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Currently available drugs for the acute treatment of migraine, i.e. ergot alkaloids and triptans, are cranial
vasoconstrictors. Although cranial vasoconstriction is likely to mediate—at least a part of—their therapeutic
effects, this property also causes vascular side-effects. Indeed, the ergot alkaloids and the triptans have been
reported to induce myocardial ischemia and stroke, albeit in extremely rare cases, and are contraindicated in
patients with known cardiovascular risk factors. In view of these limitations, novel antimigraine drugs devoid
of vascular (side) effects are being explored. Currently, calcitonin gene-related peptide (CGRP) receptor
antagonists, which do not have direct vasoconstrictor effects, are under clinical development. Other classes of
drugs, such as 5-HT1F receptor agonists, glutamate receptor antagonists, nitric oxide synthase inhibitors,
VPAC/PAC receptor antagonists and gap junction modulators, have also been proposed as potential targets for
acute antimigraine drugs. Although these prospective drugs do not directly induce vasoconstriction, they may
well induce indirect vascular effects by inhibiting or otherwise modulating the responses to endogenous
vasoactive substances. These indirect vascular effects might contribute to the therapeutic efficacy of the
previously mentioned compounds, but may alternatively also lead to vascular side-effects. As described in the
current review, some of the prospective antimigraine drugs with a proposed non-vascular mechanism of
action may still have direct or indirect vascular effects.
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1. Introduction

Migraine is defined as a neurovascular disorder characterized by
attacks of a severe, debilitating and throbbing unilateral headache
associated with autonomic nervous dysfunction including nausea and
vomiting, photophobia and phonophobia as well as neurological
symptoms (Goadsby et al., 2002; Olesen et al., 2009). Based on clinical
features, three distinct phases ofmigraine can bediscerned: a trigger, an
aura and a headache phase (Goadsby et al., 2002). InWestern countries
this disorder affects approximately 18% of women and 6% of men (Bigal
& Lipton, 2009). Migraine represents an enormous socio-economic
burden to the individual as well as to society (Andlin-Sobocki et al.,
2005), and profoundly affects the patient's quality of life (Ruiz de
Velasco et al., 2003).
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1.1. Pathophysiology of migraine

Although elusive for a long time, our understanding of the
pathophysiology of migraine progressed significantly, evolving slowly
from a malady of supernatural causes (Villalón et al., 2003) to a
disorder of vascular (Graham &Wolff, 1938; Wolff, 1938), neurogenic
(Moskowitz et al., 1979; Moskowitz, 1993) or neurovascular
(Durham, 2008; Villalón & Olesen, 2009) origin. Currently, migraine
is considered a neurovascular disorder involving activation of the
trigeminovascular system (Olesen et al., 2009), with the primary
dysfunction located in brainstem centers regulating vascular tone and
pain sensation (Link et al., 2008). This activation results in cranial
vasodilatation mediated by the release of vasoactive neuropeptides
including calcitonin gene-related peptide (CGRP), which seems to
play a pivotal role in migraine pathophysiology (Villalón & Olesen,
2009).

1.2. Currently available antimigraine drugs

The history of the treatment of headache in general, and migraine
in particular, spans millennia, from the Neanderthal era to the Space
Age (Edmeads, 1999). With this long history, it is surprising that
effective antimigraine drugs had been, until very recently, limited in
number. In the last decades, there have been big steps in the
development of antimigraine drugs (Olesen et al., 2006). Besides
analgesics, specific antimigraine drugs can be divided into: (i) agents
that abolish an individual migraine attack (acute antimigraine drugs;
i.e. ergots and triptans); and (ii) agents aimed at its prevention
(prophylactic drugs; such as β-adrenoceptor blockers, antiepileptics,
etc.). Many patients need treatment to abolish attacks (acute
treatment), but only patients with frequent attacks additionally
need prophylactic treatment by drugs taken daily to reduce the
number and/or severity of attacks (Olesen & Goadsby, 2006).

In acute antimigraine treatment triptans represent a considerable
advance (Goadsby et al., 2002), but their vasoconstrictor side-effects
warrant caution in patients with cardiovascular pathologies (Dodick
et al., 2004). Other side-effects such as dizziness, nausea, fatigue, chest
symptoms and paresthesia prevent some patients from using triptans.
Furthermore a number of patients do not respondwell to the triptans;
indeed, triptan monotherapy is ineffective or poorly tolerated in 1 out
of 3 migraineurs and in 2 out of 5 migraine attacks (Mathew et al.,
2009). The advent of CGRP receptor antagonists such as olcegepant
(previously referred to as BIBN4096BS; (Olesen et al., 2004)) and
telcagepant (MK-0974 (Ho et al., 2008a,b; Ho, Dahlöf, et al., 2010))
bodes well for migraineurs who are poor or non-responders to triptan
treatment. As subsequently discussed in this review, these “gepants”,
which have an efficacy comparable to triptans, seem to have a better
safety and tolerability profile (Villalón & Olesen, 2009; Durham &
Vause, 2010).

1.2.1. Ergot alkaloids
The ergot alkaloids ergotamine and dihydroergotamine (DHE)

(also called “ergots”), were the first specific acute antimigraine drugs
for several decades until the advent of the triptans (Silberstein &
McCrory, 2003). The ergots were originally developed as sympatho-
lytics, but it was later suggested that their antimigraine therapeutic
efficacy was probably mediated by vasoconstriction of cranial blood
vessels (for review, see Müller-Schweinitzer, 1992). As both ergota-
mine and DHE display affinity for a wide variety of receptors including
5-HT (5-hydroxytryptamine, serotonin), dopamine and noradrena-
line receptors (Müller-Schweinitzer, 1992), they are considered “dirty
drugs”. As expected from this pharmacological profile, their most
important pharmacological effect is arterial constriction (Müller-
Schweinitzer & Weidmann, 1978; Müller-Schweinitzer, 1992). In-
deed, at therapeutic concentrations, ergotamine and DHE induce a
potent vasoconstriction in the external carotid (extracranial) vascular
bed of anaesthetized dogs mainly by activation of α-adrenoceptors
and 5-HT (mainly 5-HT1B) receptors (Villalón et al., 1999; Valdivia et
al., 2004). Whereas both ergotamine and DHE constrict the cranial
vascular bed, there is a difference in their capacity to constrict
peripheral blood vessels. Ergotamine induces contraction of periph-
eral arteries, including the pulmonary (Cortijo et al., 1997), cerebral
(Müller-Schweinitzer, 1992), temporal (Ostergaard et al., 1981) and
coronary (MaassenVanDenBrink et al., 1998) arteries. In contrast, DHE
is a more potent constrictor of venous capacitance vessels than of
arteries (Silberstein, 1997). In humans, blood pressure is transiently
increased for about 3 h after parenteral therapeutic doses of
ergotamine and DHE (Tfelt-Hansen, 1986; Andersen et al., 1987),
which is likely caused by an increased peripheral resistance (Tfelt-
Hansen et al., 1983). Moreover, a much longer lasting constrictor
effect on peripheral arteries (ergotamine) or veins (DHE) is induced.
This is most likely caused by a slow diffusion from the receptor
biophase (Martin et al., 1995); the effects last much longer than
expected from the plasma concentrations (Tfelt-Hansen & Paalzow,
1985; MaassenVanDenBrink et al., 1998; De Hoon et al., 2001). Thus,
overall, based on in vitro, in vivo animal data and human clinical
research, both ergotamine and DHE have the propensity to induce
potent and longer lasting clinical effects in some patients, although
the side-effect profile of DHE is more favorable as compared to that of
ergotamine (Silberstein & Young, 1995; Saper & Silberstein, 2006).

Besides a vascular mode of action, which was originally believed to
be the exclusive mechanism of the antimigraine efficacy of ergot
alkaloids, the neuronal properties of these compounds most probably
also contribute to their clinical effects. The neuronal activity is
probably mediated via their agonist activity at 5-HT1B, 5-HT1D and
5HT1F receptors on trigeminal nerve terminals resulting in inhibition
of the neuronal release of vasoactive peptides and preventing
vasodilatation in migraine (Hoskin et al., 1996).

1.2.2. Triptans
Triptans are 5-HT receptor agonists, displaying affinitymainly at the

5-HT1B and 5-HT1D receptor subtypes (for references, see Villalón et al.,
2003). Thedevelopment of the triptanswaspromptedby thehypothesis
that 5-HT was involved in the pathophysiology of migraine (for further
details, see Section 2.2). The factor restricting the clinical use of 5-HT as
an antimigraine agent was the prevalence of side-effects on the
gastrointestinal and cardiovascular systems (Kimball et al., 1960;
Anthony et al., 1967) as well as the need for an intravenous (i.v.)
infusion of 5-HT. The antimigraine efficacy of 5-HT clearly suggested the
existence of a specific 5-HT receptor involved in the relief of migraine
headache. The identification of the 5-HT receptor type (nowadays called
the 5-HT1B receptor) responsible for the beneficial effects of 5-HT
provided the possibility to develop antimigraine drugs devoid of the
side-effects observed with the ergot alkaloids (Humphrey, 2008). The
first triptan developed, sumatriptan, was introduced in the early 1990s
(Humphrey & Feniuk, 1991), and it did indeed change the lives of
numerous migraineurs (Goadsby et al., 2002). Compared to the ergot
alkaloids, sumatriptan induces fewer side-effects due to its increased
selectivity on the 5-HT1B and 5-HT1D receptors (Brown et al., 1991),
thereby avoiding peripheral vasoconstriction as mediated, e.g., by the
5-HT2A receptor for which ergotamine displays affinity. Further, the
vasoconstrictor effects of sumatriptan are not sustained during a long
period as is the case for the ergot alkaloids (MaassenVanDenBrink et al.,
1998). Limitations of sumatriptan are its low (14%) oral bioavailability
(Fowler et al., 1991), and headache recurrence within 24 h in about one
third of patients; nevertheless, recurrence can be treated effectively
witha subsequentdose of sumatriptan (Ferrari & Saxena, 1993;Visser et
al., 1996). In order to overcome these limitations, over time, additional
triptans have been developed with chemical structures similar to
sumatriptan, but with a higher lipophilicity (for references, see Villalón
et al., 2003). Whereas the pharmacodynamic profile of these so-called
‘second-generation’ triptans resembles that of sumatriptan, there are



334 K.Y. Chan et al. / Pharmacology & Therapeutics 129 (2011) 332–351
differences in their pharmacokinetic properties, which may lead to
advantages including earlier onset of action (Ferrari et al., 2001). The
antimigraine action of triptans is most likely mainly based on their
potent vasoconstrictor effect on cranial blood vessels mediated via the
5-HT1B receptor (Humphrey & Feniuk, 1991; Saxena & Pfelt-Hansen,
2006). The high intracranial 5-HT1B receptor density compared to
extracranial blood vessels probably renders the triptans relatively
selective for producing intracranial vasoconstriction (Longmore et al.,
1998). Nevertheless, in keepingwith their agonist activity at the 5-HT1B
receptor, the triptans also have the potential to induce extracranial
vasoconstriction. In vivo, in humans it was shown that sumatriptan as
well as second-generation triptans induce vasoconstriction, increase
blood pressure and decrease buffering capacity of conduit arteries after
the intake of equipotent therapeutic dosages (De Hoon et al., 2000;
Vanmolkot et al., 2002; Vanmolkot & de Hoon, 2006). In vitro,
constriction of coronary arteries was confirmed (MaassenVanDenBrink
et al., 1998; Nilsson et al., 1999), which is larger in distal than in
proximal sections of the coronary artery (Chan et al., 2009). Conse-
quently, the triptans are contraindicated in individuals with active
cardiovascular disease and uncontrolled hypertension (Dodick et al.,
2004). However, a retrospective case-control study has recently
demonstrated that the use of triptans in patients with cardiovascular
risk factors (forwhom these drugs are contraindicated) did not increase
the incidence of ischemic cardiovascular complications (Wammes-van
derHeijden et al., 2006).Moreover, 5-HT1B receptor expression does not
differ between normal and atherosclerotic coronary arteries (Edvinsson
et al., 2005).

