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1Laboratory of Nuclear Dynamics and Genome Plasticity, UMR 218 CNRS/Institut Curie, 26 rue d’Ulm, 75248 Paris,

Cedex 5, France
2 Institute for Research in Immunology and Cancer, University of Montreal, PO Box 6128, Succursale Centre-Ville,
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Inheritance and maintenance of the DNA sequence and its organization into chromatin are
central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the con-
text of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin
organization. To meet the challenge of maintenance, cells have evolved efficient nucleo-
some-assembly pathways and chromatin-maturation mechanisms that reproduce chroma-
tin organization in the wake of DNA replication and repair. The aim of this Review is to
describe how these pathways operate and to highlight how the epigenetic landscape may
be stably maintained even in the face of dramatic changes in chromatin structure.
Introduction

A number of epigenetic phenomena, such as X-chromo-

some inactivation, genomic imprinting, centromere func-

tion, and gene silencing, rely on the establishment and

faithful maintenance of specific chromatin structures.

These structures are defined by DNA methylation, histone

posttranslational modifications (PTMs), histone variants,

and chromatin-binding proteins (i.e., HP1 and Polycomb;

see also Reviews by B.E. Bernstein et al., page 669 of

this issue, T. Kouzarides, page 693 of this issue, and

B. Schuettenguber et al., page 735 of this issue). Epige-

netic states defined by chromatin structure can be propa-

gated with high fidelity through DNA replication, mitosis,

and, at least in some cases, even meiosis. In addition to

being relatively stable through cell division, epigenetically

defined chromatin structures also need to be sufficiently

plastic to allow programmed changes in transcription

patterns during development and differentiation of multi-

cellular organisms (see also Review by M.A. Surani, page

747 of this issue). Chromatin status that determines spe-

cific patterns of gene expression has a reversible nature

that provides a basis for epigenetic reprogramming as

a means to generate biomedically useful pluripotent cells.

Because of the genome-wide alterations in chromatin

structure that occur during replication, S phase may pro-

vide a unique window of opportunity for cells to modify

chromatin structures that influence gene expression pat-

terns and, thus, cell fate (Figure 1). Consistent with this,

transcriptional activation of certain developmentally regu-

lated genes such as the HoxB cluster depends upon DNA

replication (Fisher and Mechali, 2003). In addition, chroma-

tin reconfiguration during the first round of DNA replication

is necessary to activate enhancer-driven gene expression

in the early mouse embryo (Forlani et al., 1998). Eukaryotic
cells also need to remodel chromatin structure to access

and repair potentially lethal DNA lesions that continuously

challenge the genome. Many of the same players are in-

volved in repair- and replication-coupled chromatin mod-

ulation. However, chromatin dynamics during DNA repair

are distinct in that faithful restoration of the original orga-

nization is essential to avoid unscheduled epigenetic

changes (Figure 1). In this Review, we focus on chromatin

dynamics involved in propagation of chromatin organiza-

tion during replication and restoration following repair.

We emphasize how these mechanisms may have evolved

to meet the dual challenge of orchestrating transient

changes in chromatin structure while preserving the epige-

netic fabric of the genome.

Duplicating Nucleosomal Organization

The basic building block of chromatin is the nucleosome

core particle, which contains 147 base pairs of double-

stranded DNA wrapped in 1.65 left-handed superhelical

turns around the surface of an octamer of histone proteins

(Davey et al., 2002; Polo and Almouzni, 2006). The histone

octamer consists of a central (H3-H4)2 tetramer that is

flanked on either side by two H2A-H2B dimers. Two fun-

damentally distinct processes affect chromatin structure

during DNA replication (Figure 2). The first is the transient

disruption of pre-existing nucleosomes that are located

ahead of replication forks and their transfer onto nascent

DNA, which is a reaction known as parental histone segre-

gation. The second is the deposition of newly synthesized

histones through a pathway known as replication-depen-

dent de novo nucleosome assembly (Figure 2). Parental

histone segregation and de novo assembly affect the

whole genome during each passage through S phase.

