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SUMMARY

Trophectoderm (TE), the first differentiated
cell lineage of mammalian embryogenesis,
forms the placenta, a structure unique to
mammalian development. The differentiation
of TE is a hallmark event in early mammalian
development, but molecular mechanisms
underlying this first differentiation event
remain obscure. Embryonic stem (ES) cells
can be induced to differentiate into the TE
lineage by forced repression of the POU-
family transcription factor, Oct3/4. We show
here that this event can be mimicked by
overexpression of Caudal-related homeo-
box 2 (Cdx2), which is sufficient to generate
proper trophoblast stem (TS) cells. Cdx2
is dispensable for trophectoderm differenti-
ation induced by Oct3/4 repression but
essential for TS cell self-renewal. In preim-
plantation embryos, Cdx2 is initially co-
expressedwith Oct3/4and they form a com-
plex for the reciprocal repression of their
target genes in ES cells. This suggests
that reciprocal inhibition between lineage-
specific transcription factors might be in-
volved in the first differentiation event of
mammalian development.

INTRODUCTION

Trophectoderm (TE) is the first differentiated cell lineage to

arise in mammalian embryogenesis. Mouse zygotes cleave
three times to generate 8-cell stage embryos. After the third

cleavage, the blastomeres undergo a morphological change

known as compaction. The next round of cell divisions tends

to occur along the apical-basal axis of the blastomeres, re-

sulting in the formation of a 16-cell morula consisting of small

inner cells enclosed within larger outer cells. Most of the

outer cells are then epithelialized and become TE, whereas

the inner cells go on to generate the inner cell mass (ICM)

in blastocysts (Fleming, 1987). Cell-fate analyses revealed

that the ICM gives rise to all of the embryonic cells and the

extraembryonic endoderm, whereas TE forms the embry-

onic portion of the placenta, a structure unique to mamma-

lian development (Pedersen et al., 1986; Fleming, 1987).

Therefore, the differentiation of TE can be regarded as a hall-

mark event in mammalian early development.

We previously reported that the pluripotent embryonic

stem (ES) cells derived from the ICM can be induced to un-

dergo differentiation toward the TE lineage by forced repres-

sion of a POU-family transcription factor, Oct3/4, whereas its

overexpression induces differentiation mainly to extraembry-

onic endoderm (Niwa et al., 2000). It had previously been

suggested that mouse ES cells possess limited ability to

form TE and extraembryonic endoderm because they con-

tribute to these lineages at low frequencies when they are in-

jected into blastocysts to generate chimeric embryos (Bed-

dington and Robertson, 1989); but our study conclusively

demonstrated that ES cells can be caused to differentiate

into these extraembryonic lineages by controlling the func-

tion of genes involved in these differentiation events.

It was recently shown that Caudal-related homeobox 2

(Cdx2) is involved in TE formation at the blastocyst stage in

mice. The expression of Cdx2 in the pre- and early post-

implantation embryos is tightly restricted in the TE lineage,

especially in its proliferating population (Beck et al., 1995).

Detailed analysis of mutant embryos lacking zygotic Cdx2

showed that they do form blastocyst-like structures with

TE-like cells (Strumpf et al., 2005). However, these mutant

blastocysts never implant due to the abnormality of these
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Figure 1. Overexpression of Cdx2 in ES Cells

(A–F) Photomicrographs of colonies at 6 days after transfection of MGZ5 ES cells with the expression vectors of Cdx2 (A and B), Eomeso (C and D), Oct3/4

(E), and Gata6 (F). FGF4 and MEFc were added in (B) and (D) to allow the growth of TS cells. Scale bar is 100 mm.

(G–I) Immunostaining of TE cells generated by overexpression of Cdx2 (G) and Eomeso (H) in MGZ5 ES cells or repression of Oct3/4 in ZHBTc4 ES cells (I).

Cdh3 expression was detected with anti-Cdh3 antibody (green), and nuclei were stained with propidium iodite (PI; red). Scale bar is 100 mm.

(J) Efficiency of differentiation induced by supertransfection. 3� 103 of MGZ5 ES cells transfected with the transcription factors were selected by puromycin

for 6 days, and the numbers of the resulting colonies were scored as their morphological characters. Bars represent the numbers of stem cell colonies (filled)

and differentiated ones (hatched).

(K) QPCR analysis of gene expression in the supertransfectants. Total RNA was prepared from each pool of colonies at 6 days after transfection, and the

amounts of each transcript were estimated by QPCR. These data were normalized by the amount of Gapdh and plotted in logarithmic ratio against the

expression level in MGZ5 ES cells, set as 0.
TE-like cells, which ectopically express genes characteristic

of pluripotent stem cells, such as Oct3/4 and Nanog, but

lack the expression of TE marker genes. These data clearly

indicated the importance of Cdx2 in TE, but it has yet to be

revealed whether the function of this gene is essential for ini-

tiating the differentiation of TE or for its functional maturation.

In this report, we used an in vitro system of the mouse ES

cells for modeling the differentiation to TE to determine the

functions of Cdx2 in TE differentiation and maintenance;

we found that the activation of Cdx2 is sufficient to induce

differentiation toward the TE lineage. We also show a pivotal

role for the interaction between Oct3/4 and Cdx2 in both the

establishment and maintenance of the TE lineage.

RESULTS

Overexpression of Cdx2 in ES Cells Induces

Trophectoderm Differentiation

Using an episomal expression vector system, we found that

overexpression of Cdx2 directed morphological differentia-

tion to TE similar to that induced by Oct3/4 repression (Fig-

ure 1A) but distinct from that induced by Oct3/4 (Figure 1E)

or Gata6 overexpression (Figure 1F; Fujikura et al., 2002).

The efficiencies of induction of differentiation were compara-

ble in these three genes (Figure 1J), indicating that these
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events were not an anomalous effect limited to a subset of

transfectants. These cells showed enlarged or multiple nu-

clei and surface expression of TE marker Cadherin3 (Cdh3,

also known as placental cadherin) (Figures 1G and 1I), which

were never detected on differentiated cells induced by

Oct3/4 or Gata6 (data not shown). When the transfectants

were selected in the presence of fibroblast growth factor 4

(FGF4), heparin, and mouse embryonic fibroblast (MEF)-

conditioned medium, the transfectants expressing Cdx2

gave rise to trophoblast stem (TS)-like epithelial cells (Figure

1B; Tanaka et al., 1998), suggesting that Cdx2 is sufficient to

trigger differentiation of the TE lineage. Overexpression stud-

ies of a second gene, Eomesodermin (Eomeso), which en-

codes a T box transcription factor, also induce differentiation

as efficiently as Cdx2 (Figure 1J). The morphology of the re-

sulting cells, which looked quite large and flat in tiny colonies,

was slightly different from that induced by Cdx2 (Figure 1C),

but they also expressed Cdh3 (Figure 1H) and formed

TS-like colonies in the presence of FGF4, heparin, and

MEF-conditioned medium (Figure 1D), indicating that these

genes may possess overlapping function in TE differentia-

tion. We also noted with interest that, among the three mem-

bers of the Cdx homeobox gene family in the mouse

genome, Cdx4 is also able to induce differentiation, but over-

expression of Cdx1 had no discernible effect (data not



shown), indicating a diversity of function in ES cells among

the members of this gene family.