It is generally accepted that, besides inducing vasoconstriction in
cranial blood vessels, two additional mechanisms of action probably
contribute to the therapeutic action of the triptans, namely: (i)
inhibition of the release of neuropeptides in perivascular nerve
terminals of the trigeminovascular system (Goadsby & Edvinsson,
1993); and (ii) direct inhibition of neuronal activation, reducing central
pain transmission via activation of 5-HT1D and 5-HT1F receptors
(Goadsby et al., 2002; Waeber & Moskowitz, 2005).

2. Vascular effects of prospective antimigraine drugs

Since the currently available antimigraine drugs have shortcomings
and may cause cardiovascular side-effects due to their vasoconstrictor
properties, research now has focused on the development of antimi-
graine drugs devoid of vasoconstrictor effects. Several ligands that act
centrally and affect neuronal transmission have been described to be
potential targets for the prophylactic or acute treatment of migraine
(Ramadan & Buchanan, 2006). Some of these compounds may,
however, also affect the release or action of vasoactive mediators.
Examples of potential neuronal targets for future antimigraine drugs
are: the CGRP receptor, glutamate receptor, VPAC/PAC receptor, NOS
synthase, 5-HT1F receptor and gap junctions. However, if such
antimigraine compoundswould indeed inhibit the release of vasoactive
agents or block the receptors involved in vasodilatation, these
compounds will directly or indirectly induce vascular (side) effects.
On this basis, the present review analyzes the preclinical as well as
clinical experimental data on the vascular effects of several prospective
Fig. 1. Schematic representation of a synapse in the CNS (left panels) and a neurovascular jun
released from CGRPergic neurons may produce neuronal activation (left panel), whereas sti
terminals may induce vasodilatation (right panel). Thus, CGRP receptor antagonists may affe
5-HT7 and 5-HT1F receptors in the CNS by 5-HT released from serotonergic neurons may affe
prejunctional 5-HT7 receptors may increase the release of neuromediators (heterorecepto
receptors may inhibit the release of neuromediators (heteroreceptors; e.g. CGRP). Stimulatio
functional in blood vessels. Thus, both 5-HT7 receptor antagonists and 5-HT1F receptor agonis
synaptic ionotropic glutamate receptors in the CNS by glutamate released from glutamat
neurovascular glutamate NMDA receptors by glutamate released from nerve terminals incre
Therefore, glutamate receptor antagonists may affect neurotransmission, while NMDA rece
synaptic VPAC/PAC receptors in the CNS by PACAP or VIP released from peptidergic neuron
VPAC/PAC receptors by PACAP or VIP released from peptidergic neurovascular terminals ma
receptor antagonists might affect neurotransmission as well as vasodilatation.
antimigraine drugs. In the following sections, the (neurogenic)
mechanism of action of a number of prospective antimigraine drugs,
their (potential) vascular (side) effects (see also Fig. 1) and, when
possible, their main clinical benefits and limitations are discussed.

2.1. CGRP receptor antagonists

CGRP is a potent vasodilator in several species (Edvinsson et al.,
1987; Bell & McDermott, 1996; Gupta et al., 2006b) and is expressed
throughout the central and peripheral nervous system (Poyner,
1992). Several lines of evidence support that CGRP plays an important
role in the pathogenesis of migraine (Edvinsson & Goadsby, 1990).
Elevated levels of CGRP have been observed in the jugular vein during
a migraine attack and these levels were normalized after pain relief
with sumatriptan (Goadsby et al., 1990). Moreover, i.v. administration
of CGRP can induce a migraine-like headache in migraine patients
(Lassen et al., 2002) and, thus, disruption of CGRP signaling represents
a valid strategy for the treatment of migraine (Doods et al., 2000; Ho
et al., 2008b). CGRP is found in the central nervous system (CNS)
(particularly in striatum, amygdalae, colliculi and cerebellum), as well
as in the vessel wall of intracranial arteries (Arulmani et al., 2004a;
Durham, 2008; Link et al., 2008). CGRP is located in primary spinal
afferent C and Aδ fibers projecting to the trigeminal nuclear complex
in the brainstem (Liu et al., 2008). Moreover, in the trigeminal nucleus
caudalis and at C1/C2 levels, CGRP acts at second order neurons to
transmit pain signals centrally through the brainstem andmidbrain to
the thalamus and higher cortical pain regions (Goadsby, 2007a). In
addition, components of the functional CGRP receptor complex, such
as calcitonin-like receptor and receptor activity modifying protein 1
(RAMP1) have recently been localized on trigeminal neurons
(Eftekhari et al., 2010), and it is suggested that they modulate the
prejunctional CGRP production (Lennerz et al., 2008). In the cranial
circulation, CGRP is released by perivascular nerve fibers after
trigeminal nerve activation where it induces vasodilatation of cranial
arteries by binding to the CGRP receptor (Edvinsson, 1985; Uddman et
al., 1985; Goadsby et al., 1988). CGRP initiates vasodilatation through
interaction with these G-protein coupled receptors of the B-type that
are primarily coupled to the activation of adenylyl cyclase. In vitro,
this vasodilatation is independent of endothelium in human cerebral,
meningeal (Edvinsson, 1985; Jansen-Olesen et al., 1996; Gupta et al.,
2006a) and coronary (Gupta et al., 2006b) blood vessels, although in
animals an NO-dependent component seems to be present (Akerman
et al., 2002), while other studies provided evidence against an
endothelial mechanism, but suggested that the dilatation is associated
with activation of adenylyl cyclase (Edvinsson, 1985). Likewise, in
vivo in the human peripheral circulation, CGRP-induced vasodilata-
tion is, at least in part, dependent on the release of nitric oxide (NO)
(De Hoon et al., 2003). Blockade of the functional CGRP receptor
complex, which consists of the calcitonin-like receptor component
and RAMP1 (Conner et al., 2002), prevents vasodilatation induced by
CGRP. CGRP receptor characterization has in the past relied on the use
of the peptide antagonist CGRP8–37. Recently, the more potent CGRP
receptor antagonists olcegepant and telcagepant, which are effective
in the acute treatment of migraine, became available (Olesen et al.,
ction (right panels). A: stimulation of post-synaptic CGRP receptors in the CNS by CGRP
mulation of vascular CGRP receptors by CGRP released from sensory perivascular nerve
ct neurotransmission as well as vasodilatation. B: stimulation of pre- and post-synaptic
ct neurotransmission. On the other hand, on the neurovascular junction, stimulation of
rs; e.g. CGRP) resulting in vasodilatation, whereas stimulation of prejunctional 5-HT1F
n of vascular 5-HT7 receptors results in vasodilatation, whereas 5-HT1F receptors are not
ts may block neurotransmission in the trigeminovascular system. C: stimulation of post-
ergic neurons may produce neuronal activation (left panel), whereas stimulation of
ases the release of vasoactive peptides from sensory perivascular nerves (right panel).
ptor antagonists additionally will affect vasodilatation. D: stimulation of pre- and post-
s may produce neuronal activation (left panel), whereas stimulation of neurovascular
y produce release of vasoactive peptides and vasodilatation. Taken together, VPAC/PAC
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2004; Ho et al., 2008b). Although the previously mentioned
compounds were originally designed to prevent the neurogenic
vasodilatation occurring in the pathogenesis of migraine, these
antagonists also seem to display central effects that may be clinically
important in the treatment of this disorder (Villalón & Olesen, 2009).

2.1.1. Central effects
It remains unclearwhether the antimigraine action of CGRP receptor

antagonists ismediated via a central or a peripheralmechanism. Several
arguments suggest a centralmechanismof action, namely: (i) the lackof
presynaptic CGRP receptors in the meninges, which implies that
exogenous CGRP is unlikely to directly modify the innervating sensory
nerve fibers (Lennerz et al., 2008); (ii) the fact that exogenous CGRP in
the meninges, including meningeal vasodilatation, are not sufficient to
activate or sensitizemeningeal nociceptors in the rat (Levy et al., 2005).
This suggests that an action of CGRP on the dura mater cannot account
for the activation of peripheral afferents during migraine (Levy et al.,
2005); (iii) olcegepant inhibits the post-synaptic nociceptive transmis-
sion in the trigeminal system by i.v. administration, but not by topical
administration on the dura (Fischer et al., 2005); and (iv) given the very
high clinical doses reported to achieve antimigraine efficacy compared
to the in vitro receptor binding characteristics of telcagepant, the need
for penetration through the blood–brain barrier has been suggested
(Olesen et al., 2004; Edvinsson, 2008; Ho et al., 2008b). However, the
discrepancy between the high clinical doses and the binding affinity in
vitro is probably not only explained by penetration of the blood–brain
barrier, but also by other factors, which will be explained in the later
part.

2.1.2. Vascular effects
Olcegepant has a high affinity for the primate CGRP receptor (Ki:

0.014 nM), and potently antagonizes in vitro the vasodilator response
to CGRP in human cranial arteries (Edvinsson et al., 2002; Verheggen
et al., 2002; Gupta et al., 2006a). Besides its direct antagonist effect in
cranial arteries, olcegepant is capable of blocking the vasodilatation
induced by stimulation of the trigeminal nerve. Moreover, olcegepant:
(i) dose-dependently antagonized CGRP-mediated neurogenic vaso-
dilatation caused by trigeminal ganglion stimulation in monkeys and
rats (Doods et al., 2000); (ii) blocked the changes in facial blood flow
induced by brainstem trigeminal nucleus caudalis activation in rats
(Escott et al., 1995); and (iii) attenuated capsaicin-induced carotid
arteriovenous anastomotic vasodilatation (Kapoor et al., 2003).
However, due to its physicochemical properties and for reasons of
bioavailability, olcegepant needs to be administered i.v., which
reduces its therapeutic value. In contrast with olcegepant, telcagepant
(MK-0974) is orally bioavailable (Paone et al., 2007), and has also
been shown to be effective as an antimigraine drug (Ho et al., 2008a,b;
Connor et al., 2009). Pharmacological characterization of telcagepant
showed that this drug displays equal affinity for native and cloned
CGRP receptors as determined by radioligand binding experiments
(Ki: 0.77 nM) (Salvatore et al., 2008). Moreover, telcagepant antag-
onized in a concentration-dependent manner: (i) CGRP-induced
cAMP accumulation in cells expressing the recombinant human
CGRP receptor (Salvatore et al., 2008); (ii) the vasodilator effect of α-
CGRP in human isolated cranial arteries (Edvinsson et al., 2010); and
(iii) capsaicin-induced dermal vasodilatation, which is caused by
endogenous CGRP release via activation of the transient receptor
potential cation channel, subfamily V, member 1 (also called TRPV1
receptor) in the rhesus forearm (Salvatore et al., 2008).

