x_i$ then \bar{B} is free and the b_i are free generators of \bar{B} . These remarks together with the above corollary yield a quick proof of the well-known fact that free groups are residually finite. (See [2 p. 195]). A quick proof of the known result that free products of cyclic groups of finite order are residually finite also follows. (See Section 5).

2. THE CONSTRUCTION OF A

We begin with a finitely generated group \tilde{G} which may be decomposed in a sequence of direct decompositions of the form

$$\tilde{G} = G_1 \times G_2 \times \cdots \times G_n \times F_n, \qquad F_n = G_{n+1} \times F_{n+1}, \qquad n \geqslant 1.$$

We assume further that each G_{i+1} is isomorphic to a proper direct factor of G_i and α_i is an isomorphism of G_{i+1} onto a proper direct factor of G_i . For example, we may begin with a finitely generated group \overline{G} which has a direct decomposition (see [3]),

$$\bar{G} = A \times B$$
, $A \approx \bar{G} \approx B$, $\bar{G} \neq 1$.

If ε_1 , ε_2 are isomorphisms of \bar{G} onto A and B, respectively, then for $n \ge 0$,

$$\overline{G} = B \times B\varepsilon_1 \times B\varepsilon_1^2 \times \cdots \times B\varepsilon_1^n \times A\varepsilon_1^n, \qquad A\varepsilon_1^n = B\varepsilon_1^{n+1} \times A\varepsilon_1^{n+1}$$

so that we may take $G_n = B\varepsilon_1^{n-1}$, $F_n = A\varepsilon_1^{n-1}$, $n \ge 1$. The α_i may be defined in terms of ε_1 , ε_2 .

If we set $G_n^n = G_n$ for all n, then for all k, $1 \le k < n$, we define G_k^n by

$$G_k^n = (G_{k+1}^n)\alpha_k.$$

We pictorially represent the first "five levels" below:

$$G_{1} \xleftarrow{\alpha_{1}} G_{2} \xleftarrow{\alpha_{2}} G_{3} \xleftarrow{\alpha_{3}} G_{4} \xleftarrow{\alpha_{4}} G_{5}$$

$$G_{1}^{2} \xleftarrow{\alpha_{1}} G_{2}^{2}$$

$$G_{1}^{3} \xleftarrow{\alpha_{1}} G_{2}^{3} \xleftarrow{\alpha_{2}} G_{3}^{3}$$

$$G_{1}^{4} \xleftarrow{\alpha_{1}} G_{2}^{4} \xleftarrow{\alpha_{2}} G_{3}^{4} \xleftarrow{\alpha_{3}} G_{4}^{4}$$

$$G_{1}^{5} \xleftarrow{\alpha_{1}} G_{2}^{5} \xleftarrow{\alpha_{2}} G_{3}^{5} \xleftarrow{\alpha_{3}} G_{4}^{5} \xleftarrow{\alpha_{4}} G_{5}^{5}$$

Let L_n^n be a direct factor of G_n such that $L_n^n \neq 1$ and

$$G_n = L_n^n \times G_n^{n+1}, \qquad G_{n+1} \alpha_n = G_n^{n+1}.$$
 (2)

 G_{n+1}^{n+1}

Each L_n^n determines L_i^n , $1 \le j \le n$, by using

$$L_k^n = L_{k+1}^n \alpha_k.$$

We list below pictorially the relation between these subgroups and the α_i

$$L_{1}^{1}, L_{1}^{2}, L_{1}^{3} \cdots L_{1}^{n-1}, L_{1}^{n}, G_{1}^{n+1}$$
 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$
 $L_{2}^{2}, L_{2}^{3} \cdots L_{2}^{n-1}, L_{2}^{n}, G_{2}^{n+1}$
 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$
 $L_{3}^{3} \cdots L_{3}^{n-1}, L_{3}^{n}, G_{3}^{n+1}$

...