For our functional analysis, we chose eight transcription

factor genes as TE markers, including Cdx2, Eomeso,

Hand1, Esx1, Dlx3, Psx1, Ets2, and Errb; this selection was

based on the expression of these genes during TE differen-

tiation and their mutant phenotypes (Rossant and Cross,

2001). Quantitative PCR (QPCR) analyses revealed that all

eight TE-associated transcription factors tested were con-

sistently induced by overexpression of either Cdx2 or

Eomeso (Figure 1K), suggesting that both Cdx2 and Eomeso

represent good candidates in the search for key regulators of

TE differentiation.

Inducible Activation of Cdx2 in ES Cells Triggers

Proper Differentiation to the TE Lineage

To investigate the differentiation event induced by Cdx2 in

more detail, the expression vector of the 4-hydroxy tamoxi-

fen (Tx)-inducible Cdx2, Cdx2ER, was introduced into

ZHBTc4 ES cells, in which both of the endogenous Oct3/4

alleles are disrupted and a tetracycline (Tc)-regulable Oct3/4

transgene is expressed to maintain self-renewal (Niwa et al.,

2000), resulting in the establishment of the ES cell line

4CER1. These cells could be induced to undergo differenti-

ation into TE in normal culture condition and TS cells on MEF

feeder cells in the presence of FGF4 by addition of either Tx

(Figures 2A and 2B) or Tc (Figures 2C and 2D), indicating that

Cdx2ER functioned properly. Polyploid cells were induced

by either Tx or Tc at comparable efficiencies (Figure 2H), but

the morphologies of colonies on a gelatin-coated surface

were different. On addition of Tc, the colonies mainly con-

tained polyploid cells with multiple small nuclei as found in

the parental ZHBTc4 ES cells (Figures 1I and 2C), but on ad-

dition of Tx to activate Cdx2ER, the colonies had enlarged

nuclei, which was also seen as a result of episomal overex-

pression of Cdx2 (Figures 1G and 2A). These data suggest

either a preferential induction of polytene cells or an inhibitory

effect on nuclear division in endoreduplication that is specific

to Cdx2, indicating that the differentiation events induced by

activation of Cdx2 or repression of Oct3/4 were similar but

not identical.

The TS cells generated by activation of Cdx2ER ex-

pressed the same set of TE markers as that induced by re-

pression of Oct3/4. Immunostaining revealed that both sets

of TS cells expressed TE markers Ets2 and Cytokeratin 7

(Ck7; Potgens et al., 2001). Interestingly, the TS cells induced

by Tx continued to express Oct3/4 from the Tc-regulable

transgene (Figure 2G) at a level comparable to that in undif-

ferentiated ES cells, indicating that Oct3/4 did not block the

differentiation event induced by Cdx2ER. QPCR analyses

showed that the pattern of the gene regulation triggered by

Cdx2ER was almost indistinguishable from that induced by

Oct3/4 repression (Figure 2I). As reported previously, Cdx2

might be subject to autoregulation as endogenous Cdx2

was induced immediately after activation of Cdx2ER (Figure

2I; Xu et al., 1999). Downregulation of Cdx2 in differentiated

ZHBTc4 ES cells was accompanied by terminal differen-

tiation of TE, as was shown in a previous report that Cdx2
is downregulated during differentiation of TS cells (Tanaka

et al., 1998). We found that Cdx2 expression level was main-

tained in ZHBTc4-derived TS cells at the same time point

(Figure 5M). Induction of Eomeso by activation of Cdx2 oc-

curred as quickly as in repression of Oct3/4, suggesting a

dual regulation of Eomeso by these factors (Figure 2I).

4CER1-derived TS cells maintained a diploid state during

self-renewal (data not shown) and underwent differentiation

to the placental lineage following either the withdrawal of

FGF4 and MEF or the addition of diethylstilbestrol (DES)

(Tremblay et al., 2001), as evidenced by both morphological

changes (Figures 2E and 2F) and the induction of marker

genes such as Placental-lactogen-1 (Pl1) and Tpbpa (data

not shown).

Placental Contribution of ES-Derived TS Cells

Generated by Activation of Cdx2ER

For further characterization of TS cells induced by artificial

Cdx2 activation, we introduced expression vectors of the

EGFPCdx2ER fusion gene and pCAG-EGFP-IZ into EB5 ES

cells to further characterize the TS cells induced by the ex-

perimental activation of Cdx2. The resulting 5ECER4G20

cells can be maintained as ES cells in the absence of Tx

and can be induced to differentiate into TS cells by addition

of Tx, FGF4, and MEF. When these ES cells were injected

into 30 blastocysts, which were subsequently transferred

into uteri of pseudopregnant mice, four chimeric embryos

were obtained at embryonic day 12.5 when the EGFP-

positive 5ECER4G20-derived cells contributed to the em-

bryo proper (Figure 2K). In contrast, when the cells from the

same line were induced to differentiate into TS cells and in-

jected into the same number of blastocycts, the GFP-positive

cells showed an exclusively placental contribution in two of

the four resultant embryos (Figure 2J), as had previously

been found in embryo-derived TS cell chimeras (Tanaka

et al., 1998). Immunohistochemical analysis revealed that

the 5ECER4G20-derived GFP-positive cells were incorpo-

rated into the normal tissue architecture of placenta, confirm-

ing their ability to function as TS cells (Figures 2L and 2M),

demonstrating that the activation of Cdx2 is absolutely suffi-

cient to induce proper differentiation of TS cells from ES cells.