In addition to its role in the cranial circulation, CGRP is also
important in the peripheral cardiovascular system. CGRP is a potent
peripheral vasodilator which affects the myocardium. The human
coronary circulation is innervated by a dense supply of CGRP-positive
fibers (Gulbenkian et al., 1993) and the CGRP receptor components
are found in human coronary arteries (Gupta et al., 2006b; Chan,
Edvinsson, et al., 2010). Indeed, both olcegepant (Gupta et al., 2006b)
and telcagepant (Chan, Edvinsson, et al., 2010) antagonize the
vasodilator effect of α-CGRP in human isolated coronary arteries.
Moreover, increased cAMP levels induced by α-CGRP are reduced
when coronary arteries are pre-treated with olcegepant (Gupta et al.,
2006b) or telcagepant (Chan, Edvinsson, et al., 2010), suggesting that
the blocking effect is mediated via the CGRP receptor. CGRP increases
heart rate (Franco-Cereceda & Lundberg, 1988) and has positive
inotropic effects on isolated human trabeculae (Saetrum Opgaard et
al., 2000). Hence, blockade of the CGRP receptors might affect
cardiovascular responses induced by CGRP. However, in vivo
haemodynamic studies in dogs have reported no effect of CGRP8–37
on coronary or myocardial regional blood flow (Shen et al., 2001).
Olcegepant has also been reported to have no effect on myocardial
vascular conductance in rat and pig (Kapoor et al., 2003; Arulmani et
al., 2004b), nor does olcegepant alter baseline haemodynamics in
animals (Arulmani et al., 2004b). These data suggest that endogenous
CGRP is not important in cardiovascular regulation under resting
conditions in cardiovascularly healthy subjects. On the other hand,
CGRP receptor antagonists might display adverse effects in patho-
physiological conditions. CGRP is proposed as a pivotal player in
ischemia-reperfusion (Kwan et al., 1990; Huang et al., 2008) and
ischemic preconditioning (Wolfrum et al., 2005). Indeed, CGRP has a
protective effect during coronary (Li & Peng, 2002; Li et al., 2008) and
cranial (Rehni et al., 2008; Cai et al., 2010) ischemia, which was
demonstrated both in pre- and post-conditioning ischemic reperfu-
sion models. Moreover, CGRP8–37 (Lu et al., 1999) and olcegepant
(Chai et al., 2006) blocked the protective effect of CGRP in an isolated
rat heart model. Based on these observations, it may be suggested that
a CGRP receptor antagonist, especially after chronic use as would be
the case when used as a prophylactic drug, might attenuate the
cardioprotective effect of CGRP. Nevertheless, the effect of CGRP
receptor antagonism on ischemic preconditioning has until now been
demonstrated only in isolated rodent hearts, and the pathophysio-
logical significance of this observation is uncertain. In addition, in the
setting of pathology, in vivo studies of CGRP8–37 and olcegepant in rat
and pig report no effect on coronary ischemia/reperfusion infarct size
(Kallner et al., 1998; Wu et al., 2001). Further, CGRP8–37 had no effect
on myocardial blood flow in dogs with heart failure produced by
previous myocardial infarction and rapid ventricular pacing (Shen et
al., 2003). Moreover, another study in dogs reported no effect of
topically administered CGRP8–37 onto the left ventricular surface on
coronary artery microvessel diameter prior to and at 10 min following
coronary artery occlusion (Sekiguchi et al., 1994).

Taken together, although CGRP receptor antagonists under some
pathophysiological conditions might negatively affect the body's
protective mechanisms, it should be kept in mind that CGRP receptor
antagonists do not have vasoconstrictor properties per se in human
cranial and coronary arteries (Gupta et al., 2006a,b; Chan, Edvinsson,
et al., 2010), as the triptans do. This, as discussed in the later part, may
be an advantage in view of cardiovascular safety, particularly in
migraine patients suffering from cardiovascular pathologies (Villalón
& Olesen, 2009).

2.1.3. Clinical effects
Boehringer-Ingelheim's BIBN4096BS (olcegepant) was the first

CGRP receptor antagonist entering the clinical development phase
and provided proof-of-concept for the involvement of CGRP in
migraine pathophysiology (Olesen et al., 2004). Being the first of a
generation of CGRP receptor antagonists, olcegepant showed prom-
ising cerebral and systemic haemodynamics in humans, and thus
made this potential new class of antimigraine drugs in favor of the
triptans (Petersen et al., 2005). The study by Petersen et al. (2005)
with olcegepant was inconsistent with the assumption that CGRP
receptor antagonists could alter the tone of cerebral and extracerebral
arteries. Under resting conditions, no effect of olcegepant was seen on
regional and global cerebral perfusion, middle cerebral artery (MCA)
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blood flow velocity, temporal and radial artery diameter, blood
pressure or heart rate. The same group further showed that
olcegepant effectively prevents CGRP-induced headache and extra-
cerebral vasodilatation without significant effects on cerebral hemo-
dynamics (Petersen et al., 2005). After h-α-CGRP infusion, olcegepant
had no effect on blood flow velocity and regional perfusion of theMCA
compared to placebo, however, it prevented dilatation of the
superficial temporal and radial arteries as well as reflex tachycardia
resulting from systemic vasodilatation.

Although an additional neuronal action cannot be ruled out, in line
with its limited ability to penetrate through the blood–brain barrier
(Edvinsson & Tfelt-Hansen, 2008), it is suggested that olcegepant
treats migraine headache predominantly by acting at the level of the
large dural blood vessels which are not protected by the blood–brain
barrier. Resolving the question whether CGRP receptor antagonists
exhibit their antimigraine effect in the CNS or through a vascular
mechanism of action outside the CNS, is a very relevant issue in the
future development of new and safe CGRP receptor antagonists. To
that end, additional research is needed in order to answer this
question.

Unfortunately, due to its low oral bioavailability, the further
development of olcegepant was early terminated. Recently, with
BI44370 (Durham & Vause, 2010), the company has a new CGRP
receptor antagonist ready for phase III clinical development. Given the
fact that the efficacyof olcegepantwas comparable to that of the triptans
in acute migraine, while it had the major advantage of not inducing a
direct vasoconstrictor response, validated the CGRP receptor as a
valuable target and inspiredmany companies to develop CGRP receptor
antagonists as an effective and safe alternative for the triptans.

The first orally available CGRP receptor antagonist developed after
olcegepant was the Merck compound MK-0974 (telcagepant). It is
structurally derived from olcegepant (Williams et al., 2006; Paone et
al., 2007) and has a promising antimigraine profile (Ho et al., 2008b).
Indeed, telcagepant showed an efficacy comparable to that of
zolmitriptan, but with fewer side-effects. The most commonly
frequent adverse effects with telcagepant were dry mouth, somno-
lence, dizziness, nausea and fatigue (Edvinsson & Linde, 2010).
Adverse effects that occur after the use of triptans like asthenia,
paresthesia, chest discomfort, fatigue, myalgia, dizziness and throat
tightness, are less frequent after the use of telcagepant (Edvinsson &
Ho, 2010). Remarkably, an efficacy and tolerability study in patients
with stable coronary artery disease (Ho et al., 2008a) did not
demonstrate a significant difference in 2-hour headache freedom
between telcagepant (13/52, 25.0%) and placebo (10/53, 18.9%).
However, the study design and lower than expected number of
patients enrolled may have been the reason for this negative result.
The side-effect profile of telcagepant with intermittent dosing, as
required for the acute treatment of migraine, looks excellent.
Unfortunately, a small number of patients taking telcagepant twice
daily for three months as prophylactic treatment showed marked
elevations in liver transaminases (Tepper & Cleves, 2009). It has been
suggested that this is a result of drug accumulation with daily dosing,
since this is not seen in acute intermittent dosing. As a consequence of
this potential for hepatotoxicity, Merck Research Laboratories
announced a delay in filing the U.S. application for telcagepant for
the acute treatment of migraine.

During the exploratory phase of the clinical development, studies
focused on a biomarkermodel involving capsaicin-induced changes in
dermal blood flow which are the result of local CGRP release.
Therefore, inhibition of the increase in dermal vascular blood flow
by telcagepant served as a surrogate for the dose at which clinical
efficacy could be expected (Sinclair et al., 2010). After topical
application of capsaicin on the human forearm, orally administered
telcagepant effectively inhibited the CGRP-mediated increase in
dermal blood flow (Van der Schueren et al., 2007, 2008b). Comparable
results were obtained with a follow-up highly potent CGRP receptor
antagonist, MK-3207 (Kennedy et al., 2009). As neither MK-0974 nor
MK-3207 affected dermal blood flow under resting conditions, this
argues against direct vasoconstrictor effects of CGRP receptor
antagonists while they are very effective at preventing CGRP-
mediated vasodilatation. The blockade by MK-3207 in the capsaicin
biomarker model, guided the dose selection for further clinical trials
with the compound. Unfortunately, the clinical development program
for MK-3207 was discontinued (http://www.merck.com/newsroom/
news-release-archive/research-and-development/2009_0910.html)
after delayed, asymptomatic liver test abnormalities in extended
Phase I studies were reported (Hewitt et al., 2009).

Limited data about specific vascular effects of telcagepant in a
clinical setting are available. No effects on vital signs including blood
pressure and ECG were reported in the first published safety data (Ho
et al., 2008b). High doses of telcagepant, i.e. 560 and 600 mg, daily for
up to 8 days had no clinically significant effects on 24 h mean
ambulatory blood pressure or heart rate (Blanchard et al., 2010).

In a pharmacodynamic drug-interaction study with sumatriptan
(100 mg) (De Hoon et al., 2009), a supratherapeutic dose of
telcagepant (600 mg) did not significantly increase mean arterial
blood pressure when administered as monotherapy to migraineurs
during the interictal period. Co-administration, however, with
sumatriptan resulted in an increased mean arterial blood pressure,
comparable to the increase reported after administration of suma-
triptan alone (De Hoon et al., 2000).

When looking specifically at cardiac safety, one study investigated
the effect of telcagepant on spontaneous ischemia in patients with
stable coronary artery disease (Behm et al., 2008). No episodes of
chest pain were reported on the days of dosing of telcagepant or
placebo. No obvious treatment-related changes in vital signs or ECG
safety parameters appeared. Apparently, two 300 mg doses of
telcagepant, administered 2 h apart, did not exacerbate spontaneous
ischemia. However, important questions including the long term
safety of CGRP antagonists, e.g. in a prophylactic setting, or in patients
having an ischemic event, remain unanswered.

With the medical need for patients with coronary artery disease in
mind, the effect of telcagepant on the haemodynamic response to
therapeutic doses of glyceryl trinitrate (GTN; also called nitroglycerin)
was investigated in healthy volunteers in order to exclude a potential
pharmacodynamic interaction (Van der Schueren et al., 2008a). First,
telcagepant did not influence brachial artery diameter under resting
conditions. Secondly, telcagepant did not affect GTN-induced decrease
in arterial stiffness nor did it affect GTN-induced increase in brachial
artery diameter. The study concluded that CGRP receptor antagonists
have no influence on the vasodilator response to an exogenous NO
donor.

Although available data show no interference of CGRP receptor
antagonists on resting haemodynamics, CGRP blockade under clinical
ischemic conditions could have clinical consequences. However, in an
acute setting, a single oral dose of telcagepant did not reduce exercise
tolerance in patients with exercise-induced myocardial ischemia at
Tmax post telcagepant (Ho, Behm, et al., 2010). Exercise duration,
maximum heart rate, chest pain or maximum ST segment depression
did not differ between placebo and telcagepant in patients with
chronic angina and limiting exercise-induced cardiac ischemia (Ho,
Behm, et al., 2010). Although these data show no interference of acute
CGRP receptor antagonism with myocardial ischemia, the effects of
chronic CGRP blockade under clinical ischemic conditions remain
unknown.

