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Abstract In this study, effect of mass transfer on laminar flow of viscoelastic fluid in a porous

channel with high permeability medium is investigated. The viscoelastic model used in this work

is the upper convected Maxwell (UCM) model. Applying the similarity transformation, the govern-

ing partial equations are converted to ordinary differential equations. The problem is studied by a

hybrid technique based on Differential Transformation Method (DTM) and iterative Newton’s

method (INM). Also a numerical solution is done to validate the present analytical method. The

effects of active parameters such as Darcy number (Da), transpiration Reynolds number (ReT) Deb-

orah number (De) and Schmidt number (Sc) on the both velocity components and concentration

function are discussed in this work. The results indicate that the stream function increases for large

Deborah and Darcy numbers. The axial velocity is initially decreased by increasing the Deborah

number but then increased while approaching the upper channel wall.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

In the current decade, the examination on the behavior of vis-
coelastic flows has attracted considerable interest due to their
wide range of applications such as chemical process industries,

food processing and biological systems. Viscoelastic fluids
show both viscous and elastic properties, so because of this
complexity of such fluids there is no specific model that indi-

cates all of their properties, simultaneously. Some models have
been proposed for such fluids which exhibit the non-linear
relationship between stress and the rate of strain include sec-

ond-grade model, Walters-B model, the Oldroyd model and
upper convected Maxwell model (UCM). Many researchers
studied the flow of all of these models. Fan et al. [1] utilized

finite volume method to represent the viscoelastic flow which
includes UCM and Oldroyd-B fluid in curved pipes. Sadeghi
and Sharifi [2] studied the boundary layer flow of second-grade
viscoelastic fluid above a moving plate. Nandeppanavar et al.

[3] investigated the flow of Walters-B liquid fluid over an
impermeable stretching sheet with the presence of non-uniform
heat source/sink. The second-grade model is not suitable for

flows of highly elastic fluids which occur at high Deborah
number. Some studies show that the use of this kind of fluid
is suitable only for slow flows with small level of elasticity

[4,5] while there are some practical cases in which the Deborah
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Nomenclature

ai unknown parameter (i= 1,2,3)

C concentration of species of fluid
CH concentration of channel center
CW concentration of channel wall
D diffusion coefficient of the diffusing spices

Da Darcy number
De Deborah number
DTM differential transformation method

f(y) dimensionless normal velocity component
f0(y) dimensionless axial velocity component
H channel width

K permeability of the porous medium
Re Reynolds number
Ri residual value (i= 1,2,3)

Sc Schmidt number

U fluid velocity along x-direction
V fluid velocity along y-direction
X coordinate along the channel
Y coordinate perpendicular to the channel

Greek symbols

k relaxation time of the UCM fluid

q density of the fluid
l dynamic viscosity of the fluid
m Kinetic viscosity of the fluid
/ dimensionless concentration function

y

H x

Figure 1 Schematic of the flow geometry in a channel with

isotropic homogenous porous medium.
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number is high [6]. So, the upper convected Maxwell model is
proposed in simulating highly elastic fluids because it can pre-

dict the effects of stress relaxation. Khayat [7] analyzed the vis-
coelastic flow of UCM fluid between two parallel plates with
moving free boundaries using perturbation method. Kumari

and Nath [8] examined steady mixed convection flow of
UCM fluids in the area of two-dimensional stagnation point
with magnetic field by using boundary layer theory and finite

difference method. The results are opposite of those reported
for second-grade fluids. Frey et al. [9] utilized finite element
method to study the flow of UCM fluids around a cylinder,
and the model is approximated by a Galerkin least-squares

formulation in extra-stress, pressure and velocity. Hayat
et al. [10] employed homotopy analysis method (HAM) to
investigate the influence of mass transfer on the two-dimen-

sional stagnation point flow of UCM fluid over a stretching
surface. Li et al. [11] studied viscoelasticity on lubricant thin
film under the assumption that fluid belongs to the UCM

model. The results show that the viscoelasticity that increases
the lubricant pressure field has an influent effect on the lubri-
cation performance. Abel et al. [12] used similarity transforma-
tion to investigate magnetohydrodynamic flow and heat

transfer in a boundary layer of UCM flow over a stretching
sheet applying numerical solution. Renardy and Wang [13]
studied boundary layers arising in the high Weissenberg num-

ber limit of viscoelastic UCM flows using two mechanisms for
the formation of viscoelastic boundary layer.

