Residually Finite Extensions of Periodic Groups ## R. HIRSHON Polytechnic University, 333 Jay Street, Brooklyn, New York 11201 Communicated by D. A. Buchsbaum Received January 24, 1990 #### 1. Introduction The object of this paper is to establish the existence of a residually finite group A and a homomorphism θ defined on A with some useful properties. First of all, a copy of any countable group is embedded in $A\theta$. Second, when θ is restricted to certain subgroups of A to be defined in the sequel, the kernel of θ is periodic. The group A arises in a natural way as a group of automorphisms. Our methods enable us to establish: THEOREM A. Given any finitely generated group T generated by elements of finite order, we may find a finitely generated residually finite group $B = B_T$ generated by elements of finite order and a periodic normal subgroup $K = K_T$ of B with $B/K \approx T$. If T is finitely presented, K can be taken to be the normal closure of a finite number of elements of B. We note that if T is periodic the above implies that B is periodic so that Theorem A provides a new tool in the study of periodic groups. (See [1] for a beautiful discussion and a list of references.) For example, an unresolved problem posed by Hanna Neumann [4, p. 113] is the following: Can one find a prime p such that the verbal group $$\langle a, b; X^p = 1 \rangle$$ (1) is not hopfian? Our methods together with the existence of a prime p with (1) not residually finite (see [4, p. 113]) easily lead to: THEOREM B. Either the groups of (1) are not all hopfian for all p or we can find a prime p and a residually finite periodic group R which has a presentation of the form $$R = \langle a, b; a^p = 1, b^p = 1, W_i = 1, i = 1, 2, ... \rangle,$$ where the W_i are certain words expressible as a product of pth powers and such that R/R^p is not residually finite. Since any countable group can be embedded in a group generated by two elements of finite order (see [2, proof of Theorem 10.4, p. 283], Theorem A has the COROLLARY. Any countable group H is embeddable in a group B/K where B is a residually finite group generated by two elements of finite order and where K is periodic. The above corollary leads to the construction of a wide class of residually finite groups M such that the elements of finite order of M form a normal subgroup. For example, if H is torsion free and M is a subgroup of B with $H \approx M/K$, then the elements of finite order in M consist precisely of K. If H is not residually finite, K is clearly not a direct factor of M. If for every countable torsion free group H we associate a fixed residually finite countable group $\bar{H} = M$ as above this association is one-to-one on isomorphism classes. That is, for countable torsion free groups H_1 , H_2 $\bar{H}_1 \approx \bar{H}_2$ implies $H_1 \approx H_2$. Subgroups of residually finite groups are residually finite. If \bar{B} is a group generated by r generators b_i and \bar{B} has a homomorphism α onto the free group F on r free generators x_i with $b_i\alpha=x_i$ then \bar{B} is free and the b_i are free generators of \bar{B} . These remarks together with the above corollary yield a quick proof of the well-known fact that free groups are residually finite. (See [2 p. 195]). A quick proof of the known result that free products of cyclic groups of finite order are residually finite also follows. (See Section 5). #### 2. THE CONSTRUCTION OF A We begin with a finitely generated group \tilde{G} which may be decomposed in a sequence of direct decompositions of the form $$\tilde{G} = G_1 \times G_2 \times \cdots \times G_n \times F_n, \qquad F_n = G_{n+1} \times F_{n+1}, \qquad n \geqslant 1.