Therefore, these two processes potentially have a
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widespread and profound impact on the ability of prolifer-

ating cells to propagate or modify epigenetic states that

depend upon specific chromatin structures.

Disruption of Parental Nucleosomes

Progression of the replication fork leads to disruption of

parental nucleosomes ahead of the fork. Current evidence

suggests that the nucleosome is disrupted into two paren-

tal H2A-H2B dimers and a (H3-H4)2 tetramer (Figure 2). It

remains an unsolved issue whether the force of the mov-

ing fork alone suffices to evict the parental histones or

whether other factors are involved. However, by analogy

to other chromatin-based processes (i.e., repair and

transcription; see Review by B.E. Bernstein et al., page

669 of this issue), it can be hypothesized that nucleosome

disruption is facilitated by ATP-dependent chromatin-

remodeling enzymes and chaperones acting as histone

acceptors. RNAi experiments in cultured mammalian cells

indicate that chromatin remodelers are required for repli-

cation through chromatin. Depletion of WSTF, which

forms a complex with the mammalian ISWI homolog

SNF2h, reduces the rate of DNA replication throughout

Figure 1. Replication- and Repair-Coupled Chromatin

Dynamics and Cell Identity

The process of DNA replication is accompanied by genome-wide

disruption and reassembly of chromatin. Depending on whether the

parental chromatin organization is reproduced or reconfigured, the

daughter cells either will be identical to their mother (lineage propaga-

tion) or will have changed their gene-expression profile (differentia-

tion). Differentiation (change in ‘‘ID’’) can occur through either symmet-

rical or asymmetrical division, with the latter giving rise to two distinct

cells (one potentially being epigenetically identical to the mother). Un-

scheduled chromatin changes can arise if cells fail to duplicate the

parental epigenetic ID or to follow a differentiation program. This

may have pathological consequences in terms of genetic stability

and gene expression. The principal theme of chromatin disruption/res-

toration during DNA repair is similar. However, a major difference is

that DNA damage may occur throughout the genome at any time dur-

ing the life of the cell. Failure to restore chromatin organization follow-

ing DNA repair may thus lead to unscheduled changes that potentially

threaten epigenetic stability.
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S phase (Poot et al., 2004). In contrast, another SNF2h

subcomplex, ACF-SNF2h, appears to be particularly im-

portant for efficient replication through heterochromatin

domains (Collins et al., 2002). However, the slow replica-

tion speed seen in these experiments could also reflect

a function of the enzymes in chromatin formation behind

the fork (Fyodorov et al., 2004). Thus while these com-

plexes seem important during replication, an unresolved

issue is how they operate at the fork; do they work on

parental nucleosomes ahead or on nascent chromatin

behind?

Histone chaperones can potentially facilitate disruption

of parental nucleosomes by acting as histone acceptors

and hence aid the transfer of the histones onto the daugh-

ter strands. Such a function may be critical to ensure recy-

cling of parental histones, as opposed to their loss. FACT

is an evolutionarily conserved H2A-H2B chaperone com-

plex that facilitates progression of the RNA polymerase

during transcription by mediating H2A-H2B transfer (Be-

lotserkovskaya and Reinberg, 2004). Evidence from both

in vitro studies in Xenopus and genetic studies in S. cere-

visiae suggests a similar role for FACT in replication (For-

mosa, 2003). Importantly, FACT was recently identified

in complex with MCM proteins in yeast and human cells

(Gambus et al., 2006; Tan et al., 2006). The MCM complex

is widely regarded as the helicase that unwinds DNA

ahead of the DNA polymerase (Takahashi et al., 2005).

This interaction with the replicative helicase places

FACT in a key position to facilitate nucleosome disruption

and potentially aid redeposition of H2A-H2B. An important

unresolved question is how the parental tetramer (H3-H4)2
is released and transferred. Is it a passive process or is it

supervised by a chaperone?