The study of heat and mass through a porous media is of

special interest in many engineering fields such as chemical
engineering, solar collectors processing and nuclear reactors.
The phenomena of porous media in viscoelastic flow were

investigated in some studies. Sivaraj and Kumar [14] investi-
gated unsteady, MHD and chemically reacting dusty viscoelas-
tic (Walter’s liquid-B model) fluid Couette flow in a porous
channel with convecting cooling and varying mass diffusion.

Srinivas et al. [15] have studied the effects of chemical reaction
and mass transfer on the flow of viscoelastic fluid in a porous
channel with moving or stationary walls using HAM.

Most problems in the investigation of the flow of viscoelas-
tic fluid are nonlinear. All these problems are modeled by par-
tial or ordinary nonlinear equation. Hayat and Abbas [16]

studied the flow of UCM fluid in a porous channel with
chemical reaction, while Beg and Makinde [17] extended their
study with considering species diffusion in a Darcian porous

medium channel only using numerical solution. According to
the above description, the main gain of this paper is to apply
DTM to find the approximation solution of nonlinear differen-

tial equations governing the problem of flow of the UCM fluid
in a porous channel with high-permeability. The main motiva-
tion of this study is to investigate both component of axial and

normal velocity of the flow by using analytical solution. The
influences of various parameters on velocity components and
species concentration field are discussed.

In this paper, a new hybrid technique is used for solving the

governing equations of the problem. The procedure of solution
is based on the DTM and Newton’s iterative method. Here, we
can obtain the approximate solution of the problem using the

proposed technique. Differential transform method is an itera-
tive technique to obtain the semi analytical solution for differ-
ential equations by computing the components of Taylor

series. Zhou [18] first introduced DTM for solving the linear
and nonlinear initial value problems. He used this method to
derive the semi analytical solution for the electrical circuit
analysis. A considerable amount of researches have been done

using DTM to investigate the solution of linear differential
algebraic equations [19], nonlinear ordinary differential equa-
tions [20–24], partial differential equations [25], fractional dif-

ferential equations [26] and integral equations [27]. DTM is a
powerful and simple technique which is well known as a high
accurate technique for solving the differential equations.

Recently, most engineering problems have been analyzed using
the analytical and approximate methods [28–35].



Table 1 The properties of the DTM.

Original function Transformed function

f(t) = g(t) ± h(t) F(k) = G(k) ± H(k)

f(t) = cg(t) F(k) = cG(k)

fðtÞ ¼ dngðtÞ
dtn FðkÞ ¼ ðkþnÞ!k! Gðkþ nÞ

f(t) = g(t)h(t) FðkÞ ¼
Pk

r¼0GðrÞHðk� rÞ

f(t) = tn FðkÞ ¼ dðk� nÞ ¼ 1 if k ¼ n
0 if k–n

�
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2. Description of the problem

Consider the steady, laminar and incompressible flow of
UCM fluid in a parallel plate channel having porous walls

of high permeability. The physical model is shown in
Fig. 1. The x direction is parallel of channel which is set
to the motion of flow and the y direction is perpendicular

to x. Following the assumption of the above mentioned
studies [16,17], the flow is symmetric about both axes in
which the channel has the same boundary conditions at
the walls. The flow and species diffusion take place in the

channel with the fluid suction or injection through the por-
ous walls with velocity V/2, where V> 0 represents the suc-
tion and V< 0 corresponds to injection. It is assumed that

the width of the channel is much higher than the height of
the channel, so this study represents the tow-dimensional
model. Taking into consideration of these assumptions, the

equations of mass, momentum and the concentration filed
are as follows [17]:

@u

@X
þ @u
@Y
¼ 0; ð1Þ

u
@u

@X
þ v

@u

@Y
þk u2

@2u

@X2
þ v2

@2u

@Y2
þ2uv

@2u

@X@Y

� �
¼ m

@2u

@Y2
� m

u

k
; ð2Þ

u
@C

@X
þ v

@C

@Y
¼D

@2C

@Y2
: ð3Þ

where u and v are the velocity components in x and y direc-
tions, respectively. k is relaxation time, D is the mass diffusion,

C is the concentration field and K exhibits the permeability of
the porous media.

