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It is a common situation in biomedical research that one or more variables are
known to be associated with the outcome of interest. Researchers often discretize
some variables and fit a regression model using these discretized variables.
Although convenient for illustration purposes, such an approach can be biased and
lead to loss of efficiency. In this article, we consider the situation of a regression
model with two explanatory variables under an assumption of multivariate nor-
mality. We investigate the effect of dichotomizing or categorizing one variable on
the estimate of the coefficient of the other continuous variable and on prediction
from the models. Algebraic expressions are presented for the asymptotic bias and
variance of the coefficient of the continuous explanatory variable and for the resi-
dual sum of squares for prediction. Some numerical examples are presented in
which we find that the bias of the coefficient of the continuous explanatory variable
is always smaller for the categorized model than that for the dichotomized model.
The size of the test of a zero coefficient for the continuous variable only depends on
the correlations between the response variable, the discretized variable, and the
continuous variable. The size of the test for the categorized model is always smaller
than for the dichotomized model, however, both can differ substantially from the
nominal level if the correlation between the response and the categorical variable or
between the two explanatory variables is high. The (predictive) relative efficiency of
models also only depends on correlations amongst the three variables. There is a
substantial loss of efficiency due to categorization if the correlation between the
categorized and response variable is high. The predictive relative efficiency is always
higher for the categorized model. The relative predictive efficiency due to dichoto-
mization depends on the choice of cut points, with the least loss of efficency being
achieved at the median. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Biomedical researchers are often interested in assessing the relationship
or association between a response variable and a number of explanatory
variables. This is frequently achieved by building a statistical regression
model and then potentially using this model for prediction. General



approaches to model building are discussed in Harrell et al. (1996).
A common occurrence is for the investigator to categorize a continuous
variable before the model is developed. This is done because there may be
uncertainty about the appropriate functional form for the continuous
variable and the belief that discretizing it will impart robustness on the
conclusion of the analysis. Furthermore it is generally easier to display and
explain results with discrete, rather than continuous variables. Many
authors, particularly in areas of application, seem to believe the desirability
of dichotomizing continuous variables. Apart from the throwing away of
information, which is the topic of the current paper, this procedure pro-
duces a possibly scientifically unrealistic model where the effect has a
sudden jump at the cut-off value, with all values below the cut-off having
equal effect and all values below the cutoff having equal effect (Altman,
1991).
How a continuous variable is discretized and some of the implications of
discretization have been considered by a number of authors. Cox (1957)
gives a general discussion of grouping with the goal of retaining as much
information as possible. For the case of a single explanatory variable
Lagakos (1988) studied the asymptotic relative efficiency of tests of zero
regression coefficient, comparing the continuous (Z) versus the discrete
(Zx) variables. He showed that the loss of efficiency is given by the square
of the correlation between Z and Zx. Connor (1972) considered the choice
of optimal cut points for a continuous variable. Zhao and Kolonel (1992)
considered in a simulation study the efficiency loss in the odds ratio due to
categorizing a continuous variable in a case-control study. Morgan and
Elashoff (1986) considered the effect of categorizing a continuous covariate
on the estimated hazard ratio between two groups in survival analysis. They
showed how the loss of efficiency depends on the number of categories and
the choice of cutpoints. Altman et al. (1994) and Lausen and Schumacher
(1996) considered choosing optimal cutpoints and demonstrated the
dangers of inference following the data-driven selection of cutpoints.
In this paper we consider the situation of two explanatory variables in a
regression model. It is a common situation in biomedical research that one
or more variables are known to be associated with the outcome. There are
also other variables, perhaps coming from a newly developed technique or
assay, which are thought also to be associated with the response variable.
For example, in prostate cancer PSA is known to be associated with survi-
val after therapy. An important question in such a setting is does a new
variable add any information about survival over and above what is con-
tained in the first variable (i.e., PSA). A common approach to this problem
is to discretize the first variable and then fit a regression model with the
discretized first variable and the new variable as the two explanatory
variables. A significant coefficient for the new variable would typically be
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interpreted as indicating that this variable had some independent prognos-
tic importance. In this paper we address whether this may be due to the
discretization of the first variable. A second related issue concerns predic-
tion; it may be that there is negligible loss of efficiency associated with
prediction using a discretized version of the first variable plus the new
variable compared to using a continuous version of the first variable. The
new variables could be, in effect, recovering the information lost due to the
discretization of the first variable.
The algebraic development in this paper is based on the multivariate
normal model. Section 2 contains results concerning bias and variance of
parameter estimates, Section 3 contains results concerning prediction and
Section 4 contains results concerning the size of tests. Section 5 contains
numerical examples.