Transfer of Parental Histones

Parental histones are transferred behind the replication

fork onto either the leading or the lagging strand (Jackson,

1988; Sogo et al., 1986). This transfer occurs almost as

soon as enough DNA has emerged from the replisome

to allow the formation of nucleosomes (Sogo et al., 1986).

The parental histones carry PTMs that in theory could

serve as a blueprint for copying epigenetic information

onto newly synthesized histones. If this is the case, the

exact mechanism by which parental histones are reas-

sembled onto nascent DNA likely has a major impact on

the ability of cells to stably propagate PTM-based epige-

netic information through DNA replication. Histone segre-

gation during chromatin replication has been studied

using cell-free DNA-replication systems and in vivo den-

sity-labeling techniques (see below). The consensus

from these studies is that parental nucleosomes are dis-

rupted into two H2A-H2B dimers and one (H3-H4)2 tetra-

mer. The latter is then transferred onto one of the nascent

DNA strands to form a subnucleosome structure onto

which either old or newly synthesized H2A-H2B dimers

are added to complete the nucleosome. This transfer ap-

pears rapid and very efficient, as only extreme excess of

naked DNA can compete with the daughter strands for

parental histone binding during chromatin replication in



Figure 2. Chromatin Challenges at the

Replication Fork

Packaging of DNA into chromatin presents

a dual challenge at the replication fork. First,

the DNA template has to be accessed, and,

second, nucleosomal organization has to be

reproduced on daughter strands. Ahead of

the moving fork, parental nucleosomes are

disrupted into H2A-H2B dimers and (H3-H4)2
tetramers. The latter are transferred onto the

daughter strands in a random fashion that

may allow PTMs and histone variants to be

maintained. This segregation mechanism oper-

ates together with de novo nucleosome as-

sembly to fully reproduce nucleosomal density

on daughter strands. Basic substrates for de

novo deposition are H3-H4 dimers, which are

diacetylated at H4K5/K12. A major question is

how these three events—disruption, transfer,

and de novo assembly—are coordinated to

preserve genetic stability and to reproduce

the epigenetic landscape, possibly by using

the PTMs on parental histones as a blueprint

for de novo-assembled nucleosomes.
cell-free systems (Gruss et al., 1993; Randall and Kelly,

1992). Throughout much of the genome, the (H3-H4)2 tet-

ramer is segregated as a stable entity, such that newly

synthesized H3-H4 generally is not found within the

same nucleosome as parental H3-H4 (Jackson, 1988;

Prior et al., 1980; Figure 2). However, the available data

do not exclude the possibility that the deliberate use of

a different segregation mechanism during replication of

specific regions of the genome might lead to dissociation

of parental (H3-H4)2 tetramers into two H3-H4 dimers (Ta-

gami et al., 2004). The parental H3-H4 dimers would then

associate with newly synthesized H3-H4 dimers brought

by histone chaperones. In principle, the presence of

both parental and newly synthesized H3-H4 molecules

in the same nucleosome could facilitate the duplication

of pre-existing PTMs onto the new histones (Tagami

et al., 2004). Alternatively, segregation of parental his-

tones may be coupled to de novo deposition in a manner

that could ensure the duplication of PTMs onto newly syn-

thesized histones. It is conceivable that cells may have

evolved enzymes that discriminate parental and new H3-

H4 molecules and simply copy the PTMs of parental

(H3-H4)2 tetramers onto the new histones. This could oc-

cur during transfer or after deposition. The discrimination

may be possible either on the basis of the multiple lysine

acetylations carried by newly synthesized histones (see

below) or because new H3-H4 molecules are dimeric,

whereas the parental histones (H3-H4)2 may be tetrameric

(see below). However, much work lies ahead before we

can fully comprehend the histone segregation process

and how it contributes to the propagation of histone vari-

ants and their PTMs.