 $\uparrow \qquad \uparrow \qquad \uparrow$
 $L_{n-1}^{n-1}, L_{n-1}^{n}, G_{n-1}^{n+1}$
 $\uparrow \qquad \uparrow$
 L_{n}^{n}, G_{n}^{n+1}

The arrows on the *i*th level above indicate the action of α_{i-1} . We have

$$G_{1} = L_{1}^{1} \times L_{1}^{2} \times L_{1}^{3} \times \cdots \times L_{1}^{n-1} \times L_{1}^{n} \times G_{1}^{n+1}$$

$$G_{2} = L_{2}^{2} \times L_{2}^{3} \times \cdots \times L_{2}^{n-1} \times L_{2}^{n} \times G_{2}^{n+1}$$

$$G_{3} = L_{3}^{3} \times \cdots \times L_{3}^{n-1} \times L_{3}^{n} \times G_{3}^{n+1}$$

$$\vdots$$

$$G_{n-1} = L_{n-1}^{n-1} \times L_{n-1}^{n} \times G_{n-1}^{n+1}$$

$$G_{n} = L_{n}^{n} \times G_{n}^{n+1}$$

$$G_{n+1} = G_{n+1}^{n+1} = G_{n+1}^{n+1}$$

On the kth level above

$$G_k^{n+1} = L_k^{n+1} \times G_k^{n+2}. (3)$$

By using (2) we define θ_n as the projection of G_n onto G_n^{n+1} . The kernel of θ_n is L_n^n . Consider the map $\theta_n \alpha_n^{-1}$. This maps G_n onto G_{n+1} . If L_n is the subgroup generated by the L_n^j , $j \ge n$, then L_n is the direct product of the L_n^j

$$L_n = L_n^n \times L_n^{n+1} \times \cdots$$

The complete preimage of L_{n+1} under $\theta_n \alpha_n^{-1}$ is L_n . Hence, $G_n/L_n \approx G_{n+1}/L_{n+1}$. If L is the subgroup generated by the L_n and if $T_n = G_n L/L$, then $T_n \approx G_n/(G_n \cap L) = G_n/L_n$ so that $T_n \approx T_{n+1}$ for all n. Since G_n is finitely generated but L_n is not finitely generated, $T_n \neq 1$.

2.1. Permutation Automorphisms

Let G represent the subgroup of \tilde{G} generated by the G_i so that G is the internal restricted direct product

$$G = G_1 \times G_2 \times G_3 \times \cdots$$

We now define a group A of automorphisms of G. We may quickly grasp the idea which we will describe in further detail below by thinking of the subgroup E_n generated by the G_i^n , $i \le i \le n$ (which is an internal direct product)

$$E_n = G_1^n \times G_2^n \times \cdots \times G_n^n$$

as an external direct product of n copies of G_1^n so that E_n has a group of automorphisms S_n which is obtained by permutation of coordinates. Here S_n is the symmetric group on n elements. S_n can clearly be extended to a

group of automorphisms of G by writing $G = E_n \times \overline{E}_n$ and by defining the action of S_n on \overline{E}_n to be the identity. The idea is then to generate A from the S_n in a suitable manner.

2.2. Permutation Automorphisms in More Detail

If i < n we define an automorphism θ_i^n of G which we call a transposition of G_i^n and G_{i+1}^n . The definition is as follows:

$$x\theta_i^n = x\alpha_i^{-1}, \qquad x \in G_i^n$$

$$x\theta_i^n = x\alpha_i, \qquad x \in G_{i+1}^n$$

$$x\theta_i^n = x, \qquad x \in L_i^j, \qquad i \le j \le n-1$$

$$x\theta_i^n = x, \qquad x \in L_{i+1}^j, \qquad i+1 \le j \le n-1$$

$$x\theta_i^n = x, \qquad x \in G_i, \qquad j \ne i, \quad j \ne i+1.$$

We write $\theta_i^n = (G_i^n, G_{i+1}^n) = (G_{i+1}^n, G_i^n)$. Clearly the θ_i^n , i < n, generate a group of automorphisms of G which are isomorphic to S_n the symmetric group on n elements. If $i < j \le n$, we define

$$(G_i^n, G_i^n) = \theta_i^n \theta_{i+1}^n \cdots \theta_{i-1}^n = (G_i^n, G_i^n).$$