Reciprocal Inhibition of Transcriptional Activities

between Cdx2 and Oct3/4

We previously reported that Oct3/4 plays a pivotal role in

maintaining pluripotency in ES cells (Niwa et al., 2000). How-

ever, in the differentiation event induced by Cdx2ER, contin-

uous expression of Oct3/4 is not sufficient to keep ES cells in

the undifferentiated state (Figure 2G). Interestingly, when we

tested both the expression of ES-cell-specific genes, such

as Nanog (Chambers et al., 2003; Mitsui et al., 2003) and

Zfp42/Rex1 (Ben-Shushan et al., 1998), and endogenous

Oct3/4 promoter activity as monitored by the blasticidin S

deaminase gene (bsd) integrated into one of the Oct3/4

alleles of ZHBTc4 ES cells, we found that all of these genes

were downregulated, just as was found after repression of

Oct3/4 by Tc (Figure 3A), indicating that both transcription
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Figure 2. Differentiation of 4CER1 ES Cells to the TE Lineage

(A–F) Photomicrographs of colonies derived from 4CER1 ES cells carrying the Cdx2ER transgene. 1 � 103 4CER1 ES cells were seeded in each well of

a 6-well plate with Tx (A), Tx, FGF4, and MEF (B), Tc (C), or Tc, FGF4, and MEF (D), followed by culture for 6 days; the resulting colonies were observed

by phase-contrast microscopy. Differentiation of TS cells derived from 4CER1 ES cells induced by Tx was induced by withdrawal of Tx, FGF4, and

MEF (E) or addition of DES in the presence of Tx, FGF4, and MEF (F).

(G) Marker expression of TS cells. The ZHBTc4-derived TS cells induced by Tc and the 4CER1-derived TS cells induced by Tx were fixed and stained for

either Ets2, Oct3/4, or Ck7 with Hoechst 33258 and visualized by fluorescent microscopy.

(H) Analysis of DNA contents of cells stained with PI. 4CER1 ES cells were analyzed at 4 and 8 days with Tc or Tx. Diploid (2N), tetraploid (4N), and octaploid

(8N) DNA contents are indicated.

(I) QPCR analyses of the gene expression during differentiation of 4CER1 (open) and ZHBTc4 (filled) ES cells to TE cells induced by Tx. Relative expression

levels of each gene were estimated at 0, 6, 12, 18, 24, 36, 48, 72, 96, 120, 168, and 240 hr after addition of Tc. These data were normalized by the amount of

Gapdh and plotted in logarithmic ratio against the expression level at 0 hr that set at 0.
920 Cell 123, 917–929, December 2, 2005 ª2005 Elsevier Inc.



Figure 3. Reciprocal Inhibition between Cdx2 and Oct3/4

(A) QPCR analyses of the stem cell marker gene expression during differentiation of ZHBTc4 ES cells induced by Tc (open) and 4CER1 ES cells induced by

Tx (filled) toward TE cells. See the legend for Figure 2I for details.

(B) Luciferase assays of the Oct3/4-dependent reporters in ZHBTc4 ES cells. The Oct3/4-dependent activation of Fgf4tk, Utf1tk, and 6Wtk were evaluated

as the ratio of the activities in the presence and absence of Tc in ZHBTc4 ES cells. The activity of tkluc without Tc was set at 1.0.

(C and D) Cotransfection of the Oct3/4-dependent reporters with the expression vectors for Cdx1, Cdx2, Cdx4, or Eomeso in the absence (C) or presence

(D) of Tc in ZHBTc4 ES cells. The activity of each reporter was normalized against its activity with the empty expression vector pCAG-IP (set at 1.0). Data are

represented as mean with SEM.

(E) Effect of Cdx2 on autoregulation of Oct3/4. Various Oct3/4luc reporters were cotransfected with Cdx2 or CouptfI expression vectors into ZHBTc4 ES

cells. The reporter activity of each was normalized against its activity with the empty expression vector pCAG-IP. Data are represented as mean with SEM.

(F–G) Effect of Oct3/4 on autoregulation of Cdx2. Cdx2-luc reporter was cotransfected with Cdx2 and/or Oct3/4 expression vector into ZHBTc4 ES cells in

the absence (F) and presence (G) of Tc. Data are represented as mean with SEM.
and function of Oct3/4 were inhibited after induction of Cdx2

activity.

To test the possibility that Cdx2 interferes with the transcrip-

tional activator function of Oct3/4, we evaluated the effect

of Cdx2 on the activation of the various Oct3/4-dependent re-

porters in ZHBTc4 ES cells. As shown previously, luciferase

(luc) reporters driven by Fgf4tk, Utf1tk, and 6Wtk are acti-

vated in ES cells in an Oct3/4-dependent manner (Figure

3B; Niwa et al., 2002). When these reporters were cotrans-

fected with the Cdx2 expression vector into ES cells, their ac-

tivity was significantly repressed (Figure 3C). Similar repres-

sion was observed by cotransfection with Cdx4 but not
Cdx1, indicating that there is a close relationship between

the ability to induce differentiation and to block the function

of Oct3/4. Interestingly, the reduced luc activitity levels of

these reporters caused by Cdx2 or Cdx4 were lower than

the basal level of the thymidine kinase (tk) promoter activity,

which alone was slightly activated by Cdx2 or Cdx4, suggest-

ing that Cdx2 and Cdx4 actively repress transcription regu-

lated by these Oct3/4-dependent enhancers. When we did

the same reporter assay in differentiating ZHBTc4 ES cells

cultured for 24 hr with Tc, in which the Oct3/4 protein was de-

pleted, the repressive effect of Cdx2 and Cdx4 was relieved

(Figure 3D), suggesting that the repressor function of Cdx2
(J–K) Chimeric embryos derived from 5ECER4G20 ES cells. 5ECER4G20 cells were cultured in the presence of Tx, FGF4, and MEF for 4 days to induce

differentiation toward TS cells and then passaged, followed by culture for an additional 4 days. When these TS cells were injected into blastocysts, the em-

bryos developed to chimeras in which GFP-positive cells contributed to placenta (J). In contrast, the same ES-derived cells kept in an undifferentiated state

gave rise to embryonic chimeras in the same condition (K).

(L–M) Immunohistochemical analysis of placenta from chimeric embryos J (L) or K (M). GFP-positive cells detected by immunohistochemical staining de-

tected by DAB (brown) were observed in placental tissue only in (L). D, decidua; G, giant cell; S, spongiotrophoblast; L, labyrinth. Bar, 100 mm.
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Figure 4. Interaction between Cdx2 and Oct3/4

(A) Localization of Cdx2 in TS cells. TS cell colonies on MEF feeder cells derived from ZHBTc4 ES cells were fixed, stained for Cdx2 (left; green) with Hoechst

33258 (center; blue), and visualized by confocal microscopy. Right panel is merged image.