$$ We assume further that each G_{i+1} is isomorphic to a proper direct factor of G_i and α_i is an isomorphism of G_{i+1} onto a proper direct factor of G_i . For example, we may begin with a finitely generated group \overline{G} which has a direct decomposition (see [3]), $$\bar{G} = A \times B$$, $A \approx \bar{G} \approx B$, $\bar{G} \neq 1$. If ε_1 , ε_2 are isomorphisms of \bar{G} onto A and B, respectively, then for $n \ge 0$, $$\overline{G} = B \times B\varepsilon_1 \times B\varepsilon_1^2 \times \cdots \times B\varepsilon_1^n \times A\varepsilon_1^n, \qquad A\varepsilon_1^n = B\varepsilon_1^{n+1} \times A\varepsilon_1^{n+1}$$ so that we may take $G_n = B\varepsilon_1^{n-1}$, $F_n = A\varepsilon_1^{n-1}$, $n \ge 1$. The α_i may be defined in terms of ε_1 , ε_2 . If we set $G_n^n = G_n$ for all n, then for all k, $1 \le k < n$, we define G_k^n by $$G_k^n = (G_{k+1}^n)\alpha_k.$$ We pictorially represent the first "five levels" below: $$G_{1} \xleftarrow{\alpha_{1}} G_{2} \xleftarrow{\alpha_{2}} G_{3} \xleftarrow{\alpha_{3}} G_{4} \xleftarrow{\alpha_{4}} G_{5}$$ $$G_{1}^{2} \xleftarrow{\alpha_{1}} G_{2}^{2}$$ $$G_{1}^{3} \xleftarrow{\alpha_{1}} G_{2}^{3} \xleftarrow{\alpha_{2}} G_{3}^{3}$$ $$G_{1}^{4} \xleftarrow{\alpha_{1}} G_{2}^{4} \xleftarrow{\alpha_{2}} G_{3}^{4} \xleftarrow{\alpha_{3}} G_{4}^{4}$$ $$G_{1}^{5} \xleftarrow{\alpha_{1}} G_{2}^{5} \xleftarrow{\alpha_{2}} G_{3}^{5} \xleftarrow{\alpha_{3}} G_{4}^{5} \xleftarrow{\alpha_{4}} G_{5}^{5}$$ Let L_n^n be a direct factor of G_n such that $L_n^n \neq 1$ and $$G_n = L_n^n \times G_n^{n+1}, \qquad G_{n+1} \alpha_n = G_n^{n+1}.$$ (2) G_{n+1}^{n+1} Each L_n^n determines L_i^n , $1 \le j \le n$, by using $$L_k^n = L_{k+1}^n \alpha_k.$$ We list below pictorially the relation between these subgroups and the α_i $$L_{1}^{1}, L_{1}^{2}, L_{1}^{3} \cdots L_{1}^{n-1}, L_{1}^{n}, G_{1}^{n+1}$$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$ $L_{2}^{2}, L_{2}^{3} \cdots L_{2}^{n-1}, L_{2}^{n}, G_{2}^{n+1}$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$ $L_{3}^{3} \cdots L_{3}^{n-1}, L_{3}^{n}, G_{3}^{n+1}$... $\uparrow \qquad \uparrow \qquad \uparrow$ $L_{n-1}^{n-1}, L_{n-1}^{n}, G_{n-1}^{n+1}$ $\uparrow \qquad \uparrow$ L_{n}^{n}, G_{n}^{n+1} The arrows on the *i*th level above indicate the action of α_{i-1} . We have $$G_{1} = L_{1}^{1} \times L_{1}^{2} \times L_{1}^{3} \times \cdots \times L_{1}^{n-1} \times L_{1}^{n} \times G_{1}^{n+1}$$ $$G_{2} = L_{2}^{2} \times L_{2}^{3} \times \cdots \times L_{2}^{n-1} \times L_{2}^{n} \times G_{2}^{n+1}$$ $$G_{3} = L_{3}^{3} \times \cdots \times L_{3}^{n-1} \times L_{3}^{n} \times G_{3}^{n+1}$$ $$\vdots$$ $$G_{n-1} = L_{n-1}^{n-1} \times L_{n-1}^{n} \times G_{n-1}^{n+1}$$ $$G_{n} = L_{n}^{n} \times G_{n}^{n+1}$$ $$G_{n+1} = G_{n+1}^{n+1} = G_{n+1}^{n+1}$$ On the kth level above $$G_k^{n+1} = L_k^{n+1} \times G_k^{n+2}. (3)$$ By using (2) we define θ_n as the projection of G_n onto G_n^{n+1} . The kernel of θ_n is L_n^n . Consider the map $\theta_n \alpha_n^{-1}$. This maps G_n onto G_{n+1} . If L_n is the subgroup generated by the L_n^j , $j \ge n$, then L_n is the direct product of the L_n^j $$L_n = L_n^n \times L_n^{n+1} \times \cdots$$ The complete preimage of L_{n+1} under $\theta_n \alpha_n^{-1}$ is L_n . Hence, $G_n/L_n \approx G_{n+1}/L_{n+1}$. If L is the subgroup generated by the L_n and if $T_n = G_n L/L$, then $T_n \approx G_n/(G_n \cap L) = G_n/L_n$ so that $T_n \approx T_{n+1}$ for all n. Since G_n is finitely generated but L_n is not finitely generated, $T_n \neq 1$. #### 2.1. Permutation Automorphisms Let G represent the subgroup of \tilde{G} generated