With these definitions, we may freely use notation borrowed from the symmetric group. Thus

$$\alpha = (G_1^8, G_3^8, G_4^8)(G_5^8, G_6^8)(G_7^8, G_2^8)$$
 (4)

is a well-defined automorphism of G. We call an automorphism generated by the θ_i^n , $1 \le i \le n$, an nth level permutation automorphism. Thus α above is an 8th level permutation automorphism. The subscripts of an nth level permutation automorphism are those i such that G_i is moved. In (4), the subscripts of α are 1, 2, 3, 4, 5, 6, 7. The subscripts of the identity automorphism are the null set. Finally let γ_i , $i \ge 2$, be a sequence of automorphisms of G such that $\gamma_i = 1$ or γ_i is an ith level permutation automorphism and such that if $i \ne j$, the subscripts of γ_i and γ_j are disjoint. Then the product

$$\gamma = \gamma_2 \gamma_3 \gamma_4 \cdots \tag{5}$$

represents a well-defined automorphism of G in an obvious way. We call γ a permutation automorphism of G. The group A consists of all automorphisms generated by permutation automorphisms. Permutation automorphisms of G on any level of the G_i^n induce corresponding

automorphisms on lower levels. For example if α is as in (4) then α restricted to the subgroup generated by the G_i^9 , $1 \le i \le 9$, is precisely

$$(G_1^9, G_3^9, G_4^9)(G_5^9, G_6^9)(G_7^9, G_2^9).$$

We may note if $k \neq j$,

$$(G_k^n, G_i^n)(G_k^{n+1}, G_i^{n+1}) = (L_k^n, L_i^n),$$

where (L_k^n, L_i^n) has the obvious meaning.

3. Some Properties of A

We point out that if γ is an element of A then

$$x \in G_i$$
 and $x\gamma \in G_i$ imply $x\gamma = x$. (6)

Now we claim if $\gamma \neq 1$ then we can find integers n, j, and s with $j \neq s$ and $L_j^n \gamma = L_s^n$. To see this, by (6) we may first choose i such that $G_i \gamma \neq G_i$. Suppose γ is a product of r permutation automorphisms γ_i , $1 \leq i \leq r$. Let $i_1 = i$ and let n_k and i_k be such that

$$G_{i_k}^{n_k} \gamma_k = G_{i_{k+1}}^{n_k}, \qquad k = 1, 2, ..., r$$

Let e be the maximum of the n_i . Then by the preservation of lower levels property,

$$G_{ik}^e \gamma_k = G_{ik+1}^e$$
 and $L_{ik}^e \gamma_k = L_{ik+1}^e$

for all k, $1 \le k \le r$. Hence

$$G_i^e \gamma = G_{i_{k+1}}^e$$
 and $L_{i_k}^e \gamma = L_{i_{k+1}}^e$.

If $i \neq i_{r+1}$ we may take n = e, j = i, $s = i_{r+1}$. If $i = i_{r+1}$ then by (6), γ fixes each element of G_i^e . However,

$$G_i = L_i^i \times L_i^{i+1} \times \cdots \times L_i^{e-1} \times G_i^e.$$

Since $G_i \gamma \neq G_i$, there must be a $u, i \leq u \leq e-1$, and $x, x \in L_i^u$, with $x\gamma \notin L_i^u$. Hence γ moves L_i^u . However, the image of L_i^u under any element of A is L_p^u for some p. Hence we must have $L_i^u \gamma = L_p^u$, $i \neq p$. This proves the assertion.

We may now state

THEOREM 1. A is a residually finite group.

Proof. If $\gamma \in A$, then γ induces a permutation γ_* on the groups L_i^n . If we set

$$U_n = \{L_1^n, L_2^n, ..., L_n^n\}$$

 γ permutes elements of U_n for each n. Consequently γ_* may be viewed as an element in the unrestricted direct product

$$S_2 \times S_3 \times S_4 \times \cdots$$

where S_n above is the symmetric group on elements of U_n . Consequently

$$\gamma \to \gamma_*$$
 (7)

may be viewed as a homomorphism from A into a subgroup of the unrestricted direct product of symmetric groups. By our remarks preceding Theorem 1 if $\gamma \neq 1$, then $\gamma_* \neq 1$ so that the map in (7) is actually an isomorphism so that we see that A is embedded in a residually finite group.