(B) Localization of Cdx2 in ES cells. ZHBTc4 ES cells were transfected with the EYFPCdx2 expression vector and fluorescent signals were visualized by

confocal microscopy (left) after Hoechst staining (center). Right panel is merged image.

(C) Localization of Cdx2ECFP and Oct3/4 in ES cells. VO-1 ES cells expressing VenusOct3/4 (middle) were transfected with the Cdx2ECFP expression

vector (left) and visualized by confocal microscopy. Right panel is merged image.

(D and E) FRET between Cdx2ECFP and mKO1Oct3/4. KOWT7 ES cells expressing mKO1Oct3/4 were transfected with the Cdx2ECFP expression vector

and we analyzed a FRET event (D) by confocal microscopy. A statistically significant increase of the FRET signal was detected in nuclei of Cdx2ECFP trans-

fectants compared to that in nlsECFP transfectants (E: p < 0.05 by t test). Data are represented as mean with SEM.

(F) Coimmunoprecipitation of Oct3/4 with Cdx2. When the EGFPCdx2ER protein was immunoprecipitated in the whole-cell lysate (WCL) prepared from

5ECER4 ES cells with an anti-GFP antibody, Oct3/4 protein was coprecipitated when the cells were pretreated with Tx for 24 hr.

(G) ChIP assay for the Oct3/4 autoregulatory element. Chromatin samples prepared from 5ECER4 ES cells cultured in the presence or absence of Tx for 24

hr were immunoprecipitated with antibodies against either Oct3/4 or Cdx2, and amounts of genomic DNA fragments containing the indicated region of the

Oct3/4 promoter were subjected by QPCR. Data are represented as mean with SEM.
and Cdx4 is dependent on Oct3/4. In contrast, cotransfec-

tion of the Eomeso expression vector did not show significant

effects on these reporter activities (Figures 3C and 3D).

We recently reported that Oct3/4 gene expression is pos-

itively autoregulated in cooperation with Sox2 via an autoreg-

ulatory element (ARE) in the distal enhancer (Okumura-

Nakanishi et al., 2005). To test the effect of Cdx2 on this

autoregulation, we cotransfected various Oct3/4-luc re-

porters with Cdx2 or CouptfI, known repressor of the

Oct3/4 proximal promoter (Ben-Shushan et al., 1995). As

shown in Figure 3E, CouptfI repressed all reporter activities

as all of Oct3/4-luc reporters possessed the Oct3/4 proximal

promoter. In contrast, Cdx2 had the ability to repress the ac-

tivities of reporters containing ARE. Taken together, these

findings suggest that the repression of Cdx2 was mediated

by blockage of Oct3/4 function.

As indicated in Figure 2I, the possibility exists that Cdx2 is

subject to autoregulation in ES cells. We found that the 8.2

kb promoter element of Cdx2 was activated by Cdx2 in ES

cells, as was reported previously in a pancreatic b cell line

(Figure 3F; Xu et al., 1999). When the Oct3/4 expression vec-

tor was cotransfected with Cdx2-luc, the autoregulation was

significantly repressed, whereas Oct3/4 alone did not show
922 Cell 123, 917–929, December 2, 2005 ª2005 Elsevier Inc.
any effect (Figure 3F), indicating that Oct3/4 can block the

activity of Cdx2. This repressive effect was observed in an

ES-cell-specific manner, as in the case of the effect of

Cdx2 on Oct3/4-dependent reporters, since Oct3/4 showed

a synergistic effect with Cdx2 to activate the Cdx2 promoter

in differentiated ES cells (Figure 3G) and HeLa cells (data not

shown). These data suggested that interaction of Oct3/4 and

Cdx2 results in reciprocal repression of their functions in an

ES-cell-specific manner.

Cdx2 and Oct3/4 Form a Repressor Complex

How is such reciprocal inhibition between Cdx2 and Oct3/4

achieved? To investigate the molecular mechanism, we

monitored intracellular localization of Oct3/4 and Cdx2 by

immunostaining and marking with fluorescent tags. In TS

cells, endogenous Cdx2 protein was distributed in a speck-

led pattern in nuclei that did not coincide with high-density

Hoechst 33258 fluorescence of heterochromatic regions in

interphase cells (Figure 4A). Similar distributions were found

for the fusion proteins of Cdx2 with EGFP and its variants

(data not shown). However, when EYFPCdx2 was ectopi-

cally expressed in ZHBTc4 ES cells, the fluorescent signals

localized in punctuate domains in nuclei, which were distinct



from the localization in TS cells and partially coincided with

high Hoechst 33258 fluorescence (Figure 4B), and the sim-

ilar distributions were found for the wild-type Cdx2 with im-

munostaining (data not shown). In contrast, homogenous

distribution of Oct3/4 in nuclei was observed by both immu-

nostaining (data not shown) and fluorescent tagging (see the

two cells on the left without Cdx2ECFP in Figure 4C), but the

distribution changed dramatically on introduction of Cdx2.

As shown in Figure 4C, in ES cells expressing Cdx2ECFP,

the VenusOct3/4 fusion protein colocalized with Cdx2ECFP

in punctate domains in the nuclei. These data suggest that

Cdx2 and Oct3/4 interact with each other and change their

localization to transcriptionally inactive regions of the nucleus.

To test the interaction between Cdx2 and Oct3/4 in living

cells, fluorescence resonance energy transfer (FRET; Miya-

waki et al., 1997) was estimated by confocal microscopic

analysis (see Supplemental Data available with this article on-

line). KOWT7 ES cells maintained by expression of the mono-

meric version of Kusabira-Orange (mKO1)-Oct3/4 fusion

gene were transiently transfected with the Cdx2ECFP ex-

pression vector, and the FRET signal, indicated as emission

of mKO1 by excitation of ECFP, was evaluated in nuclei in

which Cdx2ECFP and mKO1Oct3/4 were colocalized (Figure

S1A). The signal at 559 nm was confirmed as the FRET signal

by the emission scanning with acceptor-bleaching for

mKO1Oct3/4 (Figure S1B). In this experimental scheme,

a significantly stronger FRET signal was observed in the nu-

clei in which mKO1Oct3/4 and Cdx2ECFP were colocalized

as compared to the nuclei in which mKO1Oct3/4 and

nlsECFP were colocalized (Figure 4E). These data indicated

that a small moiety of Cdx2 and Oct3/4 in nuclei is present

in very close proximity, suggesting possible direct interaction.