by the G_i so that G is the internal restricted direct product $$G = G_1 \times G_2 \times G_3 \times \cdots$$ We now define a group A of automorphisms of G. We may quickly grasp the idea which we will describe in further detail below by thinking of the subgroup E_n generated by the G_i^n , $i \le i \le n$ (which is an internal direct product) $$E_n = G_1^n \times G_2^n \times \cdots \times G_n^n$$ as an external direct product of n copies of G_1^n so that E_n has a group of automorphisms S_n which is obtained by permutation of coordinates. Here S_n is the symmetric group on n elements. S_n can clearly be extended to a group of automorphisms of G by writing $G = E_n \times \overline{E}_n$ and by defining the action of S_n on \overline{E}_n to be the identity. The idea is then to generate A from the S_n in a suitable manner. # 2.2. Permutation Automorphisms in More Detail If i < n we define an automorphism θ_i^n of G which we call a transposition of G_i^n and G_{i+1}^n . The definition is as follows: $$x\theta_i^n = x\alpha_i^{-1}, \qquad x \in G_i^n$$ $$x\theta_i^n = x\alpha_i, \qquad x \in G_{i+1}^n$$ $$x\theta_i^n = x, \qquad x \in L_i^j, \qquad i \le j \le n-1$$ $$x\theta_i^n = x, \qquad x \in L_{i+1}^j, \qquad i+1 \le j \le n-1$$ $$x\theta_i^n = x, \qquad x \in G_i, \qquad j \ne i, \quad j \ne i+1.$$ We write $\theta_i^n = (G_i^n, G_{i+1}^n) = (G_{i+1}^n, G_i^n)$. Clearly the θ_i^n , i < n, generate a group of automorphisms of G which are isomorphic to S_n the symmetric group on n elements. If $i < j \le n$, we define $$(G_i^n, G_i^n) = \theta_i^n \theta_{i+1}^n \cdots \theta_{i-1}^n = (G_i^n, G_i^n).$$ With these definitions, we may freely use notation borrowed from the symmetric group. Thus $$\alpha = (G_1^8, G_3^8, G_4^8)(G_5^8, G_6^8)(G_7^8, G_2^8)$$ (4) is a well-defined automorphism of G. We call an automorphism generated by the θ_i^n , $1 \le i \le n$, an nth level permutation automorphism. Thus α above is an 8th level permutation automorphism. The subscripts of an nth level permutation automorphism are those i such that G_i is moved. In (4), the subscripts of α are 1, 2, 3, 4, 5, 6, 7. The subscripts of the identity automorphism are the null set. Finally let γ_i , $i \ge 2$, be a sequence of automorphisms of G such that $\gamma_i = 1$ or γ_i is an ith level permutation automorphism and such that if $i \ne j$, the subscripts of γ_i and γ_j are disjoint. Then the product $$\gamma = \gamma_2 \gamma_3 \gamma_4 \cdots \tag{5}$$ represents a well-defined automorphism of G in an obvious way. We call γ a permutation automorphism of G. The group A consists of all automorphisms generated by permutation automorphisms. Permutation automorphisms of G on any level of the G_i^n induce corresponding automorphisms on lower levels. For example if α is as in (4) then α restricted to the subgroup generated by the G_i^9 , $1 \le i \le 9$, is precisely $$(G_1^9, G_3^9, G_4^9)(G_5^9, G_6^9)(G_7^9, G_2^9).$$ We may note if $k \neq j$, $$(G_k^n, G_i^n)(G_k^{n+1}, G_i^{n+1}) = (L_k^n, L_i^n),$$ where (L_k^n, L_i^n) has the obvious meaning. #### 3. Some Properties of A We point out that if γ is an element of A then $$x \in G_i$$ and $x\gamma \in G_i$ imply $x\gamma = x$. (6) Now we claim if $\gamma \neq 1$ then we can find integers n, j, and s with $j \neq s$ and $L_j^n \gamma = L_s^n$. To see this, by (6) we may first choose i such that $G_i \gamma \neq G_i$. Suppose γ is a product of r permutation automorphisms γ_i , $1 \leq i \leq r$. Let $i_1 = i$ and let n_k and i_k be such that $$G_{i_k}^{n_k} \gamma_k = G_{i_{k+1}}^{n_k}, \qquad k = 1, 2, ..., r$$ Let e be the maximum of the n_i . Then by the preservation of lower levels property, $$G_{ik}^e \gamma_k = G_{ik+1}^e$$ and $L_{ik}^e \gamma_k = L_{ik+1}^e$ for all k, $1 \le k \le r$. Hence $$G_i^e \gamma = G_{i_{k+1}}^e$$ and $L_{i_k}^e \gamma = L_{i_{k+1}}^e$. If $i \neq i_{r+1}$ we may take n = e, j = i, $s = i_{r+1}$. If $i = i_{r+1}$ then by (6), γ fixes each element of G_i^e . However, $$G_i = L_i^i \times L_i^{i+1} \times \cdots \times L_i^{e-1} \times G_i^e.