In the wake of telcagepant, many companies have targeted the
development of CGRP receptor antagonists, now that its clinical
efficacy in migraine has been demonstrated. Therefore, more studies
will be performed in the future to test the vascular effects of this new
class of drugs, which will provide more information about central
and/or peripheral mode of action and additional reassurance about
their cardiovascular safety profile.

http://www.merck.com/newsroom/news-release-archive/research-and-development/2009_0910.html
http://www.merck.com/newsroom/news-release-archive/research-and-development/2009_0910.html
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2.1.4. Discussion
Summarizing data from both clinical and preclinical studies, it

seems clear that: i) CGRP receptor antagonists are clinically effective
in the treatment of migraine, probably to a similar extent as the
triptans. It is not known yet whether responders and non-responders
to triptans will respond to CGRP receptor antagonists in a similar way;
and ii) the site of action of CGRP receptor antagonists is not yet clear,
and may be both vascular and neuronal. The discrepancy between the
high clinical doses of gepants and the in vitro binding affinity (the
plasma concentrations used to achieve antimigraine efficacy are
considerably higher than their in vitro pA2) is not only explained by
the penetration of the blood–brain barrier, but also by other factors,
namely: (i) high protein binding of these compounds (about 95–96%)
(Edvinsson & Linde, 2010); (ii) a concentration of drug equal to the
pA2 value may not be sufficient to decrease a functional responses
since it only shifts the concentration response curves two-fold to the
right; most likely a concentration of a least 10 times pA2 would be
needed to functionally inhibit the relaxations to CGRP; (iii) as nerve
terminals releasing CGRP are located in the adventitia close to the
media layer of the blood vessels, the concentration of telcagepant at
the receptors may be substantially lower than that at the lumen of the
blood vessel, i.e. the plasma concentration. The latter phenomenon is
unlikely to occur in vitro, where the antagonist can reach the CGRP
receptors from both the luminal and abluminal sides. Thus, although
both a vascular and neuronal action of CGRP receptor antagonists may
currently not be excluded, it seems that the fact that these drugs do
not induce direct vasoconstriction is an advantage over the currently
available antimigraine drugs. Moreover, in dogs, during acute regional
myocardial ischemia induced by atrial pacing in the presence of
coronary stenosis, neither CGRP nor CGRP8–37 affected coronary flow
and severity of ischemia, whereas sumatriptan exacerbated ischemia
severity with concomitant reduction in coronary blood flow (Lynch et
al., 2009b; Regan et al., 2009). Likewise, in the dog, CGRP8–37 had no
effect on myocardial reactive hyperemic response following brief
mechanical coronary artery occlusion, whereas sumatriptan reduced
peak reactive hyperemic coronary artery blood flow, reactive
hyperemic flow and the repayment of coronary blood flow debt
(Lynch et al., 2009a). These findings are consistent with the
contractile response, unrelated to relaxation to CGRP, observed with
triptans in human healthy (MaassenVanDenBrink et al., 1998; Chan,
Edvinsson, et al., 2010) and diseased (Edvinsson & Uddman, 2005)
coronary arteries. Notwithstanding the previously mentioned studies
on the safety of CGRP receptor antagonists, the consequences of CGRP
receptor blockade under ischemic conditions remain unknown. As it
has not been excluded in human studies that CGRP is involved in
ischemia-reperfusion and ischemic preconditioning, CGRP receptor
antagonists should be used cautiously in patients with ischemic heart
Table 1
General characteristics of the main 5-HT receptors involved in (potential) antimigraine tre
Modified from Villalón and Centurión (2007).

Receptor Agonists Antagonists Tra

5-HT1B Triptans SB224289 Gi/o

CP-93,129 (rat)
5-HT1D PNU-109291 BRL15572 Gi/o

PNU-142633
5-HT1F LY344864 (non-selective)

LY334370 Methysergidea Gi/o

Lasmiditan (non-selective)
5-HT7 5-CTNN5-HT SB269970 Gs

AS19 SB258719
Lisurideb

Methysergideb

5-CT, 5-carboxamidotryptamine; (−), inhibits; (+), stimulates.
a It is also a partial agonist at 5-HT1B and 5-HT1D receptors.
b Non-selective prophylactic agents with a high affinity for 5-HT7 receptors.
disease. Therefore, specific prudence is called for CGRP receptor
antagonists in a prophylactic setting.

2.2. 5-HT receptor ligands

Serotonin (5-hydroxytryptamine; 5-HT) was one the first mono-
amines proposed to be involved in the pathophysiology of migraine
on the basis of several lines of evidence, including: (i) some drugs that
deplete monoamines (reserpine) can provoke a migraine attack
(Kimball et al., 1960); (ii) high quantities of 5-hydroxyindole acetic
acid, a metabolite of 5-HT, are excreted during a migraine attack
(Sicuteri et al., 1961); and (iii) a slow i.v infusion of 5-HT can abort an
attack of migraine (Kimball et al., 1960; Anthony et al., 1967). Side-
effects and the need for an i.v. infusion precluded the clinical use of
5-HT as an antimigraine agent. Side-effects included: gastrointestinal
effects, changes in heart rate, vasodilatation in some vascular beds
(e.g. cutaneous blood vessels) and vasoconstriction in others (e.g. the
external carotid bed) (Kimball et al., 1960; Anthony et al., 1967). The
antimigraine efficacy of 5-HT clearly suggested the existence of a
specific 5-HT receptor involved in the relief of migraine headache but,
admittedly, the association between 5-HT and the mechanisms
underlying the pathogenesis of migraine is circumstantial. It is
undeniable that the cranial vasoconstrictor activity of sumatriptan
and the second-generation triptans, mediated by the 5-HT1B receptor,
is associated with their efficacy in the acute treatment of migraine (De
Vries et al., 1999; Villalón et al., 2003). Unfortunately, the 5-HT1B
receptor, being not exclusively confined to cranial blood vessels, is
most likely also responsible for the moderate hypertension and
coronary constriction noticed with these drugs. The development of
antimigraine agents without cardiovascular side-effects, but capable
of inhibiting trigeminal CGRP release, would avoid the vasoconstrictor
action of the triptans and would represent a major improvement over
current treatments (Ramadan & Buchanan, 2006). Therefore, in an
attempt to avoid coronary vasoconstriction, other avenues have been
explored: (i) 5-HT1D and 5-HT1F receptor agonists; and (ii) 5-HT7
receptor antagonists.

As described previously, the triptans have a high affinity for 5-HT1B
and 5-HT1D receptors. However, most triptans show also high pKi

values for the 5-HT1F receptor (De Vries et al., 1999; Goadsby &
Classey, 2003). The 5-HT1B receptor has now clearly been linked to
vasoconstriction (Villalón et al., 2003), whereas stimulation of 5-HT1D
or 5-HT1F receptors induces inhibition of the trigeminovascular
system without vasoconstriction (De Vries et al., 1999; Goadsby &
Classey, 2003). This led to the synthesis of a series of isochroman-6-
carboxamide derivatives, including PNU-109291 and PNU-142633,
which have been described as highly selective 5-HT1D receptor
agonists (Ennis et al., 1998; McCall et al., 2002) (see Table 1). In
atment.

nsduction Distribution Function

Cranial blood vessels Vasoconstriction

Presynaptic neurons Autoreceptor

CNS (−) Trigeminal system

CNS, smooth muscle, Circadian rhythm,
cat atrium relaxation, tachycardia

(+) Trigeminal system
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addition, three potent and selective 5-HT1F receptor agonists have
been reported (with their corresponding pKi values at 5-HT1B, 5-HT1D
and 5-HT1F receptors, respectively), namely: (i) LY344864 (pKi

values: 6.3, 6.2 and 8.2); (ii) LY334370 (pKi values: 6.9, 6.9 and
8.8); and lasmiditan (also known as COL-144 and LY573144, pKi

values: 5.9, 5.8 and 8.6) (Johnson et al., 1997; Phebus et al., 1997;
Ramadan et al., 2003; Nelson et al., 2010).

Despite acknowledging that most of the evidence supporting the
role of 5-HT in the pathophysiology of migraine is circumstantial, this
monoamine has been shown to produce, via activation of 5-HT7
receptors: (i) direct vasodilatation of cranial blood vessels (Villalón et
al., 1997; Villalón & Centurión, 2007); (ii) excitation in neuronal
systems (Cardenas et al., 1999); (iii) hyperalgesic pain and neuro-
genic inflammation (Taiwo et al., 1992; Pierce et al., 1996); (iv)
neuroinflammatory processes (Mahé et al., 2005); and (v) central
sensitization and activation of pain pathways (Brenchat et al., 2009).
All of these processes have been demonstrated to participate in
migraine pathophysiology.

2.2.1. Central effects
The 5-HT1F receptor agonist LY334370exerts a centralmechanismof

action by inhibiting the transmission of nociceptive impulseswithin the
trigeminal nucleus caudalis (Shepheard et al., 1999). Likewise, selective
agonists at 5-HT1D (PNU 142633; McCall et al., 2002) and 5-HT1F
(LY334370; Phebus et al., 1997) receptors inhibit the trigeminovascular
system (Ramadan et al., 2003). This led to the exploration of the effects
of selective 5-HT1D and 5-HT1F receptor agonists as antimigraine drugs
that would partly act like the triptans, but without vascular effects.
There is a high correlation between the potency of various 5-HT1
receptor agonists in the guinea pig dural plasma protein extravasation
assay and their 5-HT1F receptor binding affinity (Ramadan et al., 2003).
However, the relevance of plasma protein extravasation in migraine is
no longer tenable (Peroutka, 2005). More recently, Nelson et al. (2010)
have shown that lasmiditan: (i) is a more selective agonist for 5-HT1F
receptors (selectivity ratio of about 500-fold relative to other 5-HT1
receptor subtypes) than the first generation 5-HT1F receptor agonist
LY334370 (selectivity ratio of about 100-fold relative to other 5-HT1
receptor subtypes); (ii) potently inhibited, when given orally to rats,
markers associated with trigeminal ganglion stimulation, including
induction of immediate early gene c-Fos in the trigeminal nucleus
caudalis; and (iii) displays chemical properties and a pharmacological
profile that differ from that of the triptans. Furthermore, 5-HT1F
receptors are located on glutamate-containing neurons and their
activation might inhibit glutamate release (Ma, 2001), which may be
relevant to its antimigraine action (Martínez et al., 1993). Indeed, most
triptans show high pKi values for 5-HT1F receptors (Dahl et al., 1990; De
Vries et al., 1999; Goadsby & Classey, 2003).

On the other hand, Agosti (2007) has hypothesized that activation
of 5-HT7 receptors may mediate the release of neuropeptides
(substance P and CGRP), neurogenic inflammation and hyperalgesia
in the trigeminovascular system during a migraine attack. In
agreement with this hypothesis, it has recently been shown in
anesthetized rats that the selective 5-HT7 receptor antagonist
SB269970 (see Table 1) caused a significant decrease in serum CGRP
concentrations following electrical stimulation of the trigeminal
ganglion, an effect which was reversed by the putative 5-HT7 receptor
agonist AS19 (Wang et al., 2010).

2.2.2. Vascular effects
Unlike the triptans (5-HT1B/1D/1F receptor agonists), 5-HT1D and

5-HT1F receptor agonists are devoid of contractile effects on coronary
and cerebral blood vessels (Bouchelet et al., 2000; McCall et al., 2002).
PNU-109291 and PNU-142633 do not produce vasoconstriction in in
vivo (canine external and internal carotid bed) (Centurión et al., 2001)
or in vitro (cerebral arteries) (Bouchelet et al., 2000) preparations.
Likewise, LY344864, LY334370 and lasmiditan were devoid of
vasoconstrictor activity (Bouchelet et al., 2000; Nelson et al., 2010).
Together with the fact that the 5-HT1B receptor antagonist SB224289
(see Table 1), which displays little affinity at the 5-HT1F receptor
(Hagan et al., 1997), completely blocked sumatriptan-induced external
carotid vasoconstriction (De Vries et al., 1998), it is clear that the 5-HT1F
receptor is not involved in the vascular effects of sumatriptan and the
second-generation triptans. It therefore implies that if LY334370 and
lasmiditan turn out to be effective inmigraine at clinical doses devoid of
5-HT1B/1D receptor interaction, the mechanism of action will not be via
cranial vasoconstriction.

Interestingly, prophylactic antimigraine drugs such as methyser-
gide (Sicuteri, 1959) and lisuride (Del Bene et al., 1983) display high
affinity for 5-HT7 receptors (Hoyer et al., 1994) and are capable of
blocking 5-HT7 receptor-mediated vasodilatation in the canine
extracranial external carotid circulation (Villalón et al., 1997), which
shows a direct (relaxant) effect of the 5-HT7 receptor on cranial blood
vessels. More recently, it has been shown in anesthetized rats that the
selective 5-HT7 receptor antagonist SB269970 (see Table 1) caused a
significant decrease in serumCGRP concentrations following electrical
stimulation of the trigeminal ganglion and that this effect was
reversed by the putative 5-HT7 receptor agonist AS19 (Wang et al.,
2010). These findings, taken together, suggest that 5-HT7 receptors
may play a role in the pathophysiology of migraine.