To test whether the interaction between Cdx2 and Oct3/4

is indeed direct, we next performed immunoprecipitation

analysis using 5ECER4 ES cells expressing the EGFPCdx2ER

fusion gene. When whole-cell lysate from 5ECER4 ES cells

cultured with Tx for 24 hr was immunoprecipitated with an

anti-GFP antibody, a significant amount of Oct3/4 was co-

precipitated with EGFPCdx2ER (Figure 4F). Since we did not

observe coprecipitation of Oct3/4 in cell lysates from either

non-Tx-induced 5ECER4 ES cells or 5GER ES cells express-

ing the EGFPER fusion protein in the presence of Tx (data not

shown), we reason that the interaction detected in the lysate

form Tx-induced 5ECER4 ES cells occurs between Cdx2 and

Oct3/4.

The interaction between Cdx2 and Oct3/4 under physio-

logical conditions was tested by chromatin immunoprecip-

itation (ChIP) assay (Figure 4G). Chromatin samples of

5ECER4 ES cells cultured in the presence or absence of Tx

for 24 hr were immunoprecipitated with anti-Oct3/4 or anti-

Cdx2 antibodies, and QPCR was performed using primers

that specifically amplify different regions of the Oct3/4 pro-

moter (Table S2). As result, we found that Cdx2 bound prox-

imately to ARE only in the presence of Tx, whereas Oct3/4

bound to the same element in both the presence and ab-

sence of Tx. These data suggest that Cdx2 interacted with

Oct3/4 on ARE or bound to a DNA sequence in the immedi-

ate region rather than competing for ARE with Oct3/4.
Cdx2 Function Is Dispensable for TE Differentiation

To determine whether Cdx2 plays an essential role in the dif-

ferentiation of TE induced by repression of Oct3/4, we em-

ployed a serial gene-targeting strategy to disrupt both en-

dogenous Cdx2 alleles in ZHBTc4 ES cells (Figure S2).

These ES cells propagate as readily as the parental ZHBTc4

ES cells in the undifferentiated state (Figure 5A). Unexpect-

edly, however, when Oct3/4 function was inhibited with

Tc, both the heterozygous sko113 (Cdx2+/�) and the homo-

zygous dko23 (Cdx2�/�) ES cells underwent morphological

differentiation into TE that was indistinguishable from that

of the parental ZHBTc4 ES cells (Figure 5A). The dko23-

derived TE cells expressed Cdh3 (Figure 5B), and FACS

analysis confirmed differentiation of polyploid cells from

dko23 ES cells following the addition of Tc at efficiencies

comparable to those of the parental ZHBTc4 cells (Figure

5C). These data suggested that Cdx2 is not required for the

differentiation of TE induced by downregulation of Oct3/4.

The question of the role of Cdx2 in TS cell formation re-

mained. When the dko23 ES cells were cultured with Tc,

FGF4, and MEF, at day 6 they formed the TS-like epithelial

cells (data not shown; for a similar result, see Figure 5D),

which expressed TE marker Ck7 (Figure 5B). However,

these TS-like cells lacking Cdx2 could not propagate and un-

derwent differentiation after prolonged culture or after pas-

sage onto new MEF feeder layers with Tc and FGF4 (data

not shown; for a similar result, see Figure 5G), suggesting

that Cdx2 has a unique function in TS cells.

Cdx2 Is Required for Self-Renewal of TS Cells

To confirm the precise function of Cdx2 in TS cells, we intro-

duced the Cdx2ER transgene into dko23 ES cells to obtain

ES cell lines in which Cdx2 activity is completely dependent

on Tx. One of the resulting cell lines, 23CER1, was confirmed

to show the ability to differentiate into TS cells in response to

either the downregulation of Oct3/4 by Tc (Figure 5D) or the

activation of Cdx2 by Tx (Figure 5E). During TS cell formation,

marker gene expression was induced properly in the ab-

sence of Cdx2 in 23CER1 cells treated with Tc as compared

to the expression pattern in parental ZHBTc4 ES cells cul-

tured with Tc (Figure 5M). The 23CER1 cells showed defi-

cient self-renewal of TS cells after differentiation in the pres-

ence of Tc and FGF4 on MEF (Figure 5G). However, when

the 23CER1-derived TS cells induced by Tc were replated

with FGF4 and MEF in the presence of both Tc and Tx,

they continued self-renewal (Figure 5H), indicating that the

activation of Cdx2ER complemented the function of Cdx2

to maintain self-renewal in Cdx2 null TS cells. These cells

undergo differentiation upon withdrawal of Tx to inactivate

Cdx2ER (Figure 5J) as well as upon removal of FGF4 and

MEF (Figure 5K) or addition of DES (Figure 5L), as shown

by the upregulation of differentiation marker genes, such

as Tpbpa and Pl1, and downregulation of Eomeso (Figure

5N). Continuous propagation of small epithelial cells was

observed in the presence of Tx, FGF4, and MEF at least

for one month (data not shown). This set of findings indicates

that continuous Cdx2 function is essential for TS cell

propagation.
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Figure 5. Analyses of Cdx2 Null ES Cells

(A) Photomicrographs of undifferentiated (top) and differentiated (bottom) sko113 and dko23 ES cells. These cells were cultured with or without Tc for

6 days.

(B) Immunostaining of TE and TS cells derived from dko23 ES cells. Cdh3 expression was detected with anti-Cdh3 antibody (green), and nuclei were stained

with PI (red) in TE cells generated from dko23ES cells by addition of Tc (upper panel). The dko23-derived TS cells induced by Tc, FGF4, and MEF were

stained for Ck7 with Hoechst 33258 (lower panel).

(C) FACS analysis of DNA contents of dko23 cells stained with PI. dko23 ES cells were analyzed at 4 and 8 days with Tc or Tx. Diploid (2N), tetraploid (4N),

and octaploid (8N) DNA contents are indicated.

(D–L) Photomicrographs of colonies derived from Cdx2 null 23CER1 ES cells carrying the Cdx2ER transgene. 23CER1 ES cells were seeded in each well of

a 6-well plate with Tc (D), Tx (E), or both Tc and Tx (F) in the presence of FGF4 and MEF, followed by culture for 6 days. Then the TS cells induced by Tc alone

were replated into the culture with Tc alone (G) or Tc and Tx (H) in the presence of FGF4 and MEF. These TS cells did not self-renew in the absence of the

activated Cdx2ER. When the TS cells induced by Tc and Tx were replated, they formed TS cell colonies in the presence of FGF4 and MEF with Tc and Tx (I)

but formed differentiated colonies on withdrawal of Tx (J) or FGF4 and MEF in addition to Tx (K). They also differentaied on the addition of DES in the pres-

ence of FGF4, MEF, and Tx (L).