2. BIAS AND VARIANCE OF PARAMETER ESTIMATES

Assume (Y, X1, X2)Œ has a multivariate normal distribution with mean
vector (my, mx1 , mx2 )Œ and covariance matrix

S=R s
2
y syx1 syx2
syx1 s2x1 sx1x2
syx2 sx1x2 s2x2

S .
We regard Y as the response variable, X1 as the variable which is known to
be associated with Y, and X2 as the new variable which is assumed inde-
pendent of Y given X1. Thus X2 is a variable which is not important if X1 is
known, but may appear to be important if X1 is discretized. A consequence
of the assumption [Y | x1, x2] — [Y | x1], is that

syx1sx1x2=syx2s
2
x1

or equivalently, in terms of correlation,

ryx1rx1x2=ryx2 . (1)

The true regression model for the response Y given X1 and X2 is

Y=a0+a1X1+e, (2)

where e ’N(0, s2y−s
2
yx1/s

2
x1 ), a1=syx1/s

2
x1=ryx1sy/sx1 , and a0=my−

a1mx1 . Without loss of generality, we assume my=mx1=mx2=0.
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2.1. The Dichotomized Model

First we consider the simplest case where X1 is dichotomized at the
median. Assume we fit the model of the form Y=bD0+b

D
1X

g
1+b

D
2X2+e,

where Xg
1 is X1 dichotomized at point 0,

Xg
1=3

1 if X1 \ 0;
−1 if X1 < 0.

It is easy to show that

Var(Xg
1 )=1, cov(Xg

1 , X2)==
2
p

sx1x2
sx1
,

cov(Xg
1 , Y)==

2
p

sx1y

sx1
, and cov(Xg

1 , X1)==
2
p
sx1 .

Let y, x1, x2, and xg
1 denote the set of n observations. Then the least-square

estimate of bD2 is

5bD2=
s2xg

1
cov5 (x2, y)− cov5 (xg

1 , x2) cov5 (x
g
1 , y)

s2xg
1
s2x2
− cov5 (xg

1 , x2)2
,

where s2xg
1
=1
n;(xg1i−x g

1 )
2 and cov5 (xg

1 , x2)=
1
n;(xg1i−x g

1 )(x2i−x̄2), and
other covariances are similarly defined.
To find expressions for the mean and variance of 5bD2 we adapt the
approach given in Lagakos (1988). The details of the derivations are given
in the Appendix.
Define U(x1, x2) by

U(x1, x2) — E(5b
D
2 |X1=x1, X2=x2)

=
s2xg

1
cov5 (x1, x2)− cov5 (x

g
1 , x2) cov5 (x

g
1 , x1)

s2xg
1
s2x2
− cov5 (xg

1 , x2)2
sx1y

s2x1
. (3)

For large n, U(x1, x2) converges to

1 ·sx1x2
−=2
p

sx1x2
sx1
·=2
p
sx1

s2x2 −1=
2
p

sx1x2
sx1

22
sx1y

s2x1
=

0.3634
1−0.6366r2x1x2

sx2y

s2x2
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Thus the unconditional expectation of 5bD2 is

E(5bD2 )=
0.3634

1−0.6366r2x1x2

sx2y

s2x2
=

0.3634rx2y
1−0.6366r2x1x2

sy

sx2
.

