
Discussion.– these two tests are very different and not correlated in a stroke
population. The RFT is a cognitive task assessing the VD with a static method, the
second test is a postural task evaluating the effect of dynamic visual disturbance.
Visual dependence is not an absolute concept but is depending on the task.
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Introduction.– After a cerebrovascular accident (CVA), clinical scales are used
to qualitatively evaluate lateropulsion. Verticam is a system using a high-speed
camera. It allows measuring lateropulsion quantitavely [1]. This study aims to
analyze the clinimetric properties of this technique.
Methodology.– The trunk orientation of 30 patients was measured by Verticam
at 30 � 3 days after their first hemispheric stroke (age = 62 � 17.7years;
sex:14F/16 M; lesion side:14L/16R), and two days later. Seven patients had a
SCP (Scale for Contraversive Pushing) score > 0.5, which is the proposed
criterion for clinical lateropulsion diagnostic [2]. Verticam quantified the trunk
lateral inclination thanks to a measure of the average orientation of a segment
between two markers (T6 & L3) (negative sign if the inclination was
contralesional). The measures were performed in a sitting position during 30s,
eyes open. Seventeen controls (mean age 52 � 10 years) were also tested. A
non-parametric statistical analysis was performed.
Results.– The average trunk orientation was –0.6 � 1.38 within controls, which
led us to set the pathological threshold to every measure below –3.58.
Surprisingly, the average orientation was not different within patients: –

0.8 � 7.88. The trunk orientation of patients with lateropulsion characterized by
SCP was not significantly different from other patients (–4.3 � 15 vs
0.5 � 1.98, ns). One patient had a contralesional trunk inclination below -
3.58. The inclination measured by Verticam was not correlated with the SCP
score (r = –0.29, P = 0.12). In patients, measures of trunk inclination two days
apart were correlated (r = 0.52, P < 0.01).
Discussion.– This technique for measuring lateropulsion seems to be unreliable.
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Introduction.– With its very low cost, the Microsoft KINECT camera is one of
the last generation game controllers. KINECT is composed of a conventional
video camera and an infrared depth sensor. Coupled with dedicated software, it

is able to track the 3D posture of several players in real-time [1]. A depth sensor
does not require any calibration and can work under variable lighting
conditions. Recently, several depth sensors, relying on the same technology,
have been released with an improved spatial precision. The objective of this
study is to adapt and optimize this system for the clinical gait analysis.
Materials and methods.– In this study, we investigated the potential use of a
depth sensor as a measure device for the human gait and posture analysis. For
that purpose, we developed the following tested: an optical motion capture
system (six 200 Hz VICON cameras) is used as a reference measure device in
order to compare the performances (spatial precision, latency, etc.) of different
depth sensors models for ten healthy subjects.
Results.– These experiments, jointly conducted by the computing and
biomechanics laboratories, were used to assess a spatial accuracy from 4 cm
to 5 mm. Even if the skeleton tracking algorithm provided by these depth sensors
seems to be relevant for gesture based interfaces, the generated joints position and
orientation cannot be matched precisely with the joints configuration of the real
skeleton. We adapted a 2D feature point tracking algorithm [2] to overcome this
problem. Using the depth map generated by the depth sensor, we obtained the
segmental 3D position with a backward projection.
Discussion.– This methodology allows tracking points which are not recognized
by the default system. The results obtained on the subject foot by placing colored
stickers on the toe and the lateral and medial malleoli showed that the error related
to the spatial position is less than 2 mm, using a short range depth sensor that we
will present during the congress. Our method is with an original approach which
will simplify the utilization of 3D system of movement analysis such as the Vicon
system. The cost of the 3D equipment analysis will be strongly reduced and the
interaction between the user and the subject or patient will be optimized.
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Aim.– Determine posturological effects of wearing different types of safety
shoes meant to standing workstation optimization.
Materiel.– Posturological data [coordinates (X, Y), Total Area (A),
Anteroposterior and Lateral Magnitude (Ant-M et Lat-M), Length (L) and
Velocity (V) of the Center of Pressure] were measured using a baropodometric
platform (WinPod, sampling frequency: 200 Hz) while the forces (Fx, Fy et Fz)
were measured by a force plate (AMTI, sampling frequency: 1 kHz).
Participants.– Ten workers [age: 23.3 � 6 years old, height: 1.80 � 0.05 m,
weight: 77.9 � 8 kg, shoe size: 43–44).
Methods.– Participants were asked to maintain three times 120s standing
position over WinPod which was embedded over the force plate to ensure
synchronized acquisition, according to the following modalities: barefeoot,
safety shoes with conventional standards (l), safety shoes (OREGON),
recognized as more comfortable than l, safety shoes with convex soles, meant
to be more ergonomic (MBT). An Anova with Fisher post-hoc was done in order
to compare the 4 conditions. A level was set at a = .05.
Results.– No significant variations were observed for X, Yand Lat-M. However, A,
L, V and Ant-M were significantly higher when wearing MBT [F(3, 116) = 10.5;
94.3; 94.3; 9.5; respectively P < 0.05]. Only minimal Fy [F(3, 116) = 11.6] and
maximal Fy [F(3,116) = 6] absolute values were significantly higher (P < .05).
Discussion.– The results of the current study shows that space-time parameters
(A, L, V, Ant-M) were amplified while wearing MBT, probably due to increase
in Fy [1,2]. Surprisingly, this was not the case of the center of pressure
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