$$ Since $G_i \gamma \neq G_i$, there must be a $u, i \leq u \leq e-1$, and $x, x \in L_i^u$, with $x\gamma \notin L_i^u$. Hence γ moves L_i^u . However, the image of L_i^u under any element of A is L_p^u for some p. Hence we must have $L_i^u \gamma = L_p^u$, $i \neq p$. This proves the assertion. We may now state THEOREM 1. A is a residually finite group. *Proof.* If $\gamma \in A$, then γ induces a permutation γ_* on the groups L_i^n . If we set $$U_n = \{L_1^n, L_2^n, ..., L_n^n\}$$ γ permutes elements of U_n for each n. Consequently γ_* may be viewed as an element in the unrestricted direct product $$S_2 \times S_3 \times S_4 \times \cdots$$ where S_n above is the symmetric group on elements of U_n . Consequently $$\gamma \to \gamma_*$$ (7) may be viewed as a homomorphism from A into a subgroup of the unrestricted direct product of symmetric groups. By our remarks preceding Theorem 1 if $\gamma \neq 1$, then $\gamma_* \neq 1$ so that the map in (7) is actually an isomorphism so that we see that A is embedded in a residually finite group. Remark. A is of cardinality of the continuum. ## 4. The Homomorphism θ Any permutation automorphism γ either fixes the L_i'' or permutes the L_i'' . Hence $L\gamma = L$ for all $\gamma \in A$. Hence if $\gamma \in A$, γ induces an automorphism $\bar{\gamma}$ of G/L. Namely if $g \in G$, $(gL)\bar{\gamma} = (g\gamma)L$. Moreover the map θ defined by $$\gamma \rightarrow \tilde{\gamma}$$ is a homomorphism on A. Since $$G/L = (G_1 L/L) \times (G_2 L/L) \times \cdots$$ and if $T_i = G_i L/L$ is as in Section 2, we may view θ as a homomorphism of A into the automorphism group of the group \tilde{T} generated by the T_i . \tilde{T} is the direct product of the T_i . If γ is a permutation automorphism and $G_i^n \gamma = G_i^n$ then $$T_i = G_i L/L = G_i^n L/L \xrightarrow{\tilde{\gamma}} G_j^n L/L = G_j L/L = T_j.$$ Hence $T_i\bar{\gamma}=T_j$ and we see $\bar{\gamma}$ may be viewed as a permutation of the symbols T_i , $\bar{\gamma}$ is obtained from γ by following subscripts. For example if in (5), $\gamma_{2i}=(G_{2i}^{2i},G_{2i-1}^{2i}),\ \gamma_{2i+1}=1,\ i\geqslant 1$, $$\bar{\gamma} = (T_1, T_2)(T_3, T_4)(T_5, T_6) \cdots$$ To summarize, in the sequel θ will be interpreted as a homomorphism defined on A such that if $\gamma \in A$ and $\gamma \theta = \bar{\gamma}$ then $\bar{\gamma}$ is a permutation on a infinite countable set of symbols, T_i , $i \ge 1$. #### 5. Groups Generated by Elements of Finite Order In this section we study infinite groups T which can be generated by a finite number of elements of finite order. By using the right representation of T we may assume without loss of generality that T is an infinite permutation group on a countable number of symbols. To conform with notation of the previous section, it is convenient to assume that T is an infinite permutation group on symbols $$T_1, T_2, T_3 \cdots$$ (8) If $t = (T_{i_1}, T_{i_2}, ..., T_{i_q})$ is a permutation of the symbols (8) which is a cycle of order q, let n be the maximum of the integers $i_1, i_2, ..., i_q$. Define $\tilde{t} \in A$ by $$\bar{t} = (G_{i_1}^n, G_{i_2}^n, ..., G_{i_n}^n).