The conditional variance of 5bD2 is given by

V(x1, x2) — Var(5b
D
2 |X1=x1, X2=x2)

=
C
i

51
n
s2xg

1
(x2i−x2)−

1
n
cov5 (xg

1 , x2)(x
g
1i−xg

1 )6
2

[s2xg
1
s2x2
− cov5 (xg

1 , x2)2]2
s2y | x1, x2

=

1
n
s2xg

1

s2xg
1
s2x2
− cov5 (xg

1 , x2)2
s2y | x1 .

The unconditional variance of 5bD2 is Var[U(X1, X2)]+E[V(X1, X2)],
which can be expressed as

Var(5bD2 )=E[Var(
5bD2 |X1, X2)]+Var[E(5b

D
2 |X1, X2)]

=
1−r2x1y

1−0.6366r2x1x2
·
s2y
ns2x2
+
0.3634r2x1ys

2
y

ns2x2

2.2. The Categorized Model

Now consider the model where X1 is discretized into three groups of
equal probabilities. Assume we fit the model Y=bC0+b

C
11X

g
11+b

C
12X

g
12+

bC2X2+e, where

Xg
11=3

2
3 if X1 [ −d;
− 13 if X1 > −d.

Xg
12=3

2
3 if X1 \ d;
− 13 if X1 < d.

Then we have the following equalities:

Var(Xg
11)=Var(X

g
12)=

2
9
, cov(Xg

11, X
g
12)=−

1
9
,

cov(Xg
11, X2)=− cov(X

g
12, X2)=−0.3637

sx1x2
sx1
,

cov(Xg
11, X1)=− cov(X

g
12, X1)=−0.3637sx1 .
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The least-square estimate of bC2 is,

5bC2=
U cov5 (xg

11, y)+V cov5 (x
g
12, y)+W cov5 (x2, y)

U cov5 (xg
11, x2)+V cov5 (x

g
12, x2)+Ws

2
x2

where

U=cov5 (xg
11, x

g
12) cov5 (x

g
12, x2)−s

2
xg

12
cov5 (xg

11, x2)Q 0.0404
sx1x2
sx1
,

V=cov5 (xg
11, x

g
12) cov5 (x

g
11, x2)−s

2
xg

11
cov5 (xg

12, x2)Q −0.0404
sx1x2
sx1
,

W=s2xg
11
s2xg

12
− cov5 (xg

11, x
g
12)
2
Q

1
27
.

Using similar algebra to that in Section 2.1 we have for large n that

E(5bC2 ) %
0.206

1−0.794r2x1x2
·
sx2y

s2x2
=

0.206rx2y
1−0.794r2x1x2

sy

sx2
,

and

Var(5bC2 )=
1−r2x1y

1−0.794r2x1x2
·
s2y
ns2x2
+0.206r2x1y ·

s2y
ns2x2

.

2.3. The Unbalanced Dichotomized Model
We now consider the situation where X1 is dichotomized at an arbitrary
point d, not necessarily the median. Let

Xg
1=˛F
1 d
sx1

2 if X1 \ d

−11−F 1 d
sx1

22 if X1 < d,

where F is the Gaussian distribution function. Then we have

cov(Xg
1 , X2)=2f 1

d
sx1

2 sx1x2
sx1

cov(Xg
1 , Y)=2f 1

d
sx1

2 sx1y
sx1

cov(Xg
1 , X1)=2f 1

d
sx1

2 sx1
Var(Xg

1 )=4pq,

where p=F(d/sx1 ), q=1−p, and f is the Gaussian density function.
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Fitting a model of the form Y=bD0+b
D
1X

g
1+b

D
2X2+e, we can show

that for large n,

E(b̂D2 )=
pq−f2 1 d

sx1

2

pq−f2 1 d
sx1

2 r2x1x2

rx2ysy

sx2

Var(5bD2 )=
1−
f2 1 d
sx1

2

pq
4pq

·
r2x1ys

2
y

ns2x2
+

1−r2x1y

1−
f2 1 d
sx1

2

pq
r2x1x2

·
s2y
ns2x2

An obvious feature of all these categorized models is that E(bD2 ) ] 0.
Furthermore, the bias increases as both the correlation between X2 and Y
and the correlation between X1 and X2 increases.