De Novo Histone Deposition

The deposition of newly synthesized histones is critical to

fully restore nucleosome density onto the two daughter
strands. In S. cerevisiae, passage through S phase in the

absence of core histone synthesis results in a loss of via-

bility that cannot be rescued by re-expression of histones

in G2 (Kim et al., 1988). Chromatin-Assembly Factor 1

(CAF-1) is an evolutionarily conserved three-subunit pro-

tein with the unique ability to preferentially deposit newly

synthesized H3-H4 onto replicating DNA (Shibahara and

Stillman, 1999). Consistent with this, human CAF-1 is

found in a specific predeposition complex containing the

major S phase histones H3.1 and H4 (Tagami et al.,

2004). Notably, CAF-1 is not associated with the replace-

ment histone variant H3.3, which is incorporated into

chromatin independently of DNA replication. CAF-1 is tar-

geted to sites of DNA synthesis that are associated with

either replication or repair via a direct interaction with

PCNA (Moggs et al., 2000; Shibahara and Stillman,

1999). PCNA is a ring-shaped homotrimeric protein that

encircles DNA and serves as processivity factor for DNA

polymerases. Interestingly, the interaction of CAF-1 with

PCNA depends upon phosphorylation of the large subunit

of CAF-1 (known as p150 in human cells) by Cdc7-Dbf4

(Gerard et al., 2006), a protein kinase that is essential for

DNA replication. The p150 subunit of CAF-1 contains

both the PCNA-binding motif and a dimerization domain

(Gerard et al., 2006; Moggs et al., 2000). The phosphory-

lation of p150 by Cdc7-Dbf4 enhances CAF-1 binding to

PCNA by disrupting the p150 dimer interface (Gerard

et al., 2006). These findings raise the exciting possibility

that the ability of CAF-1 to bind PCNA may be tightly reg-

ulated to ensure that H3-H4 deposition does not interfere

with other important PCNA-dependent processes that

constitutively occur behind replication forks. Alternatively,

Cdc7-Dbf4 may coordinate CAF-1-mediated histone de-

position with ongoing DNA replication. This would be con-

sistent with the finding that histone deposition and uptake
Cell 128, 721–733, February 23, 2007 ª2007 Elsevier Inc. 723



by CAF-1 are immediately blocked upon treatment of hu-

man cells with replication inhibitors (Groth et al., 2005).

A conceptually important point is that newly synthe-

sized H3-H4 dimers do not associate as tetramers prior

to their deposition onto DNA (Polo and Almouzni, 2006).