(M) QPCR analyses of the gene expression during differentiation of 23CER1 (open) and ZHBTc4 (filled) ES cells to TS cells in the presence of Tc, FGF4, and

MEF. See the legend for Figure 2I for details.

(N) Expression of TS (Eomeso), giant cell (Pl1), and spongiotrophoblast (Tpbp) marker genes after passage of 23CER1-derived TS cells in various culture

conditions.
Eomeso Induces TE Differentiation in the Absence

of Cdx2

We next asked how TE differentiation could be induced in the

absence of Cdx2 function. As shown in Figure 1, Eomeso

represents a promising candidate for a gene functionally

redundant with Cdx2. To test this possibility, we introduced
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the Tx-inducible form of a chimeric Eomeso transgene

(EomesoER) into ZHBTc4 and dko23-5 ES cells, resulting in

the establishment of 4EER3 and 23EER1 ES cells, respec-

tively. These ES cells could be induced to differentiate into

TE by the addition of either Tc or Tx (Figures 6A–6D), but

morphological differentiation was imperfect, showing no



Figure 6. Characterization of Differentiation Event Induced by Activation of Eomeso

(A–D) Photomicrographs of colonies derived from 4EER3 ES cells carrying the EomesoER transgene. 1 � 103 4EER3 ES cells were seeded in each well of

a 6-well plate with Tx (A), Tx, FGF4, and MEF (B), Tc (C), or Tc, FGF4, and MEF (D), followed by culture for 6 days; the resulting colonies were observed by

phase-contrast microscopy.

(E and F) Differentiation of 23EER1 ES cells to TS cells. 23EER1 ES cells were seeded in each well of a 6-well plate with Tc and Tx (E) in the presence of FGF4

and MEF, followed by culture for 6 days. Then the generated TS cells were replated into the culture with Tc and Tx in the presence of FGF4 and MEF (F).

(G) QPCR analyses of the gene expression during differentiation of 4EER3 (filled) and 23EER1 (open) ES cells to TE cells induced by Tx. See the legend for

Figure 2I for details.

(H) QPCR analyses of the stem cell marker gene expression during differentiation of 4EER3 ES cells induced by Tx toward TE cells. See the legend for Figure

2I for details.
endoreduplication in Tx-induced TE cells (data not shown).

However, gene expression analysis by QPCR revealed that

the induction of several TE markers, such as Hand1, Dlx3,

and Psx1, occurred as rapidly and at similarly high levels

as that induced by downregulation of Oct3/4 or activation

of Cdx2ER (compare Figures 2I and 6G). In contrast, Cdx2

and Eomeso were induced later than 48 hr after addition of

Tx (G), indicating that Cdx2 is not a direct target of Eomeso

and that Eomeso is not autoregulated. Interestingly, the ex-

pression of ES cell markers was not dramatically downregu-

lated (Figure 6H), which correlates well to the results of the

reporter assays, in which Eomeso did not inhibit Oct3/4

function (Figure 3C). Both 4EER3 and 23EER1 ES cells dif-

ferentiated into TS cells in the presence of FGF4 and Tx on

MEF, but in the latter case, these TS cells underwent differ-

entiation as had been observed in the parental dKO23 ES

cells even in the presence of Tx (Figures 6E and 6F), indicat-

ing that loss of Cdx2 function in TS cells cannot be compen-

sated for by ectopic activation of Eomeso.

Maintenance of Cdx2 May Work as a Trigger

in the Early Embryo

Our data shown above suggested that either downregulation

of Oct3/4 or upregulation of Cdx2 is able to act as a trigger of

TE differentiation. To determine which of these acts in normal
development, we performed immunostaining for localization

of Cdx2 and Oct3/4 in morula-stage embryos. In the 8-cell-

stage embryos, both Oct3/4 and Cdx2 were detected in all

nuclei (data not shown). Cdx2 expression starts to decrease

in some inner cell nuclei in the early morula (Figure 7A, upper

series). In the late morula, Cdx2 was detected only in a subset

of the outer cells, whereas Oct3/4 protein was still detectable

in all cells (Figure 7A, middle series), and the segregation of

the expression domains of these genes was completed in

blastocyst (Figure 7A, lower series). The regional loss of Cdx2

expression was first seen in the 10–16-cell-stage embryo and

progressed along with development to the 18–22 cell stage,

mainly in the inner cells (Figure 7B). These data suggest that

loss of Cdx2 in the inner cells in the early morula might be a pri-

mary event in the segregation between ICM and TE fates. We

suggest that the expression domains of Cdx2 and Oct3/4

may become segregated by mutual inhibition that results in

the generation of TE and ICM, which respectively express

these genes (Figure 7C).

DISCUSSION

Cell-fate determination is a crucial process of development.

Transcriptional regulation by lineage-specific transcription

factors is clearly involved in this process. However, little is
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Figure 7. Determination of Trophectoderm in Preimplantation Embryo

(A) Photomicrographs of embryos stained for localization of Cdx2 and Oct3/4. Embryos were fixed, stained for anti-Cdx2 antibody (green), anti-Oct3/4 an-

tibody (red), and Hoechst 33258 (blue), and visualized by confocal microscopy. Merged images for signals of Cdx2 and Oct3/4 and phase-contrast images

are also shown. Scale bar is 20 mm.

(B) Number of cells expressing only Oct3/4 per embryo. Data are represented as mean with SEM.

(C–E) Model for segregation of ICM and TE. See Discussion for details.
known about the molecular mechanisms controlling the ex-

pression of such factors to trigger proper differentiation at

appropriate sites and times. It is a corollary of cell-fate deter-

mination that in order for a set of cells differentiate into a new

phenotype, a change in gene-expression programs must

take place. In early blastocyst-stage embryos, there are

only two cell types, pluripotent ICM and differentiated TE,

both of which are generated in morula. Here we have shown

that the maintenance of Cdx2 activity plays a pivotal role in

this process and that reciprocal inhibition between lineage-
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specific transcription factors, Oct3/4 in pluripotent cells

and Cdx2 in trophectoderm, might be involved in the segre-

gation of these cell lineages.