2.2.3. Clinical effects
Despite the previously mentioned trigeminal inhibition, PNU-

142633 proved to be ineffective in the acute treatment of migraine
(Gόmez-Mancilla et al., 2001), whilst LY334370 did show some
efficacy when used in doses which may have interacted with 5-HT1B
receptors (Goldstein et al., 2001; Ramadan et al., 2003). Though
clinical studies demonstrated that LY334370 is effective in treating
migraine headaches without coronary side-effects (Ramadan et al.,
2003), it was recognized that more studies on the role of the 5-HT1F
receptor in migraine were warranted (Goadsby & Classey, 2003). In
this respect, the potency, selectivity and pharmacological profile of
lasmiditan at 5-HT1F receptors (as previously mentioned) made it an
ideal drug to definitely test the involvement of 5-HT1F receptors in the
therapy of migraine headache (Nelson et al., 2010). Indeed, Ferrari et
al. (2010) have recently reported the results of a randomized,
multicenter, placebo-controlled, double-blind, group-sequential,
adaptive treatment-assignment, proof-of-concept and dose-finding
study using lasmiditan in 130 subjects during a migraine attack.
Lasmiditan (at 20 mg i.v. and higher doses) proved effective in the
acute treatment of migraine without inducing: (i) serious adverse
events or withdrawals due to non-serious adverse events; (ii) triptan-
like chest symptoms or chest discomfort; and (iii) significant changes
in vital signs or ECG parameters or in hematological or clinical
chemistry parameters. Adverse effects were generally mild and
included dizziness, paresthesia and sensations of heaviness (Ferrari
et al., 2010). Further studies to assess the optimal oral dose and full
efficacy and tolerability profile are expected with great interest.
Clearly, lasmiditan's non-vascular neuronal mechanism of action may
offer an alternative antimigraine treatment, particularly in patients
with cardiovascular pathologies and for whom antimigraine vaso-
constrictor agents are contraindicated.

2.2.4. Discussion
The clinical efficacy of 5-HT1F receptor agonists has been

demonstrated; some preclinical experiments and clinical observa-
tions argue in favor of the potential effectiveness of selective 5-HT1F
receptor agonists in migraine. While it remains to be confirmed that
the 5-HT1F receptor agonists are devoid of 5-HT1B receptor activity at
clinical doses, these antimigraine drugs have potential advantages as
compared to the triptans.

Furthermore, the preclinical data on 5-HT7 receptors suggests that
this receptor may play a role in the pathophysiology of migraine. The
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antimigraine efficacy of selective 5-HT7 receptor antagonists in
clinical trials is awaited with great interest. However, the involvement
of the 5-HT7 receptor in vasodilatation and CGRP release suggests
potential direct and indirect vascular effects. Therefore, the safety of
5-HT7 receptor antagonists should be considered with caution.

2.3. Glutamate receptor antagonists

Glutamate is an excitatory neurotransmitter in the mammalian
CNS and plays an important role in the mediation of excitatory
synaptic transmission. Glutamate exerts its effects by activating
ionotropic (ligand-gated ion channels) and metabotropic (G-protein
coupled) receptors. Glutamate has been suggested to be involved in
the pathophysiology of migraine (Pollack & French, 1975) as it is
found in neurons of structures related to migraine pathophysiology,
including the trigeminal ganglion, trigeminocervical complex and the
thalamus (Kai-Kai & Howe, 1991). Indeed, glutamate and CGRP are co-
released from trigeminal ganglion neurons by calcium channel-
dependent mechanisms (Xiao et al., 2008), and increased levels of
glutamate have been found in the trigeminocervical complex after
stimulation of dural structures (Oshinsky & Luo, 2006). Moreover,
glutamate levels were found to be elevated in the cerebrospinal fluid
of migraine patients compared with controls, suggesting an excess of
neuroexcitatory amino acids in the CNS (Rothrock et al., 1995). In
addition, cutaneous allodynia, which is a sign for the development of
central sensitization, has been observed in migraine patients during
an attack (Burstein et al., 2000), and glutamate release (and to some
extent glutamate receptor activation) is involved in central sensiti-
zation induced by peripheral sensory stimulation (Burstein, 2001).

Since activation of glutamate receptors by glutamate triggers post-
synaptic excitatory potentials (Salt, 2002), and experimentally-
produced pain increased the extracellular levels of glutamate in rat
ventroposteromedial thalamic nucleus (VMP) (Salt, 2002), it has been
suggested that glutamate also plays a role in the transmission
of nociceptive information in the sensory thalamus. Moreover, the
N-methyl-D-aspartate (NMDA) glutamate receptors are activated
during cortical spreading depression (CSD), which is considered to
be involved in migraine aura (Gorji et al., 2001; Salt, 2002). In view of
the fact that glutamate seems to play a significant role in migraine
processes, pharmacological management of glutamate receptors may
provide further insight into potential therapy for the treatment of
migraine. Indeed, several studies have suggested that ionotropic
glutamate receptor antagonists affect processes involved in the
pathophysiology of migraine.

The ionotropic glutamate receptors are ligand-gated ion channels
and are divided into NMDA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) and kainate receptors (Monaghan
et al., 1989). They primarily mediate fast synaptic transmission and
have been identified in the superficial laminae of the trigeminal
nucleus caudalis (Tallaksen-Greene et al., 1992) and the sensory
thalamus among other pain-related areas of the rat brain (Halpain
et al., 1984). Moreover, messenger RNA of NMDA and kainate
receptors has been found in the trigeminal ganglion (Sahara et al.,
1997).

2.3.1. Central effects
Different NMDA and non-NMDA glutamate receptor antagonists

have demonstrated to attenuate mechanisms that are putatively
involved in the pathophysiology of migraine, including inhibition of
trigeminovascular nociception in the trigeminocervical nucleus
(Storer & Goadsby, 1999; Goadsby & Classey, 2000; Classey et al.,
2001). Further, the NMDA receptor has been implied to mediate
antinociceptive effects in the descending brainstem nuclei (Jensen &
Yaksh, 1992). The NMDA receptor antagonist MK-801 reduces c-fos
protein expression in the trigeminal nucleus caudalis after intracis-
ternal capsaicin injection or other painful stimuli (Mitsikostas et al.,
1998; Mitsikostas et al., 1999; Hattori et al., 2004), while it increases
c-fos-like immunoreactivity in the periaqueductal grey, dorsal raphe
nucleus and nucleus raphe magnus (Hattori et al., 2004). Moreover,
MK-801 blocks cell firing in the trigeminal cervical complex induced
by electrical stimulation of the superior sagittal sinus (Storer &
Goadsby, 1999; Goadsby & Classey, 2000). Interestingly, the NMDA
receptor antagonists MK-801 and memantine prevent CSD, while the
AMPA/kainate receptor antagonist, NBQX (2,3-dihydroxy-6-nitro-7-
sulfamoylbenzo(F)quinoxaline) has no effect (Lauritzen & Hansen,
1992; Nellgard &Wieloch, 1992). Since systemic administration of the
glycine site selective NMDA receptor antagonist, L701324, prevents
the induction of CSD (Obrenovitch & Zilkha, 1996), a role for the
NMDA receptor subunit 1 that carries the glycine binding site of the
NMDA receptor has been suggested (Andreou & Goadsby, 2009b).
Taken together, the NMDA receptor mediates diverse mechanisms
that may be of clinical relevance in the treatment of migraine.

The AMPA/kainate receptor antagonists CNQX and NBQX are also
capable of reducing c-fos protein expression in the trigeminal nucleus
caudalis after intracisternal capsaicin injection (Mitsikostas et al.,
1998; Mitsikostas et al., 1999). Moreover: (i) trigeminal ganglion
stimulation-induced c-fos expression in the trigeminal cervical
complex, and this response was attenuated after i.v. administration
of the AMPA/kainate receptor antagonist, tezampanel (LY293558 or
NGX424) (Weiss et al., 2006); (ii) cell firing in response to electrical
stimulation of dural structures in the trigeminocervical complex is
blocked by CNQX; and (iii) trigeminovascular-evoked responses in
the cat trigeminal cervical complex is dose-dependently inhibited by
the AMPA receptor antagonist, GYKI52466 (Storer & Goadsby, 1999).
Since the AMPA/kainate receptor antagonist, tezampanel, blocked the
dural plasma protein extravasation after electrical stimulation of the
trigeminal ganglion, while the specific AMPA receptor antagonist,
LY300168, had no effect (Johnson et al., 2001), it has been suggested
that the effect of tezampanel might be mediated via the kainate
receptor rather than the AMPA receptor (Johnson et al., 2001).

The clinically active kainate receptor antagonist, LY466195,
inhibits c-fos expression in the trigeminal cervical complex induced
by trigeminal ganglion stimulation (Weiss et al., 2006). Moreover, the
kainate receptor antagonist UBP302 blocked the cell firing induced by
electrical stimulation of dural structures in the ventroposteromedial
(VPM) nucleus and post-synaptic firing in response to kainate
receptor activation (Andreou et al., 2009). It is noteworthy that the
VPM nucleus may be involved in the transmission of painful sensory
information to the cortexwhen the trigeminovascular system is active
(Andreou & Goadsby, 2009a); hence, the pharmacological effect of
LY466195 in the treatment of migraine might be partly explained by
blocking the glutamatergic neurotransmission through kainate
receptors in the VPM nucleus (Andreou & Goadsby, 2009a).

2.3.2. Vascular effects
Although glutamate plays an important role in the mediation of

excitatory synaptic transmission, it may also induce vascular effects
since activation of ionotropic glutamate receptors on neurons may
lead to the release of vasoactive substances and production of NO,
which is mediated by calcium influx, and therefore activation of
intracellular signaling pathways (Bhardwaj et al., 1997). A direct
effect on vascular tone may be less likely, since it has been
demonstrated that increased glutamate levels did not affect vascular
tone in pial arteries of rats, cats and humans (Hardebo et al., 1989).

As described in the previous section, it is suggested that treatment
with ionotropic glutamate receptor antagonists would be active at
central sites involved in the pathophysiology of migraine, without
affecting vascular mechanisms. However, the finding that the NMDA
receptor antagonist, MK-801, reduced capsaicin-evoked CGRP release
(Garry et al., 2000) points to potential indirect vascular effects of
glutamate receptor antagonists. This is supported by the finding that
the NMDA receptor antagonists ketamine and MK-801 are capable of
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inhibiting neurovascular CGRP release (Chan, Gupta, et al., 2010).
Moreover, activation of neuronal NMDA receptors results in the
release of NO, which causes vasodilatation (Busija et al., 2007).
However, the AMPA receptor antagonist, GYKI52466, did not affect
CGRP release nor the vasodilatation induced by endogenous CGRP
(Chan, Gupta, et al., 2010); these findings are in accordance with the
finding that AMPA receptors are absent in the peripheral trigemino-
vascular system (Sahara et al., 1997).

The kainate receptor antagonist, LY466195, does not induce
vasoconstriction per se, nor does it affect the vasoconstriction to
sumatriptan in the rabbit saphenous vein (Weiss et al., 2006).
Moreover, LY446195 and the kainate receptor agonist UBP302 did
not affect the vasodilatation of dural blood vessels induced by
electrical stimulation or exogenous CGRP in a neurogenic dural
vasodilatation model (Andreou et al., 2009; Chan, Gupta, et al., 2010).
In contrast with LY446195 and UBP302, the antiepileptic drug
topiramate, which is effective in migraine prophylaxis, probably at
least partly through blockade of kainate receptors, attenuated the
vasodilatation induced by electrical stimulation and infusion of an NO
donor, but not the CGRP-induced vasodilatation in the same model
(Silberstein et al., 2004). The fact that activation of kainate receptors
effectively blocked neurogenic dural vasodilatation suggests that
kainate receptor antagonists may be capable of indirectly preventing
the vasodilatation induced by activation of the kainate receptor
during a migraine attack. Although the vascular effects of kainate
receptor antagonists are not known based on their agonist effects, it is
suggested that kainate receptor antagonists might indirectly affect
vascular tone.

2.3.3. Clinical effects
In patients taking the NO donor GTN for reducing the risk of

cardiac ischemia, infusion of ketamine, an NMDA receptor antagonist,
was proposed to be effective against NO-induced headache (Roffey et
al., 2001). Moreover, in a small open-label study, intranasal ketamine
reduced the severity and duration of the neurological deficits due to
the aura in 5 out of 11 patients with familial hemiplegic migraine
(Kaube et al., 2000).