This conclusion was initially drawn from the fact that

epitope-tagged H3.1 (replication-dependent variant) or

H3.3 (replacement variant) did not copurify with non-

tagged H3 when affinity-purified from the pool of soluble

histones that are not incorporated into chromatin (Tagami

et al., 2004). A similar finding was recently reported for sol-

uble epitope-tagged histone H4 (Benson et al., 2006). An

important concept that emerges from these studies is

that the basic building blocks for de novo nucleosome as-

sembly (during replication and repair) are H3-H4 dimers,

rather than tetramers (Figure 2). Whether both dimers

are delivered by CAF-1 is currently unclear. CAF-1-medi-

ated histone deposition is aided by anti-silencing function

1 (Asf1), a highly conserved histone H3-H4 chaperone that

has emerged in the limelight due to its multiple roles in his-

tone dynamics. Asf1 can synergize with CAF-1 in repair-

and replication-coupled nucleosome assembly in vitro

(Mello et al., 2002; Tyler et al., 1999), although it alone can-

not promote DNA-synthesis-dependent histone deposi-

tion. In proliferating human cells, the two human Asf1 iso-

forms (Asf1a and Asf1b) are the major chaperones

controlling the flow of newly synthesized S phase histones

(Groth et al., 2005). As such, CAF-1-mediated histone de-

position may be fine-tuned both by the regulated binding

to PCNA and by histone availability through Asf1. In yeast

S. cerevisiae replication still occurs in the absence of both

CAF-1 and Asf1 (Tyler et al., 1999), but the double mutants

show severe defects in genome stability (Myung et al.,

2003). An important point concerning Asf1 is that this

chaperone binds H3-H4 in a manner that physically blocks

tetramer formation (English et al., 2005, 2006; Mousson

et al., 2005). NMR studies initially showed that Asf1 binds

to the C-terminal helix of histone H3 (Mousson et al.,

2005), which is a region of H3 that plays an important

role in tetramer formation (Davey et al., 2002). Consis-

tently, Asf1 was found to form a stable complex with di-

meric H3-H4 when the three proteins were coexpressed

in bacteria (English et al., 2005), and the crystal structure

of this trimeric Asf1-H3-H4 complex has been reported re-

cently (English et al., 2006). This structure reveals details

of the Asf1-histone interaction that provide important in-

sight into nucleosome assembly and disassembly pro-

cesses. Asf1 envelops the C-terminal domain of histone

H3 to occlude interaction with another H3-H4 dimer. Fur-

thermore, Asf1 also contacts and causes a conformational

change of the C terminus of histone H4, which otherwise

interacts with H2A within the nucleosome. On this basis

the authors suggest a ‘‘strand-capture’’ mechanism

whereby Asf1 uses the H4 C-terminal tail to break-up

(H3-H4)2 tetramers during nucleosome disassembly. In

yeast Asf1 has been suggested to facilitate histone evic-

tion during transcription (Mousson et al., 2006), and it is

thus crucial to determine whether this involves splitting
724 Cell 128, 721–733, February 23, 2007 ª2007 Elsevier Inc.
of the parental tetramer into dimers by Asf1. If so, it is

tempting to speculate that Asf1 could also facilitate occa-

sional splitting of parental (H3-H4)2 tetramers into dimers

during replication to allow pairing with newly synthesized

dimers.

Here we have discussed the three critical steps (disrup-

tion, transfer, and de novo deposition) necessary for dupli-

cation of nucleosome organization during replication.

These steps should not be considered as independent

events because disruption and transfer must be coordi-

nated with de novo deposition as well as replication-fork

progression in order to preserve both genetic and epige-

netic stability. Elucidating how these different processes

are orchestrated represents a major challenge for future

research.

Duplicating PTMs and Epigenetic Domains

DNA methylation and histone PTMs are thought to provide

a chromatin-based memory system, given that these

marks can orchestrate formation and maintenance of epi-

genetic domains through recruitment of modifying en-

zymes and structural proteins. The major question is

how and to what extent PTMs are maintained on parental

nucleosomes during segregation and subsequently dupli-

cated onto de novo-assembled nucleosomes. At least

certain PTMs are maintained during segregation (Benson

et al., 2006), which is consistent with the idea that PTMs

on parental nucleosomes participate to reproduce the epi-

genetic state. Here we discuss how transfer of parental

histones and chromatin factors, DNA methylation, and

de novo nucleosome assembly may be coordinated to

maintain epigenetic memory.