3. EFFICIENCY OF PREDICTIONS

Even though categorizing a continuous variable leads to biased param-
eter estimates, it is conceivable that there is negligible loss of efficiency in
predictions. In this paper we use the residual sum of squares as a measure
of efficiency. We compare residual sums of squares of different models with
the residual sum of squares from the continuous model Y=a0+a1X1+e.
In vector notation, let r=Y− b̂X denote the residual for a general
regression model. A well known property of the residual sum of squares
(Graybill, 1976) is that

(s2y | x1 )
−1 rŒr=(s2y | x1 )

−1 YŒ(I−XX−) Y

has a noncentral chi-square distribution with d.f.=n−p and noncentrality l=
1
2 m
−

y | x(I−XX−) my | x, where, s
2
y | x1=s

2
y(1−r

2
x1y) and my | x1=my+a1(x1−mx1)

is the conditional variance and mean of Y given X1.
Applying this result we have for the continuous model (s2y | x1 )

−1 rŒr
’ q2n−2.
For the dichotomized model, the noncentrality parameter is

l=
s2x1y
2s4x1
·
r

X −1JnX1−

1nŝ
2
x2
5cov(xg

1 , x1)2+nŝ
2
xg

1
5cov(x1, x2)2

−2n5cov(xg
1 , x2)5cov(x

g
1 , x1)5cov(x1, x2)

2

s2xg
1
s2x2
−5cov(xg

1 , x2)2
s
,
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where Jn is the n×n matrix with all entries equal to 1. For large n, it can be
shown that

1
n
lQ
1
2
·
s2x1y
s2x1

1 (p−2)(1−r2x1x2 )
p−2r2x1x2

2

=
1
2
·s2yr

2
x1y
10.3634(1−r2x1x2 )
1−0.6366r2x1x2

2

Therefore the relative efficiency is given by

E(rŒr |X1)
E(rŒr |Xg

1 , X2)
%

1

1+
r2x1y
1−r2x1y

·
0.3634(1−r2x1x2 )
1−0.6366r2x1x2

. (4)

Note that the denominator is always greater than or equal to one,
indicating loss of efficiency unless X1 and Y are uncorrelated or X1 and X2
are perfectly correlated.
For the three-category model, it can be shown that

1
n
lQ
1
2
·s2yr

2
x1y ·
0.206(1−r2x1x2 )
1−0.794r2x1x2

,

giving relative efficiency

E(rŒr |X1)
E(rŒr |Xg

11, X
g
12, X2)

%
1

1+
r2x1y
1−r2x1y

·
0.206(1−r2x1x2 )
1−0.794r2x1x2

. (5)

For the general dichotomized model,

1
n
lQ
1
2
·
s2x1y
s4x1
·s2x1 ·

R
1−
f2 1 d
sx1

2

pq

S
(1−r2x1x2 )

1−
f2 1 d
sx1

2

pq
r2x1x2

,

CATEGORIZING AN EXPLANATORY VARIABLE 255



giving relative efficiency

E(rŒr |X1)
E(rŒr |Xg

1 , X2)
%

1

1+

r2x1y
1−r2x1y

·
R
1−
f2 1 d
sx1

2

pq

S
(1−r2x1x2 )

1−
f2 1 d
sx1

2

pq
r2x1x2

. (6)

In all cases we note that the relative efficiencies depend only on the
correlation between X1 and Y and between X1 and X2.

4. SIZE OF THE TEST

A common approach to determining whether X2 is important would be
to test H0: b2=0 vs. Ha: b2 > 0. For any particular model, the size of a
nominal 0.05 level test is determined by

F 1 m̂b2
`ŝ2b2

−1.652 ,

where m̂b2 and ŝ
2
b2
are the asymptotic mean and variance of b2 in the

corresponding dichotomized or categorized model. For the dichotomized
model, the size is

F R`n
0.3634rx2y
1−0.6366r2x1x2

= 1−r2x1y
1−0.6366r2x1x2

+0.3634r2x1y

−1.65S . (7)