Remark. A is of cardinality of the continuum.

4. The Homomorphism θ

Any permutation automorphism γ either fixes the L_i'' or permutes the L_i'' . Hence $L\gamma = L$ for all $\gamma \in A$. Hence if $\gamma \in A$, γ induces an automorphism $\bar{\gamma}$ of G/L. Namely if $g \in G$, $(gL)\bar{\gamma} = (g\gamma)L$. Moreover the map θ defined by

$$\gamma \rightarrow \tilde{\gamma}$$

is a homomorphism on A. Since

$$G/L = (G_1 L/L) \times (G_2 L/L) \times \cdots$$

and if $T_i = G_i L/L$ is as in Section 2, we may view θ as a homomorphism of A into the automorphism group of the group \tilde{T} generated by the T_i . \tilde{T} is the direct product of the T_i . If γ is a permutation automorphism and $G_i^n \gamma = G_i^n$ then

$$T_i = G_i L/L = G_i^n L/L \xrightarrow{\tilde{\gamma}} G_j^n L/L = G_j L/L = T_j.$$

Hence $T_i\bar{\gamma}=T_j$ and we see $\bar{\gamma}$ may be viewed as a permutation of the symbols T_i , $\bar{\gamma}$ is obtained from γ by following subscripts. For example if in (5), $\gamma_{2i}=(G_{2i}^{2i},G_{2i-1}^{2i}),\ \gamma_{2i+1}=1,\ i\geqslant 1$,

$$\bar{\gamma} = (T_1, T_2)(T_3, T_4)(T_5, T_6) \cdots$$

To summarize, in the sequel θ will be interpreted as a homomorphism defined on A such that if $\gamma \in A$ and $\gamma \theta = \bar{\gamma}$ then $\bar{\gamma}$ is a permutation on a infinite countable set of symbols, T_i , $i \ge 1$.

5. Groups Generated by Elements of Finite Order

In this section we study infinite groups T which can be generated by a finite number of elements of finite order. By using the right representation of T we may assume without loss of generality that T is an infinite permutation group on a countable number of symbols. To conform with notation of the previous section, it is convenient to assume that T is an infinite permutation group on symbols

$$T_1, T_2, T_3 \cdots$$
 (8)

If $t = (T_{i_1}, T_{i_2}, ..., T_{i_q})$ is a permutation of the symbols (8) which is a cycle of order q, let n be the maximum of the integers $i_1, i_2, ..., i_q$. Define $\tilde{t} \in A$ by

$$\bar{t} = (G_{i_1}^n, G_{i_2}^n, ..., G_{i_n}^n).$$
 (9)

Suppose T has r generators t_i , $1 \le i \le r$, where t_i is of order d_i . Hence each t_i is expressible in terms of a product of disjoint cycles U_{ij} on the symbols (8). The order of any cycle in this product is a divisor of d_i . We express this decomposition of t_i into disjoint cycles by writing

$$t_i = U_{i1} U_{i2} U_{i3} \cdots.$$

Define $\gamma_i \in A$ by

$$\gamma_i = \overline{U_{i1}} \, \overline{U_{i2}} \, \overline{U_{i3}} \cdots.$$

Clearly then $\gamma_i\theta=t_i$, $1\leqslant i\leqslant r$, and γ_i has the same finite order as t_i . If $\overline{A}=\overline{A}_T$ designates the subgroup generated by the γ_i , $\overline{A}\theta=T$. We note that if T is a free product of cyclic groups $\langle t_i \rangle$ of finite order then θ is an isomorphism on \overline{A} . For in this case there is a homomorphism θ_* from T onto \overline{A} with $t_i\theta_*=\gamma_i$ so that $\theta\theta_*=1$.