Replication-Coupled Memory

How and to what extent are epigenetic domains repro-

duced in a replication-coupled manner? Certain domains

such as pericentric heterochromatin must be accurately

duplicated to ensure proper chromosome segregation

(Ekwall et al., 1997; Peters et al., 2001; Taddei et al.,

2001). Hallmarks of these domains in mammalian cells

are the presence of DNA methylation, hypoacetylated his-

tones, histone H3 trimethylated at lysine 9 (H3K9me3), his-

tone H4 trimethylated at lysine 20 (H4K20me3), and HP1

as well as the prevalence of the H3.1 histone variant (Loy-

ola et al., 2006; Wallace and Orr-Weaver, 2005). The main-

tenance of these marks through faithful reproduction on

daughter strands can represent a form of memory. Several

‘‘replication-coupled’’ mechanisms that can participate in

the propagation of this silent state have now been discov-

ered (see below). It is more questionable whether the tran-

scriptionally active state is similarly duplicated. Replica-

tion of transcriptionally active loci may not necessarily

entail duplication of active PTMs onto de novo-assembled

nucleosomes. Rather, active marks on parental nucleo-

somes could suffice to maintain a permissive state such

that new nucleosomes will acquire active marks when

transcription resumes (Kouskouti and Talianidis, 2005). In-

deed, enrichment of the replacement histone variant H3.3

in these regions is likely to rely on transcription-coupled



Figure 3. PCNA at the Fork: A Hub for

Chromatin Restoration

PCNA forms a bridge between genetic and epi-

genetic inheritance through its dual role as

a DNA polymerase processivity factor and as

a platform for chromatin restoration. Here we il-

lustrate how PCNA at the replication fork di-

rects DNA methylation, de novo histone depo-

sition, histone deacetylation, and nucleosome

remodeling at the daughter strands by recruit-

ment of multiple chromatin-modulating factors.

Several of these factors can themselves bring

in additional activities (i.e., CAF-1 and DNMT1).

This may ensure coordinated propagation of

epigenetic marks such DNA methylation and

histone H3K9 methylation (DNMT1/G9a; Esteve

et al., 2006) and a coupling between histone

deposition and imposition of PTMs (CAF-1/

SETDB1; Sarraf and Stancheva, 2004). The

scheme represents factors recruited to the

replication fork through PCNA (directly or indi-

rectly). General chromatin maturation factors

are shown in green, and factors operating in

a locus-specific fashion are shown in orange.
propagation (Ahmad and Henikoff, 2002). A central issue

in the maintenance of active loci during replication may

be to prevent creation of repressive marks.

An emerging theme for replication-coupled memory is

the use of PCNA as a hub that couples chromatin restora-

tion to replication (Figure 3). PCNA can thus be viewed as

a bridge between genetic and epigenetic inheritance

(Zhang et al., 2000). High-resolution microscopy studies

indicate that PCNA (Sporbert et al., 2002) and CAF-1

(Taddei et al., 1999), which itself uses PCNA as a landing

pad, are retained on newly synthesized DNA for a period of

20 min (about 40 kb). This may well represent a window of

opportunity for chromatin maturation. PCNA recruits

a large number of chromatin-modulating enzymes to sites

of DNA replication; these enzymes include DNMT1 (a

maintenance DNA methyltransferase; Chuang et al.,

1997; Leonhardt et al., 1992), CAF-1 (Krude, 1995; Shiba-

hara and Stillman, 1999), HDACs (Milutinovic et al., 2002),

and WSTF-SNF2h (Poot et al., 2004; Figure 3). Whereas

some of these enzymes can be considered as general

chromatin-maturation factors (i.e., CAF-1 and HDACs),

others must operate in a domain-specific manner (i.e.,

DNMT1). This could be achieved through regulated re-

cruitment or by modulation of enzymatic activity at the

site. A major question concerning replication-coupled

memory is how recruitment of these enzymes is orches-

trated to allow formation of distinct chromatin domains.

Given that nucleosomes present a barrier to enzymes op-

erating on DNA, it seems likely that the actions of DNMT1,

SNF2h-WSTF, and CAF-1 are coordinated to ensure effi-

cient DNA methylation prior to chromatin maturation.

DNMT1 re-establishes symmetrical CpG methylation on

newly synthesized hemimethylated DNA (Chuang et al.,

1997; Leonhardt et al., 1992). Incorporation of at least

some imprinted DNA sequences into nucleosomes

inhibits the ability of DNMT1 to methylate target CpGs
(Okuwaki and Verreault, 2004). Thus, the physiological

substrate of DNMT1 is unlikely to be DNA wrapped around

fully mature nucleosomes.