We found that both downregulation of Oct3/4 and upreg-

ulation of Cdx2 can trigger differentiation of ES cells toward

TE, suggesting that the differentiation of TE could be medi-

ated at the level of either transcription or function either by re-

pression or activation of Cdx2 in the inner or outer cells of

morula, respectively, or by a converse regulation of Oct3/4.

According to previous reports, zygotic Oct3/4 expression



starts from the 2-cell stage, whereas Cdx2 expression is up-

regulated in 8–16-cell stage embryos (Wang et al., 2004).

Our immunostaining revealed that Cdx2 expression was ini-

tially detectable in both inner and outer cells, when TE fate is

being established in the morula, and then Cdx2 expression

was specifically maintained in some of the outer cells, al-

though Oct3/4 was expressed in all blastomeres, suggesting

that either the activation of Cdx2 expression in outer cells or

its repression in inner cells might be a primary trigger of line-

age segregation. It has been reported elsewhere that Oct3/4

protein remains detectable in the TE in bovine blastocysts

even after transcription has ceased (Kurosaka et al., 2004),

suggesting that the primary function of Cdx2 is to block

Oct3/4 function in TE commitment. Since both Oct3/4 and

Cdx2 can be autoregulated (Xu et al., 1999; Okumura-

Nakanishi et al., 2005), their zygotic activation can be

achieved automatically from the basal promoter activities

for these genes. We speculate that once expression of these

genes reaches its threshold levels and an imbalance be-

tween Oct3/4 and Cdx2 is created, a reciprocal inhibition

system may amplify this asymmetric pattern, resulting in their

mutually exclusive expression in two different cell lineages,

ICM and TE. This autopoietic scheme is attractive for its great

explanatory power in accounting for lineage segregation,

given the limited preexisting positional information in morula-

stage embryos (Figure 7C). This model can also explain why

Oct3/4 is reexpressed in TE-like cells in Cdx2 null embryos

(Strumpf et al., 2005) and why TE markers are expressed

in the inner cells in Oct3/4 null embryos (Nichols et al., 1998).

Several reports have indicated an inhibitory role of Oct3/4

on TE-specific gene expression. Ezashi et al. reported that

Ets2-induced transactivation of the tau interferon promoter

is repressed by Oct3/4 (Ezashi et al., 2001). In this case, it

was shown that the POU domain of Oct3/4 directly interacts

with the central domain of Ets2 and acts as a corepressor. In

our study, we detected interaction between Cdx2 and Oct3/

4 by conventional immunoprecipitation. Some form of inter-

action was further suggested by the localization of Oct3/4 in

nuclei to heterochromatic regions in the presence of Cdx2

and confirmed by FRET in living cells. In addition, ChIP on

the Oct3/4 autoregulatory element revealed that the interac-

tion might occur without competitive binding of Oct3/4 at the

target site, suggesting that the complex might act as a re-

pressor on the Oct3/4 targets. However, it should be noted

that results from reporter assays suggested a repressor role

for the complex of Cdx2 and Oct3/4 on episomal DNA inde-

pendent of the chromatin context but specific to undifferen-

tiated ES cells. Taken together, these findings lead us to pro-

pose that the complex might recruit corepressors expressed

in a stem-cell-specific manner to the target site to initiate

transcriptional repression and then subsequently recruit

them to participate in heterochromatin formation (Thiel

et al., 2004). It was recently reported that ectopic expression

of Oct3/4 causes dysplasia in epithelial tissues in adult

mice associated with increased transcriptional activity of

b-catenin (Hochedlinger et al., 2005). Since Cdx2 is known

as a tumor repressor in intestinal epithelium (Chawengsak-

sophak et al., 1997) and possesses the ability to repress
b-catenin/TCF transcriptional activity (Guo et al., 2004),

this phenotype might be the result of the repression of

Cdx2 function by ectopically expressed Oct3/4.

How then is the differential regulation of Cdx2 achieved in

the morula? In the late 8-cell stage, the compaction event is

followed by the polarization of blastomeres and epithelializa-

tion of the outer cells (Johnson and Ziomek, 1981). At the be-

ginning of the compaction event, tight junction components

such as ZO-1a and Rab13 are localized apically (Sheth et al.,

2000), indicating the establishment of positional information

within the blastomere. It is also known that blastomeres are

able to divide asymmetrically to form 16-cell-stage embryos

with large polarized outer cells and small inner apolar cells

(Sutherland et al., 1990). Regulation of Cdx2 might occur

positively or negatively in respect to positional cues. Alterna-

tively, polarization might induce asymmetric distribution of

Cdx2 during cell division as found in the case of Ezrin (Louvet

et al., 1996). Whatever the case, some as-yet unidentified

‘‘apical signal’’ might work to stimulate Cdx2 autoregulation

in the outer cells, resulting in the repression of Oct3/4,

whereas any weak residual expression of Cdx2 in the inner

cells could be repressed by colocalized Oct3/4 (Figure 7C).

Although Cdx2 has a strong dominant effect on TE differ-

entiation, its function is not essential for the TE differentiation

induced by Oct3/4 repression. How can this strange dis-

crepancy be explained? We showed that Eomeso might

have some overlapping function with Cdx2. Interestingly,

the upregulation of Eomeso by repression of Oct3/4 paral-

leled that of Cdx2, and this was not affected by the extinction

of Cdx2 (Figures 2I and 6M), indicating that Eomeso induc-

tion does not require Cdx2. Activation of Cdx2 in ES cells

rapidly induced Eomeso expression, but the reverse pattern

of induction was not observed (Figures 2I and 6G), suggest-

ing that Eomeso might be a target of Cdx2. The evidence

that experimentally activated Eomeso can induce TE differ-

entiation in the absence of Cdx2 (Figures 6A and 6B) also

supports this idea. Moreover, Eomeso null embryos formed

mature TE cells and developed to embryonic day 6.0 with

normal levels of Cdx2 expression (Strumpf et al., 2005), sug-

gesting that loss of Eomeso function on TE differentiation

can be compensated for by Cdx2 in the context of TE differ-

entiation. Therefore, although Eomeso and Cdx2 share

many functions for TE differentiation and stand similarly un-

der the control of Oct3/4, Eomeso seems to function at least

partly downstream of Cdx2. In Cdx2 null embryos, morpho-

logical TE differentiation was once observed in cells weakly

expressing Eomeso, although these TE cells subsequently

reexpressed Oct3/4 and underwent apoptosis, indicating

that Cdx2 is not essential for either the initiation of morpho-

logical TE differentiation and induction of Eomeso in embryos

as found in ES cells (Strumpf et al., 2005). We would like here

to point out an important difference in the regulation of

Oct3/4 expression between Cdx2 null embryos and our ES

cell system. Oct3/4 expression is under physiological control

in the null embryos, whereas it was experimentally regulated

by Tc in our ES cells. Since Oct3/4 was completely re-

pressed in our ES cell system by Tc independent of Cdx2

function, TE and TS differentiation triggered by repression
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of Oct3/4 could be completed without the Cdx2 function,

whereas Oct3/4 is reexpressed in TE in the absence of

Cdx2 in the null embryos that might prevent TE differentia-

tion. Therefore, one function unique to Cdx2 is the repres-

sion of Oct3/4 expression and function, an activity that

Eomeso does not exhibit. We suspected that this is the

main reason why Eomeso can completely replace the func-

tion of Cdx2 in our ES cell system but not in embryos.