The relevant boundary conditions for the flow are as
follows:

@u

@Y
¼ v ¼ 0; C ¼ Cw at Y ¼ 0; ð4Þ

u ¼ 0; v ¼ V

2
; C ¼ CH at Y ¼ H

2
: ð5Þ

Defining the following transformation as introduced in [16]:

x¼ X

H
; y¼ Y

H
; u¼�Vxf0ðyÞ; v¼VfðyÞ; /¼ C�CH

Cw�CH

: ð6Þ

Substituting the above variables, the governing partial

equations are converted to ordinary differential equations.
So the momentum equation (Eq. (2)) and concentration
equation (Eq. (3)) can be written in non-dimensional form as:

f 000ðYÞ þ ReT ðf 0Þ2 � ff 00
h i

þDe 2ff 0f 00 � f 2f 000
� �

þ 1

Da
f 0 ¼ 0;ð7Þ

/00 � ReT Scf /0 ¼ 0: ð8Þ

Therefore, the transformed boundary conditions become:

f ¼ 0; / ¼ 1 at y ¼ 0;

f ¼ 0:5; f0 ¼ 0; / ¼ 0 at y ¼ 0:5:
ð9Þ

The dimensionless parameters of Da, De, Re, Sc are the
Darcy, Deborah, Reynolds and Schmidt numbers, respec-
tively. They are defined as follows:

Da ¼ K

H2
;De ¼ kV2

m
;Re ¼ qVH

l
;Sc ¼ m

D
: ð10Þ
3. Differential transform method

The differential transform is defined as follows:

XðkÞ ¼ 1

k!

dkxðtÞ
dtk

� �
t¼t0

: ð11Þ

where x(t) is an arbitrary function, and X(k) is the transformed
function. The inverse transformation is as follows:

xðtÞ ¼
X1
k¼0

XðkÞðt� t0Þk: ð12Þ

Substituting Eq. (11) into Eq. (12), we have:

xðtÞ ¼
X1
k¼0

ðt� t0Þk

k!

dkxðtÞ
dtk

� �
t¼t0

: ð13Þ

The function x(t) is usually considered as a series with lim-
ited terms and Eq. (12), can be rewritten as follows:

xðtÞ �
Xm
k¼0

XðkÞðt� t0Þk: ð14Þ

where m represents the number of Taylor series’ components.
Usually, through elevating this value, we can increase the accu-

racy of the solution.
Some of the properties of DTM are shown in Table 1.

These properties are extracted from Eqs. (11) and (12).

4. Solution of the problem

This section tries to obtain a solution for Eqs. (7) and (8) using

a new hybrid technique. The solution procedure has two steps,
first by applying DTM, the Taylor series of solution is found.
Then, the iterative Newton’s method will be used to obtain the

unknown parameters of the solution.

4.1. Applying DTM

The solution of the Eqs. (7) and (8) is considered as the Taylor
series at y = 0 in the following form:

fðyÞ ¼
Xm
k¼0

FðkÞyk; 0 6 y 6 0:5;

/ðyÞ ¼
Xm
k¼0

UðkÞyk; 0 6 y 6 0:5:

ð15Þ

The system of BVPs (Eqs. (7) and (8)) can be transformed
to initial value problems with the replacement of the unknown

initial conditions instead of the boundary conditions:



Table 2 Comparison of the present results and numerical solution for Da= 1, ReT = 1, De = 1 and Sc = 1.

y f(y) /(y)

Present (Eq. (22)) Numerical solution Error Present (Eq. (23)) Numerical solution Error

0 0 0 0 1 1 0

0.05 0.09269 0.09285 1.59E�4 0.90604 0.90605 8.13E�6
0.1 0.17658 0.17687 2.88E�4 0.81165 0.81167 1.54E�5
0.15 0.25123 0.25167 4.40E�4 0.71643 0.71645 2.10E�5
0.2 0.31636 0.31684 4.84E�4 0.62001 0.62003 2.47E�5
0.25 0.37180 0.37227 4.77E�4 0.52205 0.52208 2.61E�5
0.30 0.41744 0.41786 4.22E�4 0.42226 0.42229 2.51E�5
0.35 0.45321 0.45353 3.20E�4 0.32037 0.32039 2.18E�5
0.4 0.47903 0.47920 1.71E�4 0.21615 0.21617 1.66E�5
0.45 0.49477 0.49475 2.29E�5 0.10941 0.10941 9.44E�6
0.5 0.5 0.5 0 0 0 0
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f ð0Þ ¼ 0; f 0ð0Þ ¼ a1; f 00ð0Þ ¼ a2;