An additional layer of complexity appears when con-

sidering that DNMT1 and CAF-1 themselves have the abil-

ity to recruit a number of enzymes implicated in chromatin

maturation (Figure 3). DNMT1 interacts with HDACs

(Fuks et al., 2000; Rountree et al., 2000), the ATP-

dependent chromatin-remodeling enzyme SNF2h (Rob-

ertson et al., 2004), the polycomb protein EZH2 that

directs H3K27me (Vire et al., 2006), and the H3K9 methyl-

transferase G9a (Esteve et al., 2006). This interplay likely

ensures that replication-coupled propagation of DNA

methylation coincides with formation of a repressive

chromatin state. Together with G9a, DNMT1 forms a bi-

nary complex, which is required for recruitment of G9a

to replication sites and for the maintenance of H3K9 meth-

ylation at epigenetically silenced rDNA repeats (Esteve

et al., 2006). This binary memory module may thus be

important for coordinating DNA methylation with H3K9

methylation at silenced euchromatic loci. In contrast to

DNMT1, CAF-1 acts on replicated DNA throughout the ge-

nome to reproduce nucleosomal density. Nevertheless,

several lines of evidence indicate that CAF-1 plays a role

in setting up the repressed state (see below), illustrating

that propagation of silenced chromatin is intimately linked

to the histone deposition process. Consistently, loss of

CAF-1 function causes heterochromatin abnormalities

and loss of viability during development in mouse (Houlard

et al., 2006), Xenopus (Quivy et al., 2001), and

Drosophila (B. Klapholz and N. Dostatni, personal commu-

nication).

CAF-1 can integrate a series of activities necessary for

propagation of H3K9 methylation. A replication-coupled

memory mechanism that links DNA methylation and his-

tone H3K9 methylation was recently uncovered (Reese
Cell 128, 721–733, February 23, 2007 ª2007 Elsevier Inc. 725



et al., 2003; Sarraf and Stancheva, 2004). A key finding

was that MBD1, a protein that binds to methylated CpG di-

nucleotides, forms a replication-dependent complex with

the H3K9 methyltransferase SETDB1 and CAF-1 (Sarraf

and Stancheva, 2004). This complex is needed for herita-

ble maintenance of H3K9 methylation and stable silencing

at certain genes in proliferating cells. The authors pro-

posed that the transient displacement of MBD1-SETDB1

from methylated DNA in front of the fork facilitates

SETDB1-mediated K9 methylation of newly synthesized

H3 deposited behind the fork by CAF-1. H3K9me3 is

a bona fide repressive mark present in pericentric hetero-

chromatin and stably silenced genes, where it forms a plat-

form for HP1 (Feldman et al., 2006; Maison and Almouzni,

2004). In mouse cells, a significant fraction of MBD1 is

concentrated in pericentric heterochromatin, where it

binds to Suv39h1 and HP1 (Fujita et al., 2003). Thus, a sim-

ilar mechanism may also be required for H3K9 methylation

of new histones deposited by CAF-1 during heterochro-

matin replication. CAF-1 is also implicated in the delivery

of HP1 to foci of heterochromatin replication. The largest

subunit of CAF-1 directly binds to HP1 proteins (Murzina

et al., 1999) and is needed to establish a replication-

specific pool of HP1 molecules that can be incorporated

during heterochromatin maturation (Quivy et al., 2004).

HP1 molecules in these replication-specific structures

could represent either pre-existing and/or newly synthe-

sized HP1. As HP1 itself binds to the H3K9 methyltransfer-

ase Suv39h (Aagaard et al., 1999), this may be a comple-

mentary mechanism for propagation of the H3K9me3

mark (Figure 3). An attractive theory is that CAF-1, through

interactions with chromatin-bound enzymes (i.e., Suv39h)

released ahead of the replication fork, can facilitate mod-

ification of newly synthesized and deposited histones on

daughter strands. Such a mechanism could ensure mem-

ory of the repressed state through CAF-1 without jeopard-

izing active domains that also require CAF-1-mediated de

novo assembly. It will be important to understand whether

the dual roles of CAF-1 in histone deposition and delivery

of chromatin factors (i.e., HP1-Suv39h) can be separated.