The regulation of Eomeso expression and function, how-

ever, remains a mystery. Our data suggest that Eomeso

might lack positive autoregulation (Figure 6G), meaning

that a regulatory mechanism to initiate its expression in early

embryos should be different from that of Cdx2. The lack of

appropriate target genes to monitor its activity as well as

a good antibody make it difficult to analyze the function at

present. We speculate that the putative apical signal (AS)

that activates Cdx2 expression may also stimulate Eomeso

in the outer cells (Figure 7C). This hypothesis allows us to ex-

plain why Cdx2 null embryos start to generate TE on weak

upregulation of Eomeso (Figure 7D). We also confirmed

that Eomeso does not interfere with Oct3/4 function on its

target reporters and mediates rapid downregulation of

stem-cell marker genes. In the case of the EomesoER trans-

gene introduced using episomal vector system, its strong

expression was sufficient to induce complete TE differentia-

tion in the presence of Tx (data not shown), but the weak ex-

pression from an integrated copy produced only an imper-

fect phenotype, suggesting that expression level is critical

in this case. Our QPCR analysis revealed that the copy num-

ber of Eomeso mRNA was ten times higher than that of Cdx2

in ES cells (Figure S3). These data suggest that Eomeso

function might be interfered with by Oct3/4 or other tran-

scription factor(s) in ES cells and embryos (Figure 7C). This

second hypothesis may help to explain why Cdx2 null em-

bryos degenerate at the blastocyst stage, whereas Cdx2-

null ES cells give mature TE and TS cells in which Oct3/4

is extinguished (Figures 7D and 7E). Given this set of find-

ings, we suggest that the regulatory interactions between

the three transcription factors Cdx2, Oct3/4, and Eomeso

are critical to the determination and maintenance of the TE

lineage.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection

All ES cells were cultured as described previously (Niwa et al., 1998). TS

cells are generated and maintained in GMEM supplemented with 10%

(v/v) of FCS, 1� sodium pyruvate, 1� nonessential amino acids, 10�4 M

of 2-ME, 2 mg/ml of sodium heparin (Wako), and 20 ng/ml of recombinant

FGF4 (Sigma) on the mitomycin-C treated MEF feeder cells or in the pres-

ence of 70% (v/v) of the MEF-conditioned medium. Detailed information

about the cell lines and plasmids introduced into them is provided in

the Supplemental Data.

Production of Chimeric Embryos

To obtain chimeric embryos, ES and TS cells were injected into C57BL/6J

blastocysts, followed by transfer to the uterus of pseudopregnant ICR

mice. Embryos were dissected at 12.5 dpc, and fluorescent signals

were observed using an Olympus SZX12 fluorescent dissecting micro-
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scope and captured with an Olympus DP70 cooled color digital (CCD)

camera.

Luciferase Assay

Luciferase assay was done as described previously (Niwa et al., 2002) us-

ing the Dual-luciferase assay system (Promega). Please refer to the Sup-

plemental Data for details about the reporter plasmids.

RNA Preparation and Real-Time PCR Analyses

Total RNA was prepared using TRIzol reagent (Invitrogen), as per the

manufacture’s recommendation. First-strand cDNA was synthesized

from 1 mg of total RNA in a 20 ml reaction with oligo dT primer using the

ReverTra Ace first-strand synthesis kit (Toyobo). Real-time PCR reaction

was done with the iTaq SYBR Green Supermix (Bio-Rad) using the iCycler

System (Bio-Rad) or with the iTaq SYBR Green Supermix with Rox (Bio-

Rad) using the ABI PRISM7900HT system (Applied Biosystems). The

amount of target RNA was determined from the appropriate standard

curve and divided by the amount of Gapdh mRNA for normalization.

Sequences of primers for QPCR were listed in the Table S1. All primer

pairs were designed to detect 30-untranslated regions and endogenous

transcript only.

FACS Analysis

Cells were washed with PBS twice and fixed with ice-cold 70% ethanol for

2 hr. After washing with PBS twice, cells were incubated in 0.25 mg/ml of

RNaseA in PBS for 30 min at 37ºC and stained with propidium iodide (PI;

Molecular Probes) at a final concentration of 50 mg/ml for 30 min at 4ºC.

Cell Fluorescence was measured by flow cytometry with FACS Calibur

(BD Biosciences).

Immunoprecipitation and ChIP

Whole-cell lysates with TNE buffer (10 mM Tris-Hcl [pH 7.4], 150 mM

NaCl, 5 mM EDTA, 1% NP-40, and 0.2% protease inhibitor cocktail [Na-

calai Tesque]) were reacted and precipitated with agarose-conjugated rat

anti-GFP monoclonal antibody (MBL), followed by washing five times

with TNE buffer. The samples were separated through 12% SDS-

polyacrylamide gel, transferred to a polyvinylidene difluoride membrane,

and probed with mouse anti-Oct3/4 monoclonal Ab (C-10, Santa Cruz)

or mouse antiCdx2 monoclonal Ab (Cdx2-88, BioGenex). The membranes

were then incubated with horseradish peroxidase-conjugated secondary

antibody, and signals were detected with an ECL kit (Amersham).

Chromatin immunoprecipitation was performed with ChIP-IT kit

(ACTIVE MOTIF) as described in the manufacturer’s protocol. The shared

chromatin samples were immunoprecipitated with antiOct3/4 or antiCdx2

antibody, and precipitated DNA was analyzed by QPCR using the primer

pairs listed in Table S2.

Immunostaining and FRET Analysis

See Supplemental Data for details.

Supplemental Data

Supplemental Data include three figures, two tables, Experimental Proce-

dures, and References and can be found with this article online at http://

www.cell.com/cgi/content/full/123/5/917/DC1/.
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