Several kainate receptor antagonists are effective in the acute
treatment of migraine, including the mixed AMPA/kainate receptor
antagonist tezampanel (Sang et al., 2004) and the kainate receptor
antagonist LY466195 (Johnson et al., 2008). Tezampanel is well
tolerated and showed no vasoconstrictor liability in clinical trials
(Murphy et al., 2008). However, due to the mixed AMPA and kainate
receptor action of tezampanel, it is not clear which receptor is
responsible for its antimigraineeffect (Murphy et al., 2008). Tezampanel
has been FDA approved to enter phase 3 for acute migraine treatment,
its oral prodrug NGX426 is awaiting outlicencing for the migraine and
pain program (http://www.raptorpharma.com). Although LY466195 is
effective in the treatment of migraine, its therapeutic potential may be
limited because of mild reversible visual distortions (Johnson et al.,
2008).

In the wake of successful proof of concept of glutamate receptor
antagonists for migraine treatment, other compounds are in clinical
development. The AMPA receptor antagonist, BGG492 fromNovartis, is
currently under investigation, but no results have been reported so far.

2.3.4. Discussion
The finding that the NMDA receptor antagonist MK-801 reduced

capsaicin-evoked CGRP release (Garry et al., 2000) points to potential
indirect vascular effects of glutamate receptor antagonists. This is
supported by the fact that ketamine and MK-801 are capable of
inhibiting neurovascular CGRP release (Chan, Gupta, et al., 2010).
Moreover, activation of neuronal NMDA receptors results in NO
release, which causes vasodilatation (Busija et al., 2007). This pro-
perty may represent a therapeutic mechanism of action of glutamate
receptor antagonists in the treatment of migraine, but might also
result in cardiovascular side-effects (Chan, Gupta, et al., 2010).
However, before conclusions may be drawn about the relevance of
such effects, more clinical data on the use of NMDA receptor
antagonists should be available. Moreover, obviously, it has to be kept
in mind that ionotropic glutamate receptors are involved in several
mechanisms in the brain and spinal cord; thus, blockade of these
receptors may induce neurological side-effects. Based on the study of
glutamate receptor antagonists in stroke, it is known that antagonism
of the NMDA receptor causes adverse psychotomimetic effects,
including hallucinations, agitation, peripheral sensory disturbance,
catatonia, nausea and vomiting. Moreover, except for neurological
symptoms, NMDA receptor antagonists also induce effects associated
with stimulation of the sympathetic nervous system, like hypertension
(Muir, 2006). In addition, glutamate has recently been described to
uncouple blood flow and glucose metabolism; however, this is not
mediated via the ionotropic glutamate receptor (Hirose et al., 2009).

In contrast to NMDA receptor antagonists, as described previously,
AMPA receptor antagonists do not affect CGRP release and vascular
tone (Sahara et al., 1997; Chan, Gupta, et al., 2010), although they
block responses in the trigeminocervical complex (Storer & Goadsby,
1999). This suggests that AMPA receptor antagonists might display
antimigraine efficacy, which would most likely be unrelated to a
vascular mode of action. However, blockade of the AMPA receptor
might have toxic effects on glial cells, at least in patients with brain
ischemia (Elting et al., 2002). These observations warrant further
research on the potential central side-effects of these ligands.

Finally, the kainate receptor antagonist LY466195, which is
effective in the treatment of migraine (Johnson et al., 2008), seems
to be devoid of vascular effects (Weiss et al., 2006; Chan, Gupta, et al.,
2010). Given its effects on the trigeminocervical complex and the VPM
nucleus, it seems that the antimigraine efficacy of LY466195 could
involve a purely central effect, unrelated to vascular CGRPergic
pathways and/or its receptors. However, kainate receptor antagonists
have been described to induce anxiolytic-like effects in an animal
model, and thus further human studies are needed to predict their
safety in humans.

2.4. VPAC/PAC receptor antagonists

The parasympathetic nervous system has long been implicated in
the pathophysiology of migraine and, indeed, the parasympathetic
outflow to the cephalic vasculature may trigger the activation and
sensitization of perivascular sensory afferents and thereby migraine
pain (Yarnitsky et al., 2003). Pituitary adenylate cyclase activating
polypeptides (PACAPs) and vasoactive intestinal peptide (VIP), which
are released by the parasympathetic efferent nerves to regulate
cerebrovascular tone and haemodynamics of the brain (Gulbenkian et
al., 2001), have been suggested to play a role in the pathophysiology
of migraine. In fact, these peptides also activate or sensitize
intracranial sensory nerve fibers leading to the perception of pain
(Uddman et al., 1993; Edvinsson &Goadsby, 1998; Schytz et al., 2009).
PACAPs and VIP are structurally closely related peptides and belong to
the secretin/glucagons/VIP peptide family. They are widely distribut-
ed in the central and peripheral nervous systems and are associated
with various physiological functions (Dickson & Finlayson, 2009). The
action of PACAP is mediated via the VPAC1, VPAC2 and PAC1 receptors,
while VIP induces its effects only via the VPAC1 and VPAC2 receptors.
These three receptors are Gs-protein coupled receptors and activate
adenylate cyclase to induce their effects (Dickson & Finlayson, 2009;
Vaudry et al., 2009). Elevated VIP levels have been reported in the
plasma of the cranial circulation in a subgroup of migraine patients
with pronounced autonomic symptoms (Goadsby et al., 1990).

2.4.1. Central effects
VIP and PACAP are widely distributed throughout the brain and

periphery (Dickson & Finlayson, 2009). In relation with migraine,

http://www.raptorpharma.com
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immunostainings reported the presence of PACAP and VIP in different
regions of the brainstem nuclei (Tajti et al., 2001) as well as in
perivascular nerves (Uddman et al., 1993). However, only PACAP was
detected in the trigeminal cervical complex and in the C1 and C2
levels (Uddman et al., 2002). Moreover, mRNA expression of VPAC
and PAC receptors is found in the trigeminal, otic and superior cervical
ganglia (Knutsson & Edvinsson, 2002).

Migraine-like headache induced by PACAP38 has been suggested
to be caused by activation of peripheral sensory trigeminal fibers
mediated via direct sensitization (Schytz et al., 2009). Moreover, mast
cell degranulation caused neuronal activation of C-fibers innervating
the dura (Levy et al., 2007); significantly, mast cells surrounding
cerebral and dural blood vessels are in close proximity to parasym-
pathetic and sensory nerve fibers (Edvinsson et al., 1976; Ottosson &
Edvinsson, 1997; Rozniecki et al., 1999). Hence, it has been suggested
that PACAP38 may activate peripheral sensory trigeminal fibers via
mast cell degranulation. In addition, a facilitatory effect of PACAP38 on
second order trigeminal neurons has been suggested as a possible
mechanism for the migraine-like headache induced by PACAP38
(Schytz et al., 2009). In agreement with these findings: (i) the PAC
receptor antagonist, PACAP6-38, attenuates nociception in animal
models of chronic inflammatory as well as persistent pain (Ohsawa et
al., 2002; Davis-Taber et al., 2008); and (ii) inflammatory pain
disappears in PACAP gene knockout mice (Mabuchi et al., 2004).

2.4.2. Vascular effects
In vitro and in vivo studies have demonstrated that VIP and PACAP

act as potent vasodilators on cranial blood vessels in various species,
including humans (Dickson & Finlayson, 2009; Vaudry et al., 2009).
VPAC/PAC receptor agonists induced vasorelaxation with different
efficacy and potency in the human cranial and coronary arteries
(Saetrum Opgaard et al., 2000; Jansen-Olesen et al., 2004; Chan et al.,
in press). Different vasodilator responses to PACAP and VIP between
several blood vessels were described in: (i) the rabbit posterior
cerebral artery and coronary artery (Dalsgaard et al., 2003); (ii) the
rat basilar artery and middle cerebral artery (Baun et al., 2009); (iii)
the guinea pig aorta and pulmonary artery (Cardell et al., 1991); and
(iv) the human proximal and distal coronary arteries (Saetrum
Opgaard et al., 2000; Chan et al., in press).

It can be suggested that vasodilatation induced by PACAP and VIP
vary not only in different species, but also in the region of the arteries
from the same species. Possible explanations for these differences in
the vascular responses are selective activation of the three types of the
VPAC/PAC receptors on different tissues, tissue-dependent factors
such as the levels of receptor protein expression and coupling
efficiency of the receptors (Dickson & Finlayson, 2009). Moreover,
several splice variants of the receptors, which are to a certain extent
tissue specific, have been described to affect cellular function by
altering receptor pharmacology and signaling (Dickson & Finlayson,
2009).

VIP is more potent to induce vasodilatation than PACAP38 in
human cranial and coronary arteries (Jansen-Olesen et al., 2004, 1996;
Chan et al., in press). In accordance with these findings in human
arteries, a lower vasodilator potency of PACAP was also found in the
rabbit posterior cerebral artery (Dalsgaard et al., 2003) and the rat
basilar artery (Baun et al., 2009), but this difference was not seen in
the rat middle meningeal artery (Baun et al., 2009). Taken together,
since several lines of evidence indicate a lower vasodilator potency of
PACAP38 compared to that of VIP, it seems that PAC1 receptors, which
are activated by PACAP38, but not by VIP, are of minor importance in
mediating vasodilatation.

It is suggested that the PACAP- and VIP-induced vasodilatation of
the temporal artery seen in healthy volunteers and migraine patients
(Hansen et al., 2006; Rahmann et al., 2008; Schytz et al., 2009) is
probably mediated by perivascular nerve activation (Chan et al., in
press), since: (i) these peptides are present in perivascular nerves
(Uddman et al., 1993; 2002); and (ii) direct stimulation with these
peptides in human isolated meningeal arteries induced only minor
relaxations (Chan et al., in press). The PAC1 receptor is most likely
involved in this mechanism since only the PAC1 receptor antagonist
PACAP6-38, but not VPAC1 receptor antagonists, blocked the
vasodilatation induced by neurogenic dural stimulation (Akerman &
Goadsby, 2009) as well as the neuronal firing in the trigeminal
cervical complex after salivatory nucleus stimulation (Akerman &
Goadsby, 2009).

2.4.3. Clinical effects
PACAP38 and VIP have been shown to (i) decrease mean blood

flow velocity in the middle cerebral artery; and (ii) induce
vasodilatation in the superficial temporal artery (Hansen et al.,
2006; Rahmann et al., 2008; Schytz et al., 2009). Although VIP
induces mild headache in healthy volunteers and migraine patients, it
does not induce a migraine-like headache (Hansen et al., 2006; Birk et
al., 2007; Rahmann et al., 2008). In contrast, PACAP38 induces
migraine-like headaches in healthy volunteers and migraine patients
(Schytz et al., 2009). Since PACAP38 displays a higher affinity for the
PAC1 receptor, activation of this receptor may result in migraine-like
headaches. Accordingly, antagonism of the PAC1 receptor may be a
putative target for migraine treatment. However, to date, no selective
PAC1 receptor antagonists have been investigated in migraine.

2.4.4. Discussion
Since PACAP38, but not VIP, induces migraine-like headaches in

migraine patients (Rahmann et al., 2008; Schytz et al., 2009), and only
PACAPs interact with the PAC1 receptor, it could be suggested that the
PAC1 receptor is involved in migraine pathophysiology. This mecha-
nism is unlikely to be related to cranial vasodilatation, since PACAP
induces only a limited cranial vasodilatation. In contrast, VIP, which
does not inducemigraine-like headaches, induced amore pronounced
vasodilatation than PACAP in cranial arteries (Chan et al., in press).
Therefore, the PAC1 receptor may play a role in activating the central
mechanisms involved in migraine, and antagonists for the PAC1
receptor may be considered as potential antimigraine drugs with a
limited vascular side-effect. However, since PACAP and VIP display a
high degree of homology, antagonists for the PAC1 receptor may also
have affinity for the VPAC receptor, which could lead to an increased
vascular tone via inhibition of vasodilator responses. Further, we
cannot categorically exclude the possibility that PAC1 receptor
inhibition will affect cerebrovascular tone and haemodynamics of
the brain. Obviously, clinical data are needed to confirm or exclude the
therapeutic potential of this target.