5.1. Kernel $\theta \cap \overline{A}$

We claim that kernel $\theta \cap \overline{A}$ is a periodic group. Let $\gamma \in \overline{A}$ and write

$$\gamma = \gamma_{i_1}^{e_1} \gamma_{i_2}^{e_2} \cdots \gamma_{i_q}^{e_q}, \qquad \gamma \theta = t_{i_1}^{e_1} t_{i_2}^{e_2} \cdots t_{i_q}^{e_q}$$

for suitable ε_i , $\varepsilon_i = 1$ or $\varepsilon_i = -1$. Suppose $\gamma \theta = 1$. We examine the effect of γ on an arbitrary G_m . Define u_k , $1 < k \le q + 1$, by

$$T_{u_k} \xrightarrow{\ell_{i_k}^{r_k}} T_{u_{k+1}}, \qquad 1 \leqslant k \leqslant q.$$

Hence $T_{u_1}(\gamma\theta) = T_{u_{q+1}}$ so $u_{q+1} = u_1$. Define automorphisms δ_k of G as follows: If $u_k = u_{k+1}$, let δ_k be the identity automorphism of G. If $u_k \neq u_{k+1}$ let δ_k be that cycle of $\gamma_k^{\epsilon_k}$ that contains a u_k subscript, say

$$\delta_k = (G_{m}^{n_k}, G_{m+1}^{n_k}, \cdots).$$
 (10)

Let δ be the product of the δ_i , $1 \le i \le q$. Let n be any positive integer. Then one may verify that the effect of δ^n on G_{u_1} is precisely the effect of γ^n on G_{u_1} . This follows from the fact that a permutation automorphism either leaves a particular G_i fixed or acts on that G_i via its unique cycle that has an i subscript and from the fact that $u_1 = u_{q+1}$. Now we examine δ_* using * of Section 3. Note $(\delta_k)_* = 1$ or else $(\delta_k)_*$ has a representation in the unrestricted direct product of the S_n such that for $r \ge n_k$, the component of $(\delta_k)_*$ in S_r is obtained from (10) as

$$(L_m^r, L_{m+1}^r, \cdots).$$

Consequently the component of δ_* in any S_r may be viewed as a permutation on d or fewer symbols where d is the sum of the d_{i_k} , $1 \le k \le q$. Hence if e = d!, $\delta_*^e = 1$ so that $\delta^e = 1$ and so $\gamma^e = 1$ on G_{u_1} . Since e is independent of u_1 , $\gamma^e = 1$. This proves the assertion. We remark that the same proof shows that if \widetilde{A} is any subgroup of A generated by a finite number of permutation automorphisms of finite orders, then $\widetilde{A} \cap (\text{kernel } \theta)$ is periodic. Also, we note that kernel θ , in itself, is not a periodic group. For example, if

$$\alpha_1 = (G_1^2, G_2^2)(G_3^5, G_4^5, G_5^5)(G_6^9, G_7^9, G_8^9, G_9^9)(G_{10}^{14}, G_{11}^{14}, G_{12}^{14}, G_{13}^{14}, G_{14}^{14}) \cdots$$

$$\alpha_2 = (G_1^3, G_2^3)(G_3^6, G_4^6, G_5^6)(G_6^{10}, G_7^{10}, G_8^{10}, G_9^{10})(G_{10}^{15}, G_{11}^{15}, G_{12}^{15}, G_{13}^{15}, G_{14}^{15}) \cdots$$

then clearly $\alpha_1 \theta = \alpha_2 \theta$ so that $(\alpha_1 \alpha_2^{-1}) \theta = 1$. However,

$$\alpha_1\alpha_2^{-1} = (L_1^2, L_2^2)(L_3^5, L_4^5, L_5^5)(L_6^9, L_7^9, L_8^9, L_9^9)(L_{10}^{14}, L_{11}^{14}, L_{12}^{14}, L_{13}^{14}, L_{14}^{14}) \cdots$$

so that $\alpha_1 \alpha_2^{-1}$ has infinite order.

5.2. Finitely Presented T

If T is finitely presented, we claim that

THEOREM. (Kernel θ) $\cap \overline{A}$ is the normal closure of a finite number of elements of \overline{A} .