$$ (9) Suppose T has r generators t_i , $1 \le i \le r$, where t_i is of order d_i . Hence each t_i is expressible in terms of a product of disjoint cycles U_{ij} on the symbols (8). The order of any cycle in this product is a divisor of d_i . We express this decomposition of t_i into disjoint cycles by writing $$t_i = U_{i1} U_{i2} U_{i3} \cdots.$$ Define $\gamma_i \in A$ by $$\gamma_i = \overline{U_{i1}} \, \overline{U_{i2}} \, \overline{U_{i3}} \cdots.$$ Clearly then $\gamma_i\theta=t_i$, $1\leqslant i\leqslant r$, and γ_i has the same finite order as t_i . If $\overline{A}=\overline{A}_T$ designates the subgroup generated by the γ_i , $\overline{A}\theta=T$. We note that if T is a free product of cyclic groups $\langle t_i \rangle$ of finite order then θ is an isomorphism on \overline{A} . For in this case there is a homomorphism θ_* from T onto \overline{A} with $t_i\theta_*=\gamma_i$ so that $\theta\theta_*=1$. ## 5.1. Kernel $\theta \cap \overline{A}$ We claim that kernel $\theta \cap \overline{A}$ is a periodic group. Let $\gamma \in \overline{A}$ and write $$\gamma = \gamma_{i_1}^{e_1} \gamma_{i_2}^{e_2} \cdots \gamma_{i_q}^{e_q}, \qquad \gamma \theta = t_{i_1}^{e_1} t_{i_2}^{e_2} \cdots t_{i_q}^{e_q}$$ for suitable ε_i , $\varepsilon_i = 1$ or $\varepsilon_i = -1$. Suppose $\gamma \theta = 1$. We examine the effect of γ on an arbitrary G_m . Define u_k , $1 < k \le q + 1$, by $$T_{u_k} \xrightarrow{\ell_{i_k}^{r_k}} T_{u_{k+1}}, \qquad 1 \leqslant k \leqslant q.$$ Hence $T_{u_1}(\gamma\theta) = T_{u_{q+1}}$ so $u_{q+1} = u_1$. Define automorphisms δ_k of G as follows: If $u_k = u_{k+1}$, let δ_k be the identity automorphism of G. If $u_k \neq u_{k+1}$ let δ_k be that cycle of $\gamma_k^{\epsilon_k}$ that contains a u_k subscript, say $$\delta_k = (G_{m}^{n_k}, G_{m+1}^{n_k}, \cdots).$$ (10) Let δ be the product of the δ_i , $1 \le i \le q$. Let n be any positive integer. Then one may verify that the effect of δ^n on G_{u_1} is precisely the effect of γ^n on G_{u_1} . This follows from the fact that a permutation automorphism either leaves a particular G_i fixed or acts on that G_i via its unique cycle that has an i subscript and from the fact that $u_1 = u_{q+1}$. Now we examine δ_* using * of Section 3. Note $(\delta_k)_* = 1$ or else $(\delta_k)_*$ has a representation in the unrestricted direct product of the S_n such that for $r \ge n_k$, the component of $(\delta_k)_*$ in S_r is obtained from (10) as $$(L_m^r, L_{m+1}^r, \cdots).$$ Consequently the component of δ_* in any S_r may be viewed as a permutation on d or fewer symbols where d is the sum of the d_{i_k} , $1 \le k \le q$. Hence if e = d!, $\delta_*^e = 1$ so that $\delta^e = 1$ and so $\gamma^e = 1$ on G_{u_1} . Since e is independent of u_1 , $\gamma^e = 1$. This proves the assertion. We remark that the same proof shows that if \widetilde{A} is any subgroup of A generated by a finite number of permutation automorphisms of finite orders, then $\widetilde{A} \cap (\text{kernel } \theta)$ is periodic. Also, we note that kernel θ , in itself, is not a periodic group. For example, if $$\alpha_1 = (G_1^2, G_2^2)(G_3^5, G_4^5, G_5^5)(G_6^9, G_7^9, G_8^9, G_9^9)(G_{10}^{14}, G_{11}^{14}, G_{12}^{14}, G_{13}^{14}, G_{14}^{14}) \cdots$$ $$\alpha_2 = (G_1^3, G_2^3)(G_3^6, G_4^6, G_5^6)(G_6^{10}, G_7^{10}, G_8^{10}, G_9^{10})(G_{10}^{15}, G_{11}^{15}, G_{12}^{15}, G_{13}^{15}, G_{14}^{15}) \cdots$$ then clearly $\alpha_1 \theta = \alpha_2 \theta$ so that $(\alpha_1 \alpha_2^{-1}) \theta = 1$. However, $$\alpha_1\alpha_2^{-1} = (L_1^2, L_2^2)(L_3^5, L_4^5, L_5^5)(L_6^9, L_7^9, L_8^9, L_9^9)(L_{10}^{14}, L_{11}^{14}, L_{12}^{14}, L_{13}^{14}, L_{14}^{14}) \cdots$$ so that $\alpha_1 \alpha_2^{-1}$ has infinite order. ## 5.2. Finitely Presented T If T is finitely presented, we claim that THEOREM. (Kernel θ) $\cap \overline{A}$ is the normal closure of a finite number of elements of \overline{A} . *Proof.