2.5. NO synthase inhibitors

NO is a signaling molecule that is present in most tissues
throughout the body. The formation of NO from L-arginine is catalyzed
by three different enzyme isoforms of NO synthase (NOS) and
involves several cofactors. Endothelial NOS (eNOS; which is expressed
in vascular endothelium) and the neuronal NOS (nNOS; which is
found in both central and peripheral neurons) are activated by an
increase in intracellular calcium, whereas inducible NOS (iNOS; which
is normally not detectable), can be activated in many cells by a variety
of stimuli unrelated to intracellular calcium (Bredt, 1999). Moreover,
iNOS can produce 1000 times more NO than eNOS and nNOS (Olesen,
2008). One of the mechanisms in which NO is involved is the decrease
in intracellular calcium by phosphorylation of ion channels mediated
via activation of a cascade of second messengers and kinase (Olesen,
2008). This mechanism causes vasodilatation in smooth muscle cells,
whereas in neurons it has a variety of functions such as involvement
of nociceptive processes (Olesen, 2008). Since the NO donor GTN
triggered headache, and migraine patients are more sensitive to this
trigger, the role of NO in migraine has extensively been investigated
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(Olesen, 2008). Although dilatation of cranial blood vessels induced
by NO was considered as the cause of migraine headache, primarily
neuronal effects have also been forwarded as a potential mechanism
(Goadsby, 2006).

2.5.1. Central effects
NO is suggested to be a key molecule in the cascade of nociceptive

processes in the CNS that lead to migraine pain and other vascular
headaches. Sensitization of the spinal cord may be associated with the
generation of NO (Wu et al., 2000), which is primarily caused by nNOS
activation since nNOS inhibition reduces central sensitization
(Coderre & Yashpal, 1994). However, eNOS may also play a role as
suggested in nNOS deficient mice (Wu et al., 2001; Tao et al., 2004).
Certainly, pain responses are increased by NO donors in neuropathic
and inflammatory pain models (Coderre & Yashpal, 1994; Mao et al.,
1997). In addition, responses to facial and dural stimulation in rats
(Jones et al., 2001), as well as to noxious stimulation of the first
synapse in the trigeminal spinal nucleus (Lambert et al., 2004), are
potentiated by NO. GTN infusion leads to fos protein expression in the
trigeminocervical complex, which indicates that NO donors can
activate the trigeminal system (Tassorelli & Joseph, 1995a). Moreover,
neurons within the trigeminocervical complex that express NOS are
activated by GTN (Tassorelli & Joseph, 1995b). The systemic
administration of GTN increases the levels of NOS-immunoreactive
neurons in the rat dura mater with a delay of hours (Reuter et al.,
2001). This is in line with the biphasic response in trigeminal neurons
induced by NO (Olesen, 2008), which is parallel to the biphasic
headache response reported in migraine patients after exposure to
GTN, as will be discussed below (Koulchitsky et al., 2004).

Inhibition of NOS decreased the activity of neurons with
meningeal input in the rat spinal trigeminal nucleus (De Col et al.,
2003). The non-selective NOS inhibitor, Nω-nitro-l-arginine methyl
ester (L-NAME) inhibits c-fos expression in the trigeminocervical
complex after stimulation of the superior sagittal sinus in the cat
(Hoskin et al., 1999), while the iNOS inhibitor GW274150 has an
analgesic effect in rat models (De Alba et al., 2006).

2.5.2. Vascular effects
Since NO is a potent endogenous vasodilator, NO may induce

migraine by inducing cranial vasodilatation (Olesen, 2008). In animal
models, i.v. administration of NO donors causes meningeal vasodilata-
tion (Akerman et al., 2002). Further, the NOS inhibitor L-NAME reduces
resting dural arterial blood flow as well as electrically-evoked dural
increases in flow (Messlinger et al., 2000). Interestingly, L-NAME
inhibited dural vasodilatation induced by endogenous and exogenous
CGRP, while nNOS inhibitors, but not inhibitors of eNOS, blocked only
the dural vasodilatation induced by endogenous CGRP (Akerman et al.,
2002). This suggests an indirect action of NO produced by nNOS
(Akerman et al., 2002), which seems to be in line with the fact that NO
has beendescribed to activate sensory nervefibers to release CGRP (Wei
et al., 1992). Alternatively, both NO and CGRP may display direct
vascular effects and can be released with trigeminal activation. Indeed,
the presence of nNOS in neurons in the trigeminal ganglion as well as
those colocalized with CGRP has been demonstrated (Edvinsson et al.,
1998).Moreover, eNOSmight be responsible for vasodilatation induced
by exogenous CGRP since this was partially blocked by L-NAME and
eNOS inhibitors in rat dural arteries (Akerman et al., 2002). In contrast,
in human blood vessels, the dilation to CGRP seems to be mediated
mainly via an increase in cAMP levels in smooth muscle cells, without
involvement of the endothelium (Jansen-Olesen et al., 2003; Gupta et
al., 2006b; Chan, Edvinsson, et al., 2010). Nevertheless, CGRP-induced
vasodilatation in the human forearm, was shown at least in part, to be
mediated byNO (DeHoon et al., 2003). Since NO synthesized by eNOS is
known to have a variety of antiatherosclerotic actions, it was suggested
that inhibition of eNOS activity might result in an increased risk for
myocardial infarction (Tsutsui, 2004). However, the absence of eNOS in
transgenicmicedidnot cause spontaneousmyocardial infarction,which
was possibly the results of compensatory mechanism by other NOS
isoforms, since nNOSwas upregulated in eNOS deficientmice (Lamping
et al., 2000; Huang et al., 2002; Tsutsui, 2004). Since disruption of all the
three NOS isoforms causes myocardial infarction (Nakata et al., 2008),
the design of NOS inhibitors as a treatment target for migraine has to be
selective.

2.5.3. Clinical effects
NO causes an immediate headache in migraine sufferers and less

often in control subjects (Olesen, 2008). GTN dilates cerebral and
extracerebral arteries in humans (Dahl et al., 1990; Schoonman et al.,
2008); these pronounced vascular effects might suggest that this
vasodilatation is the trigger tomediate NO-inducedmigraine. However,
several arguments have been forwarded against such a vascular
mechanism, namely: (i) in a 3 T magnetic resonance angiography
study, migraine induced by GTN was not associated with cerebral and
meningeal vasodilatation (Schoonman et al., 2008), and (ii) the
phophosdiesterase inhibitor sildenafil, which inhibits the breakdown
of cGMP (the second messenger of NO), did induce a migraine-like
headache inmigrainepatients,while in that study cerebral arterieswere
not dilated, and cerebral blood flow was not increased (Kruuse et al.,
2003). Although these observations are important and interesting, it
should be kept in mind that: (i) Schoonman et al. (2008) could only
study the large, extracranial parts of themiddlemeningeal artery due to
methodological limitations (for details, see MaassenVanDenBrink et al.,
2009); and (ii) although Kruuse et al. (2003) did not observe dilatation
of cerebral arteries, sildenafil has been demonstrated by others to affect
the cerebrovascular reactivity (see, for example, Diomedi et al., 2005).

It is interesting that migraineurs experience a delayed headache
several hours after a NO donor infusion, which might be partly
mediated by the increase nNOS activity in the trigeminal system that
induces CGRP release and dural vasodilatation, since nNOS inhibitors
inhibit the vasodilatation induced by perivascular electrical stimula-
tion. Moreover, it has been shown that the premonitory symptoms
reported in spontaneous migraine (Giffin et al., 2003) are also seen in
GTN-induced migraine (Afridi et al., 2004) and these symptoms occur
well after any vascular change would have occurred (De Hoon et al.,
2003). Although, NO does not contribute to a basal tone in human
cerebral arteries, it has a mild dilator tone in cerebral arterioles
(Lassen et al., 2005). Moreover, inhibition of NOS with L-NAME
produced an increase in systemic blood flow without changes in the
velocity of blood in middle cerebral artery or on the diameter of the
radial artery (Hjorth Lassen et al., 2003). However, L-NAME has been
shown to increase blood pressure and decrease heart rate (Hjorth
Lassen et al., 2003; Lassen et al., 2005).

Since Lassen et al. (1997) first described the efficacy of the non-
selective NOS inhibitor L-NMMA in the treatment of migraine, clinical
research on the role of NO in migraine was accelerated, as reviewed by
Olesen (2008). Although L-NMMA showed encouraging results, its
clinical potential is rather limited in view of its pharmacokinetic profile
and its vasoconstrictor properties (Lassen et al., 2005). As L-NMMA
inhibits nNOS, iNOS and, most importantly, also eNOS, NOS inhibitors
should be selective when used as antimigraine drugs. Since the role of
eNOS inmigraine is debatable (Borroni et al., 2006; Toriello et al., 2008)
and, most significantly, blocking eNOS could disturb systemic blood
pressure and heart rate (Moncada & Higgs, 1995), selective eNOS
inhibitors do not seem a logical pharmacological target for prospective
antimigraine drugs. Two selective iNOS inhibitors, GW274150 and
GW273629, were developed for inflammatory conditions (Cuzzocrea et
al., 2002; Chatterjee et al., 2003; Dugo et al., 2004; Alderton et al., 2005).
In preclinical studies, GW274150 seemed to reduce organ injury in
hemorrhagic shock (McDonald et al., 2002) and reduced experimental
renal ischemia/reperfusion injury (Chatterjee et al., 2003), which
increased the hope for a beneficial vascular profile of iNOS inhibitors.
Although GW274150 seemed to display analgesic effects in rat models
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of inflammatory and neuropathic pain (De Alba et al., 2006), clinical
studies could not establish its efficacy in acutemigraine treatment (Van
der Schueren et al., 2009). This lack of efficacy might be assigned to the
unfavorable pharmacokinetic profile of GW273629 (Van der Schueren
et al., 2009). However, other randomized controlled trials with
GW274150, another potent and selective iNOS inhibitor with a more
favorable pharmacokinetic profile than GW273629, also failed in the
prevention (Hoye et al., 2009) and acute treatment (Palmer et al., 2009)
of migraine. This suggests that iNOS is not a promising target for
migraine treatment (Goadsby, 2010). Only one selective nNOS inhibitor
is currently in clinical development, namely NXN-188 (Vaughan et al.,
2010). However, this molecule also shows affinity for 5-HT1B/1D
receptors and, therefore, its clinical effects cannot exclusively be
attributed to nNOS inhibition. At the moment, NXN-188 appears to be
well tolerated in healthy volunteers and exhibits linear pharmacoki-
netics over the dose range studied in five phase I, randomized, double-
blind parallel studies with single and multiple doses (Vaughan et al.,
2010). Further clinical investigation will be performed to overview the
pharmacodynamic profile of NXN-188, to assess its efficacy in acute
migraine treatment and to obtain more data about its vascular
mechanism of action.

2.5.4. Discussion
In view of the pharmacological lines of evidence described

previously, it seems clear that NO is involved in the pathophysiology
of migraine, probably via both vascular and neuronal mechanisms.
Although NOS inhibitors may represent an interesting therapeutic
option inmigraine, the use of non-selective NOS inhibitors or selective
eNOS inhibitors seems impeded by their cardiovascular side-effects
such as increased blood pressure and decreased heart rate. While the
results of clinical trials with iNOS inhibitors in migraine were
disappointing, the results of trials investigating the effects of nNOS
inhibition are awaited with great interest. In addition to the NOS
inhibitors, other pharmacological targets that inhibit the formation of
NO should be explored, as for example tetrahydrobiopterin, which is
the most important cofactor in the conversion of L-arginine to NO and
L-citrulline (Olesen, 2010). The role of NOS inhibition in the
regulation of gap junction coupling is also under investigation
(Kameritsch et al., 2003; Lee & Cheng, 2008), based on the facts that
NO: (i) enhances the de novo formation of endothelial gap junctions
by increasing the incorporation of Cx40 into the plasma membrane
due to protein kinase A activation (Hoffmann et al., 2003); (ii)
regulates coupling in cells expressing Cx35, a connexin expressed in
neurons throughout the CNS (Patel et al., 2006); (iii) is involved in the
control of gap junction intercellular communication and Cx43
expression (Yao et al., 2005); and (iv) inhibits the intercellular
transfer of small molecules by a specific influence on Cx37
(Kameritsch et al., 2005). Taken together, these studies suggest
interesting parallels between the NOS system and gap junction
modulation (to be discussed in the later part) in antimigraine drug
development.