For the categorized model, the size is

F R`n
0.206rx2y
1−0.794r2x1x2

= 1−r2x1y
1−0.794r2x1x2

+0.206r2x1y

−1.65S . (8)

Recalling from (1) that rx2y can be written as rx1yrx1x2 , we can see that
the size only depends on the correlation between Y and X1 and the
correlation between X1 and X2.
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5. NUMERICAL RESULTS

5.1. Size

We undertook a small simulation study, to compare with the asymptotic
results, and to illustrate the effect of discretizing X1 on the bias and
variance of b2 and on the size of tests of b2=0. The simulation results
were produced using 1,000 replicates and a sample size of 200 with data
generated from the true model (2). The design is chosen such that
s2x1=s

2
x2=100 and s

2
y=10, 000.

We fit three models

Y=bD0+b
D
1X

g
1+b

D
2X2+e (9)

Y=bc0+b
c
11X

g
11+b

c
12X

g
12+b

c
2X2+e (10)

Y=b0+b1X1+b2X2+e. (11)

In model (9), X1 is dichotomized at the median. In model (10), X1 is
categorized into three groups of equal probability. Model (11) is fitted
without dichotomizing X1. Model (11) is fully efficient for large samples,
with

E(b̂2)=0 Var(b̂2)=
s2y
ns2x2

1−r2x1y
1−r2x1x2

.

Table I shows the mean and variance of b̂2 for the three models, for nine
different configurations of rx1x2 and rx1y. We see excellent correspondence
between the asymptotic and the simulation results. The bias of b̂2 is larger
for the dichotomized model than for the categorized model. The compari-
sons of the variance of b̂2 are mixed, with no one model always giving the
smallest or the largest variance. They are equal only if the correlation
between X1 and X2 is 1.
Figure 1 shows the size of the test of b2=0 as a function of rx1x2
calculated from Eqs. (7) and (8). We see that the size of the test quickly
departs from the nominal 0.05 level for both dichotomized and categorized
models. Furthermore the size is uniformly smaller for the categorized
model than for the dichotomized model. When the correlation between X1
and X2 is high, they both have a similar same large size. This is to be
expected since rejecting b2=0 is not hard since the high correlation
between X2 and X1 implies the high correlation of X2 with Y given fixed
rx1y (from (1)). The size departs more quickly from the nominal level when
the correlation between X1 and Y is higher. We also note that the size does
not depend on the variances.
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TABLE I

Simulation Results for the Mean and Variance of b2 under Different Models

Model with Dichotomized Categorized
X2(Eq. 11). model (Eq. 9). model (Eq. 10).

configuration asymp. simul. asymp. simul. asymp. simul.

Mean(b2) 0.000 0.031 0.347 0.381 0.200 0.228
rx1x2=0.3 rx1y=0.3 Var(b2) 0.500 0.507 0.499 0.501 0.499 0.502

Mean(b2) 0.000 −0.023 0.578 0.546 0.333 0.310
rx1x2=0.3 rx1y=0.5 Var(b2) 0.412 0.420 0.443 0.461 0.430 0.448

Mean(b2) 0.000 0.008 0.925 0.927 0.533 0.542
rx1x2=0.3 rx1y=0.8 Var(b2) 0.198 0.212 0.307 0.311 0.260 0.281

Mean(b2) 0.000 −0.002 0.648 0.631 0.386 0.366
rx1x2=0.5 rx1y=0.3 Var(b2) 0.607 0.623 0.557 0.578 0.577 0.596

Mean(b2) 0.000 0.020 1.081 1.106 0.643 0.662
rx1x2=0.5 rx1y=0.5 Var(b2) 0.500 0.521 0.491 0.513 0.494 0.513

Mean(b2) 0.000 0.020 1.729 1.740 1.030 1.048
rx1x2=0.5 rx1y=0.8 Var(b2) 0.240 0.244 0.330 0.362 0.291 0.296

Mean(b2) 0.000 0.022 1.472 1.492 1.007 1.036
rx1x2=0.8 rx1y=0.3 Var(b2) 1.264 1.295 0.784 0.742 0.934 0.931