* Suppose T has a finite number of defining relations $w_i = 1$, $1 \le i \le n$, where $w_i = w_i(t_1, t_2, ..., t_r)$ is a word in the t_j . Let N be the normal closure in \overline{A} of the elements $\overline{w}_i = w_i(\gamma_1, \gamma_2, ..., \gamma_r)$, $1 \le i \le n$. Then $\overline{w}_i \theta = w_i$ so \overline{w}_i is in the kernel of θ . Also the map θ_1 $$t_i \rightarrow \gamma_i N$$ induces a homomorphism from T onto \overline{A}/N . But the map θ_2 defined by $$\gamma N \rightarrow \gamma \theta$$ induces a homomorphism from \overline{A}/N onto T and $\theta_2\theta_1=1$ so that θ_2 is an isomorphism. Consequently if $\gamma \in \overline{A}$ and $\gamma \theta=1$, then $\gamma \in N$. Hence (kernel $$\theta$$) $\cap \overline{A} = N$. # 6. Some Concluding Remarks The work of the previous section concludes the proof of Theorem A of the Introduction. In addition we have shown that if T has r generators t_i , $1 \le i \le r$, with respective finite orders d_i , $1 \le i \le r$, then \overline{A} has r generators γ_i , $1 \le i \le r$, with respective orders d_i . Finally we would like to make some remarks on the unresolved problem of [4, p. 113] posed by Hanna Neumann. If R is any group let R^n be the subgroup of R generated by nth powers. The problem of Hanna Neumann may be stated as follows: If F is the free group on two generators can one find a prime p such that F/F^p is not hopfian? By [4, p. 113], we may choose a prime p such that the verbal group $$R_2 = \langle a_2, b_2; X^p = 1 \rangle$$ is not residually finite. From our present work, let R be a residually finite group generated by two elements a and b of order p and let θ be a homomorphism of R onto R_2 with a periodic kernel and with $a\theta = a_2$ and $b\theta = b_2$. We examine the structure of R assuming that R_2 is hopfian. For this purpose, let R_1 be the group $$R_1 = \langle a_1, b_1; a_1^p = b_1^p = 1 \rangle$$ and let θ_1 be a homomorphism of R_1 onto R with $a_1\theta_1 = a$, $b_1\theta_1 = b_1$. First let us examine the kernels of θ_1 and θ . Clearly R_1^p is in the kernel of $\theta_1\theta$ and $R_1/R_1^p \approx R_2$. If R_2 is hopfian this implies that if K is the kernel of $\theta_1\theta$ then $K = R_1^p$. On the other hand if $r \in R$ and $r\theta = 1$, let $r_1 \in R_1$ with $r_1\theta_1 = r$, so that $r_1\theta_1\theta = 1$. This implies that $r_1 \in R_1^p$ so $r \in R^p$. Hence the kernel of θ is precisely R^p . Also since R is residually finite but R/R^p is not, there exists an element $r \in R$ with $r^p \ne 1$. By using the fact that the kenel of θ_1 is contained in K we see that the kernel of θ_1 consists of elements which are expressible in R_1 as products of pth powers. Translated to R, this means that R has a presentation of the form $$R = \langle a, b; a^p = 1, b^p = 1, w_i = 1 \rangle$$ (11) for a certain set of words w_i where each w_i is expressible as a product of pth powers. Since θ has a periodic kernel and R_2 is periodic, R is periodic. This concludes the proof of Theorem B of the Introduction. Finally, I would like to thank Professor F. Pickel for some comments. #### REFERENCES - N. GUPTA, On groups in which every element has finite order, Amer. Math. Monthly 96 (1989), 297-306. - R. LYNDON AND P. SCHUPP, "Combinatorial Group Theory," Springer-Verlag, New York/ Berlin, 1977. - 3. D. MEIER, Non-hopfian groups, J. London Math. Soc. (2) 26 (1982), 265-270. - 4. H. NEUMANN, "Varieties of Groups," Springer-Verlag, New York/Berlin, 1967.