2.6. Gap junction modulators

As discussed previously, the pathophysiology of migraine is not yet
fully understood. However, CSD is thought to provide the basis for
migraine aura, and may serve as a trigger for migraine pain
(Hadjikhani et al., 2001; Goadsby, 2007c). Prophylactic drugs, such
as topiramate and valproate, suppress CSD in a dose dependent
manner (Ayata et al., 2006). Further, the neuronal changes in CSD
have been demonstrated to be preceded by vasomotor changes in the
cortex (Brennan et al., 2007), raising the question whether CSD
should be considered as a primary neuronal or primary vascular event
(Goadsby, 2007b). Both CGRP and NO are likely to be involved in the
vasodilatation induced after CSD (Wahl et al., 1994).
2.6.1. Central effects
Tonabersat (SB-220453) is a benzopyran compound, which has

been demonstrated to inhibit CSD in animal models (Smith et al.,
2000), CSD-induced release of NO (Read et al., 2000), as well as
trigeminal nerve ganglion stimulation-induced carotid vasodilatation
(Parsons et al., 2001) and plasma protein extravasation (Chan et al.,
1999). While it was not originally knownwhichmechanismmediated
these effects of tonabersat, it was later demonstrated that this drug
may act, at least partly, via inhibition of increased neuron satellite glia
signaling via gap junctions (Damodaram et al., 2009). In general, gap
junctions: (i) are formed between the cell membranes of two adjacent
cells and serve as intercellular conduits that allow for direct transfer of
small molecular weight molecules, such as ions, that regulate cellular
excitability, metabolic precursors, and secondmessengers; (ii) consist
of two hemichannels (each from one cell), each consisting of a
hexamer of connexins, arranged around a central pore; (iii) are found
in most neurons and glial cells and function to facilitate neuron–
neuron, glia–glia, and neuron–glia communication; and (iv) are
abundant in the CNS and allow for extensive intercellular coupling
between cells that form a communication network.

2.6.2. Vascular effects
Besides the neuronal functions mentioned previously, gap junctions

have also been postulated to be responsible for the endothelium-
derived hyperpolarizing factor (EDHF) phenomenon (Félétou &
Vanhoutte, 2009; De Wit & Griffith, 2010). The gap junctions may
allow passive spread of agonist-induced endothelial hyperpolarization
through the blood vessel wall via direct intercellular communication.
Although we have previously demonstrated that tonabersat does not
display direct vascular effects (MaassenVanDenBrink et al., 2000) and
that the compound produced no cardiovascular effects in experimental
animals (see Silberstein, 2009), it is not clearwhether tonabersat affects
endothelium-dependent relaxations. As mentioned in the later part,
only few cardiovascular adverse events have been reported in clinical
trialswith tonabersat,while a causal relationshipwith administration of
the drug was not always evident. In view of the knowledge now
available about the supposed mechanism of action of tonabersat, it
would, however, be prudent to perform experimental studies specifi-
cally devoted to the potential effects of tonabersat on endothelium-
dependent relaxation. In this context, it is interesting to mention that
the role of EDHF is dependent on estrogen plasma levels (Chataigneau &
Schini-Kerth, 2005; Nawate et al., 2005), while this dependency seems
todiffer betweencranial andperipheral bloodvessels (Golding&Kepler,
2001; Xu et al., 2001;Nawate et al., 2005). These facts, togetherwith the
higher prevalence of migraine in women, also seem to be related to
changes in estrogen levels. Thus, it seems feasible that tonabersatwould
display a hormone-dependent effect in migraine. Obviously, it would
first have to be determined whether such indirect vascular effects of
tonabersat, mediated via EDHF, have any clinical relevance.

2.6.3. Clinical effects
Currently, only one compound specifically targeting CSD, tona-

bersat (SB-220453), was clinically tested. In a phase II proof-of-
concept study, tonabersat failed to meet the primary endpoints
(Goadsby et al., 2009), i.e. reduction in migraine days between
tonabersat and placebo. The reduction in mean monthly headache
days after 3 months, 4.4 days in the tonabersat group and 3.7 days in
the placebo groupwas not significantly different. However, secondary
endpoints were more positive: responder rate, defined as a 50%
reduction in migraine attacks, was 62% for tonabersat and 45% for
placebo, and rescue medication was reduced by 1.8 days in the
tonabersat group compared with placebo. As tonabersat was also well
tolerated, further clinical researchwas initiated. Indeed, a randomized
double-blind, placebo-controlled crossover study showed promising
effects of tonabersat in aura prophylaxis (Hauge et al., 2009). In this
clinical trial, patients with at least one attack of migraine aura per
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month were included. The number of attacks of aura significantly
decreased from 3.2 during placebo treatment to 1.0 during tonabersat
treatment. The number of migraine headache days, however, did not
significantly differ between placebo and tonabersat treatment. Thus,
tonabersat was effective in preventing the attacks of migraine aura,
but had no effect on non-aura attacks. These results are in line with
the hypothesis that auras are caused by CSD and that this
phenomenon is not involved in the attacks without aura.

Besides the use of tonabersat in a prophylactic setting, several
trials were also conducted to test its efficacy in the acute treatment of
migraine (Dahlöf et al., 2009; Silberstein, 2009). Unfortunately,
tonabersat was not superior to placebo. However, these trials were
conducted in a heterogeneous group of migraine patients (with and
without aura), limiting the power of the study. Overall, tonabersat
seems to be well tolerated with no indications of serious cardiovas-
cular side-effects. The most common adverse events after treatment
with tonabersat were dizziness and nausea (Silberstein et al., 2009).

The fact that tonabersat seems to act specifically on CSD and aura
could explain why this drug was not effective in the GTN-induced
migraine headache model (Tvedskov et al., 2004). As this model only
induces migraine-like headache without aura (Christiansen et al.,
1999), and tonabersat is only effective in migraine with aura (Hauge
et al., 2009), negative results could have been expected a priori with
the current knowledge. The apparent synergism between GTN and
tonabersat resulted in a serious hypotension in two subjects.

We conclude that suppression of CSD seems to be most useful in a
prophylactic setting to increase the aura threshold. In view of the
safety results obtained so far, it is tempting to speculate that this new
class of antimigraine drugs will show a beneficial cardiovascular
profile. However, the potential for cerebral hypotension (Tvedskov et
al., 2004) should be kept in mind. Moreover, gap junctions not only
have functions in the brain (Nagy et al., 2004), but also play an
important role in the electrical coupling of cardiomyocytes and, as
such, are determinants of the speed and direction of cardiac
conduction (Kleber & Rudy, 2004; Hesketh et al., 2009; Jansen et al.,
2010; Boulaksil et al., 2010). The consequences of tonabersat's effects
on glial cell communication via gap junction inhibition (e.g.
connexin26; Damodaram et al., 2009) could also negatively affect
connexins in the myocardium. Indeed, connexin alterations may
cause arrhythmias in heart disease (Kleber & Rudy, 2004; Severs et al.,
2004; Hesketh et al., 2009; Jansen et al., 2010; Boulaksil et al., 2010).
Furthermore, gap junction communication is a key player in the
mechanisms leading to ischemic preconditioning-induced tolerance
against infarction and arrhythmias during ischemia-reperfusion of the
heart (Miura et al., 2010). However, not all connexins are distributed
in all tissues (Severs et al., 2008; Hesketh et al., 2009); hence,
connexin-specific drugs may solve this issue in the future.

In short, there is at least a rationale for the hypothesis that
connexins form the link between migraine with aura and the
increased cardiovascular risk, since: (i) the gap junction modulator
tonabersat inhibits aura; (ii) gap junctions and connexin alterations
play an important role in cardiac disease; and (iii) migraine with aura
is associated with an increased risk for cardiovascular disease (Bigal et
al., 2009; Schurks et al., 2009). This is translated into the hypothesis
that inhibition of the neuronal gap junction system for migraine aura
treatment could possibly be undesirable with respect to cardiovascu-
lar safety, although no excessive cardiovascular side-effects have been
reported so far.

2.6.4. Discussion
It remains to be established whether migraine with and without

aura are driven by different pathophysiological mechanisms. As
inhibition of CSD, which is only observed in migraine with aura
(Lauritzen et al., 1983; Olesen et al., 1990; Hadjikhani et al., 2001),
does not prevent the non-aura headache, it seems that aura is a
symptom in parallel with the non-aura headache. In conclusion, the
therapeutic potential of tonabersat may be limited as it only prevents
the aura, but not the non-aura headache (Dodick, 2009). These
findings seem to confirm some hypotheses about aura, but, as with all
interesting science, more knowledge also means more questions.

3. Implications, future directions and conclusions

Many prospective antimigraine drugs with a putatively selective
neuronal mechanism of actionmay display indirect vascular effects. In
contrast to the currently available antimigraine drugs (ergots and
triptans), the prospective antimigraine drugs do not directly induce
vasoconstriction, but they may inhibit either vasodilatation induced
by neuropeptides (e.g., CGRP receptor antagonists) or the release of
such peptides (e.g., some glutamate receptor antagonists).

While the vasoconstrictor potential of the ergots does seem to
involve a realistic risk (Tfelt-Hansen et al., 2000), similar concerns
existed about the use of the triptans in view of case reports on
coronary ischemia in relation to triptan use (e.g., Ottervanger et al.,
1993). The triptans are in clinical use for about two decades, and it is
now clear that the incidence of serious cardiovascular events with
triptans in both clinical trials and clinical practice appears to be
extremely low, and thus the cardiovascular risk–benefit profile of
triptans favors their use in the absence of contraindications (Dodick et
al., 2004). Moreover, even in patients with cardiovascular risk factors
(for whom these drugs are contraindicated) the use of triptans did not
seem to increase the risk for ischemic cardiovascular complications
(Wammes-van der Heijden et al., 2006). However, the fact that
triptans have the propensity to constrict the coronary artery
(MaassenVanDenBrink et al., 1998) warrants these drugs to remain
contraindicated in patients with cardiovascular disease.

It remains to be elucidated whether the indirect vascular effects of
the prospective antimigraine drugs discussed in this review contrib-
ute to the therapeutic efficacy of these compounds. Alternatively, the
vascular effects could be relevant in view of the cardiovascular side-
effect potential of the drugs. For some of the prospective antimigraine
drugs, such as telcagepant, data obtained from clinical trials
(Edvinsson & Linde, 2010) are already available; these data suggest
that telcagepant is cardiovascularly safe, even in patients with
increased cardiovascular risk, since this drug did not exacerbate
spontaneous ischemia in a small cohort of patients with stable
coronary artery disease (Behm et al., 2008). This confirms telcage-
pant's favorable cardiovascular side-effect profile when used as an
acute antimigraine treatment. For some of the other prospective drugs
no, or only few, clinical data are available; on theoretical grounds, we
expect the cardiovascular side-effect profile to be mild as well. Thus,
the probably improved cardiovascular safety profile of the new
generation antimigraine drugs may be of clinical relevance for
patients in which the triptans are contraindicated. However, it should
be kept in mind that when the prospective drugs are used chronically
as prophylactic (instead of acute) antimigraine drugs, the cardiovas-
cular side-effect profile may be less favorable than expected for acute
use. Obviously, further research is warranted before any definite
statements can be made on this topic.

Finally, some drugs that are discussed in this review, such as
kainate receptor antagonists, and possibly 5-HT1F receptor antago-
nists, seem to be completely devoid of vascular effects. The
demonstrated efficacy of these compounds confirms that a vascular
action is not an essential feature for antimigraine efficacy. Whether a
completely non-vascular mode of action will clinically be an
advantage over compounds with mild (in)direct vascular effects is
awaited with great interest.
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