/ð0Þ ¼ 1; /0ð0Þ ¼ a3:
ð16Þ

where a1 to a3 are the unknown parameters of initial condi-
tions. After applying DTM on Eqs. (7) and (8) at y = 0 and
simplification, the following recursive equations are obtained

to calculate the series solutions’ components

Fðkþ3Þ¼ 1

ðkþ1Þðkþ2Þðkþ3Þ

� �Re
Xk
r¼0
ðrþ1Þðk� rþ1ÞFðrþ1ÞFðk� rþ1Þ

(

þRe
Xk
r¼0
ðrþ1Þðrþ2ÞFðrþ2ÞFðk� rÞ

� 1

Da
ðkþ1ÞFðkþ1Þ

�2De
Xk
p¼0

Xp
r¼0
ðrþ1Þðrþ2Þðrþ3ÞFðrþ3ÞFðp� rÞFðk�pÞ

þDe
Xk�1
p¼0

Xp
r¼0
ðrþ1Þðrþ2Þðrþ3ÞFðrþ3ÞFðp� rÞFðk�pÞ

)
: ð17Þ

Uðkþ 2Þ ¼ 1

ðkþ 1Þðkþ 2ÞRe � Sc
Xk
r¼0
ðrþ 1ÞUðrþ 1ÞFðk� rÞ:

ð18Þ

The differential transform of the conditions in Eq. (16) is as
follows:

Fð0Þ ¼ 0; Fð1Þ ¼ a1; Fð2Þ ¼ a2
2
;

Uð0Þ ¼ 1; Uð1Þ ¼ a3:
ð19Þ
Figure 2 The convergence history of the iterative Newton’s

method when Da= 1, ReT = 1, De = 1 and Sc = 1 for (a)

residual functions and (b) unknown parameters.
4.2. Applying iterative Newton’s method

Now, we should compute the unknown parameters (a1 to a3)
from the boundary conditions at the end domain (y= 0) in

Eq. (9). For this reason, we will try to minimize the following
residual functions for obtaining the unknown parameters:

R1 ¼ fð0:5; a1; a2; a3Þ � fð0:5Þ ¼
Xm
k¼0

FðkÞð0:5Þk � 0:5;

R2 ¼ f0ð0:5; a1; a2; a3Þ � f0ð0:5Þ ¼
Xm
k¼1

kFðkÞð0:5Þk�1;

R3 ¼ /ð0:5; a1; a2; a3Þ � /ð0:5Þ ¼
Xm
k¼0

UðkÞð0:5Þk:

ð20Þ
To obtain the roots of the Eq. (20), we can use the following

multi-variable iterative Newoton’s method:

a1

a2

a3

2
64

3
75

nþ1

¼
a1

a2

a3

2
64

3
75

n

�

@R1

@a1

@R1

@a2

@R1

@a3

@R2

@a1

@R2

@a1

@R2

@a1

@R3

@a1

@R3

@a1

@R3

@a1

2
664

3
775
�1

R1

R2

R3

2
64

3
75

n

; n¼ 0;1;2; . . .

ð21Þ

where n shows the number of iteration. After guessing the
initial values for a1 to a3, we should calculate the residual

vector (R) and Jacobian Matrix (@Ri

@aj
). The residual vector can

be obtained by substituting (a1, a2, a3)
n in Eq. (20). The com-

ponents of the Jacobian matrix in Eq. (21) can be computed by

differentiating analytically with respect to a1 to a3 and then
substituting (a1, a2, a3)

n in that equation.
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4.3. Accuracy and convergence history of the solution

The accuracy for computing a1 to a3 by Newton’s method is

chosen 10�9 and all of the initial guesses for a1 to a3 are con-
sidered one. The number of Taylor series components is con-
sidered m = 8.

The approximate solution of the problem is in the following
form for Da = 1, ReT = 1, De = 1 and Sc = 1:

fðyÞ¼1:9383y�1:6429y2�0:9492y3þ1:4310y4�0:7322y5; ð22Þ
/ðyÞ¼1�1:8776y�0:6066y3þ0:2571y4�0:0872y5: ð23Þ

For validating the present solution of the problem and finding
the accuracy, we will compare results of our procedure and
numerical solution. Numerical solution of the problem is done
with the Maple package. The available methods in this

software are a combination of the base scheme (midpoint or
trapezoid), and a method enhancement scheme (deferred cor-
rections or Richardson extrapolation). This technique is capa-
Figure 3 The profiles of f(y), f0(y) and /(y) when ReT = 5,

De = 3, Sc = 2 for different Darcy numbers (Da).

Figure 4 The profiles of f(y) and f0(y) when ReT = 5, Da= 0.1,

Sc = 0.5 for different Deborah numbers (De).
ble of handling both linear and nonlinear BVPs with fixed,
periodic and even nonlinear boundary conditions.

A good agreement between the present hybrid method and
numerical solution is observed in Table 2 for a special case
(Da= 1, ReT = 1, De = 1 and Sc= 1), which confirms the

validity of the proposed method. As it can be seen, error of
the method is in order of 1E�6 to 1E�4.