Proof. Suppose T has a finite number of defining relations $w_i = 1$, $1 \le i \le n$, where $w_i = w_i(t_1, t_2, ..., t_r)$ is a word in the t_j . Let N be the normal closure in \overline{A} of the elements $\overline{w}_i = w_i(\gamma_1, \gamma_2, ..., \gamma_r)$, $1 \le i \le n$. Then $\overline{w}_i \theta = w_i$ so \overline{w}_i is in the kernel of θ . Also the map θ_1

$$t_i \rightarrow \gamma_i N$$

induces a homomorphism from T onto \overline{A}/N . But the map θ_2 defined by

$$\gamma N \rightarrow \gamma \theta$$

induces a homomorphism from \overline{A}/N onto T and $\theta_2\theta_1=1$ so that θ_2 is an isomorphism. Consequently if $\gamma \in \overline{A}$ and $\gamma \theta=1$, then $\gamma \in N$. Hence

(kernel
$$\theta$$
) $\cap \overline{A} = N$.

6. Some Concluding Remarks

The work of the previous section concludes the proof of Theorem A of the Introduction. In addition we have shown that if T has r generators t_i , $1 \le i \le r$, with respective finite orders d_i , $1 \le i \le r$, then \overline{A} has r generators γ_i , $1 \le i \le r$, with respective orders d_i .

Finally we would like to make some remarks on the unresolved problem of [4, p. 113] posed by Hanna Neumann. If R is any group let R^n be the subgroup of R generated by nth powers. The problem of Hanna Neumann may be stated as follows: If F is the free group on two generators can one find a prime p such that F/F^p is not hopfian? By [4, p. 113], we may choose a prime p such that the verbal group

$$R_2 = \langle a_2, b_2; X^p = 1 \rangle$$

is not residually finite. From our present work, let R be a residually finite group generated by two elements a and b of order p and let θ be a homomorphism of R onto R_2 with a periodic kernel and with $a\theta = a_2$ and $b\theta = b_2$. We examine the structure of R assuming that R_2 is hopfian. For this purpose, let R_1 be the group

$$R_1 = \langle a_1, b_1; a_1^p = b_1^p = 1 \rangle$$

and let θ_1 be a homomorphism of R_1 onto R with $a_1\theta_1 = a$, $b_1\theta_1 = b_1$. First let us examine the kernels of θ_1 and θ . Clearly R_1^p is in the kernel of $\theta_1\theta$ and $R_1/R_1^p \approx R_2$. If R_2 is hopfian this implies that if K is the kernel of $\theta_1\theta$ then $K = R_1^p$. On the other hand if $r \in R$ and $r\theta = 1$, let $r_1 \in R_1$ with $r_1\theta_1 = r$, so that $r_1\theta_1\theta = 1$. This implies that $r_1 \in R_1^p$ so $r \in R^p$. Hence the kernel of

 θ is precisely R^p . Also since R is residually finite but R/R^p is not, there exists an element $r \in R$ with $r^p \ne 1$. By using the fact that the kenel of θ_1 is contained in K we see that the kernel of θ_1 consists of elements which are expressible in R_1 as products of pth powers. Translated to R, this means that R has a presentation of the form

$$R = \langle a, b; a^p = 1, b^p = 1, w_i = 1 \rangle$$
 (11)

for a certain set of words w_i where each w_i is expressible as a product of pth powers. Since θ has a periodic kernel and R_2 is periodic, R is periodic. This concludes the proof of Theorem B of the Introduction.

Finally, I would like to thank Professor F. Pickel for some comments.

REFERENCES

- N. GUPTA, On groups in which every element has finite order, Amer. Math. Monthly 96 (1989), 297-306.
- R. LYNDON AND P. SCHUPP, "Combinatorial Group Theory," Springer-Verlag, New York/ Berlin, 1977.
- 3. D. MEIER, Non-hopfian groups, J. London Math. Soc. (2) 26 (1982), 265-270.
- 4. H. NEUMANN, "Varieties of Groups," Springer-Verlag, New York/Berlin, 1967.