Mean(b2) 0.000 0.029 2.453 2.476 1.678 1.692
rx1x2=0.8 rx1y=0.5 Var(b2) 1.042 1.055 0.678 0.679 0.788 0.824

Mean(b2) 0.000 0.013 3.925 3.908 2.684 2.678
rx1x2=0.8 rx1y=0.8 Var(b2) 0.500 0.460 0.420 0.426 0.432 0.495

5.2. Efficiency

Figure 2 shows the relative efficiency as measured by the residual sum of
squares for the efficiency of the models, calculated from Eqs. (4) and (5).
We can see that the categorized model always has a smaller residual sum of
squares compared with the dichotomized model. But the efficiency of the
model depends on the correlation between X1 and Y. If the correlation
between X1 and Y is small to moderate (for example, < 0.5), there is not
much loss in efficiency by discretizing X1. Besides, there is not much dif-
ference between the dichotomized and categorical models. The difference
between the two models increases when the correlation between X1 and Y
is high. In the extreme case when rx1y=0.9, the relative of efficiency for the
categorized model is almost twice that of the dichotomized model. The
relative efficiency can be as low as around 0.4 for the dichotomized model
in this case. The relative efficiency remains lower than 0.5 even though the
correlation between X1 and X2 is as high as 0.7. In other words, adding X2
does not rectify the problem. The relative efficiency for the categorized
model is above 0.8 for all the cases in Fig. 2.
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FIG. 1. Size of test of b2=0 based on different models(n=200). (Solid line indicates the
dichotomized model and dashed line the categorized model.)

Figure 3 illustrates the relative efficiency (6) of the general dichotomized
model as a function of p=P(X1 < cutpoint) and rx1y. Here we fix rx1x2=
0.5. From (6), we can see that the relative efficiency is a function of 1/r2x1x2 .
So, using different rx1x2 will only shift the curves up or down accordingly
without changing the shape of the curves. Four different levels of rx1y are
used in the graphs: 0.3, 0.5, 0.7, and 0.9. The relative efficiency is
maximized when p=0.5. As p deviates from 0.5, relative efficiency decrea-
ses. The curves are symmetric about p=0.5. If p is near 0.5 the relative
efficiency does not change much, particularly if the correlation between Y
and X1 is small, which means as long as we dichotomize the covariate near
the median, we can still achieve similar relative efficiency.

6. CONCLUSIONS

In this paper, we demonstrate how categorizing a continuous variable
can mislead one into concluding that a second unimportant variable is
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FIG. 2. Relative efficiency for prediction of dichotomized and categorized model
compared to the continuous model. (Solid line indicates the dichotomized model and dashed
line the categorized model.)

important and can lead to considerable loss of efficiency of prediction. The
results are obtained assuming multivariate normality. The quantitative
results would obviously differ for other distributional assumptions and
other types of response variables. The algebraic expressions would also be
quite different. However, we believe that qualitatively the results for other
models will be strongly influenced by the correlation between the two
explanatory variables and between the response and the discretized
variable.
The unusual argument in favor of categorizing a continuous variable is
because the functional form is not known and categorizing has some
inherent robustness properties. In many applications, it is reasonable to
think that the functional form of a covariate is continuous or even smooth
and monotonic. Categorizing clearly does not lead to continuous or
smooth functional forms. An alternative approach to categorizing, which
acknowledges uncertainty in the functional form, is to estimate the func-
tional form, along with the other parameters of interest, for example, by
using a power transformation or nonparametric regression techniques.
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FIG. 3. Relative efficiency for prediction of dichotomizing a continuous covariate as a
function of the cutpoint and correlation between Y and X1, (rx1x2=0.5).

7. APPENDIX: DERIVATION OF BIAS AND VARIANCE.

We can express the denominator of U(x1, x2) in Eq. (3) as
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is idempotent, and its rank equals its trace:
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This has a normal distribution with mean 0 and variance
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Furthermore the numerator is independent of the denominator given X1
when n is large, since
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The unconditional variance of U(X1, X2) is given by
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Similarly we can show that
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