The convergence history of the unknown parameters and

residual is shown in Fig. 2 for a special case. As we can see
in Fig. 2 the problem converged rapidly with only 5 iterations.
This is because the Jacobian matrix obtained by differentiating

analytically with respect to a1 to a3.

5. Results and discussion

In this section, Figs. 3–6 represent the effects of Darcy number
(Da), Deborah number (De), Reynolds number (ReT) and
Schmidt number (Sc) on the dimensional velocity components
(f(y), f0(y)) and concentration field (/). In order to clarify the

dependency of viscoelastic flow on the permeability and fluid
elasticity, stream function of flow and axial velocity are plotted
versus Deborah number and Darcy number.

Fig. 3 illustrates the variation in Darcy number on the
velocity and concentration filed. The value of parameters used
in this simulating is as follows: ReT = 5, De = 3, Sc= 2. It is

observed that the normal velocity (f(y)) increases for large Da.
The axial velocity (f0(y)) is increased initially but then
decreased for the value of y between 0.18 and 0.5 with an

increasing Darcy number. At higher value for Darcy number,
the effect of viscous force is more and the Darcian drag will
decrease which cause the acceleration in the flow while
approaching the upper channel wall will reduce the fluid



Figure 5 The profiles of f(y), f0(y) and /(y) when Da= 0.1,

De = 1, Sc = 0.2 for different Reynolds numbers (ReT).

Figure 6 The profiles of /(y) for different Schmidt numbers (Sc)

when Da= 0.1, ReT = 10 (a) De = 1 and (b) De = 3.
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motion and cause the velocity to decrease with increasing per-

meability. Also it can be seen that the concentration distribu-
tion varies a little by varying the Darcy number, because there
are no buoyancy forces, it is anticipated that permeability does

not make considerable influence on the diffusion of the spices.
Fig. 4 is plotted to show the influence of viscoelastic mate-

rial parameter (Deborah number) on dimensionless velocity

components. The terms Deð2ff0f00 � f2f000Þ show the viscoelastic
effects in the momentum equation which are the nonlinear
terms. The Deborah number is often used to characterize the

fluidity of materials which is the ratio of the time-scale of a
flow to the relaxation time. It is noticed that the variation in
the Deborah number has very little effect on normal velocity.
As shown in Fig. 4, the component f increases with increasing

De but the increment is very small. Here the axial velocity
(f0(y)) initially decreases by increasing De and then increases
after y = 0.225. With the increasing values of the Deborah

number, the degree of strain hardening is enhanced and the
elasticity effect will be more than the viscosity effects.
Fig. 5 demonstrates the velocity components and species
distributions for various Reynolds numbers in case of suction

flow. It is observed that for a given increase of Re, there is a
decrement in the axial velocity, whereas f

0
(y) decreased at the

first and then increased after y = 0.2 for larger Re. In this case

Re is considered positive because of contemplating only the
suction flow. Also, in this figure it is seen that concentration
distribution is an increasing function of Reynolds number

but the increment is very small.
Fig. 6 indicates the effect of Schmidt number on dimension-

less concentration distribution for different Deborah numbers.

It shows that with an increase in Schmidt number, the concen-
tration values increase highly throughout the upper semi-chan-
nel region. Also Fig. 6 represents that for different Schmidt
numbers the concentration field has the same behavior in both

Deborah numbers (De = 1, De= 3) since the viscoelasticity
will not affect the diffusion of spices.

6. Conclusion

In the present article, a new hybrid technique based on the dif-
ferential transform method (DTM) and iterative Newton’s

method (INM) has been successfully applied to find the solu-
tion to the viscoelastic flow of upper convected Maxwell fluid
in a porous channel with high permeability. It is observed that

the result of the present analytical method is in an excellent
agreement with the numerical one, so it can be powerful and
highly efficiency technique for finding analytical solutions in

non-linear equation of viscoelastic flow problems. The results
show that the velocity component of f(y) (normal velocity)
increases for large De and Da. The velocity component of
f0(y) (axial velocity) is initially increased with an increase in
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Darcy number then decreased, but it has the opposite behavior
by increasing Deborah number. With increasing of Reynolds
number there is a decrease in the normal velocity but the veloc-

ity component of f0(y) is increased near the walls. The concen-
tration distribution (/) is an increasing function of Schmidt
number when Sc is increased. Also, it can be seen that for dif-

ferent species diffusing the concentration field has the same
behavior in various Deborah number because the viscoelastic-
ity will not affect the diffusion of spices.
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