If so, what is then the balance of their contribution to the

essential function of CAF-1 in higher eukaryotes?

PTMs on Newly Synthesized Histones

An important point concerning the mechanism of nucleo-

some assembly and epigenetic inheritance is when and

how PTMs are imposed onto newly synthesized histones.

The PTMs present on histones prior to their incorporation

into chromatin may influence the final epigenetic state or

be transient and removed during chromatin maturation.

Here we discuss recent insight into the role of acetylation

and methylation marks present on newly synthesized

histones.

In a wide range of eukaryotic organisms, newly synthe-

sized H3 and H4 are transiently acetylated at multiple ly-

sine residues within their amino-terminal tails (Benson

et al., 2006; Sobel et al., 1995). Mutations of multiple lysine

residues that compromise the acetylation of both H3 and

H4 lead to a loss of cell viability that is associated with
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severe defects in chromatin structure during passage

through S phase (Ma et al., 1998). This underscores the

importance of these acetylations in replication-coupled

histone dynamics. The acetylation pattern on H3 varies

between different species and even between the human

histone H3 variants (Benson et al., 2006; Loyola et al.,

2006; Sobel et al., 1995). This flexibility suggests that the

charge of the H3 tail may be important for proper handling

of H3-H4 dimers prior to assembly. In contrast acetylation

of newly synthesized histone H4 at lysines 5 and 12 is

highly conserved among species (Sobel et al., 1995). Con-

sistently, mass-spectrometry analysis of soluble HeLa

histone H3.1-H4 and H3.3-H4 dimers showed an almost

exclusive enrichment of H4K5/K12 diacetylation (Loyola

et al., 2006; Table 1). It has been speculated that the tran-

sient acetylation of histone tails may participate in nuclear

import (Mosammaparast et al., 2002). However, at least

for the H4 tail, replacement of the four acetylatable lysines

(K5, K8, K12, and K16) by arginine residues does not im-

pair nuclear import, which supports the argument that nu-

clear import does not require lysine acetylation (Glowc-

zewski et al., 2004). In vertebrates, the acetylation of

newly synthesized H4 at K5/K12 is catalyzed by a two-

subunit enzyme known as HAT1-RbAp46 (Barman et al.,

2006). This enzyme is dispensable for replication-coupled

nucleosome assembly, but its absence confers sensitivity

to drugs that damage DNA during replication (Barman

et al., 2006). Thus, it is possible that the presence of acet-

ylated histones on newly replicated DNA may create a fa-

vorable environment for repair and reactivation of stalled

replication forks. However, the functional significance of

the H4K5/K12 diacetyl mark still remains largely an

enigma.

The H4K5/K12 diacetyl mark is transient since it is re-

moved 20 to 60 min after replication (Taddei et al.,

1999). It is likely that the transient presence of acetylated

histones on newly synthesized DNA regulates the kinetics

of nascent chromatin maturation (Annunziato and Seale,

1983) by providing a window of opportunity for histone-

modifying enzymes to maintain or alter specific chromatin

structures. The importance of this deacetylation event for

maturation of pericentromeric heterochromatin is illus-

trated by experiments in fission yeast and mouse cells

where treatment with HDAC inhibitors interferes with

HP1 binding and proper chromosome segregation (Ekwall

et al., 1997; Taddei et al., 2001).

In addition to N-terminal tail acetylation, newly synthe-

sized histones are acetylated at lysine 56 of H3 and lysine

91 within the globular domain of H4 prior to their incorpo-

ration into chromatin (Masumoto et al., 2005; Ye et al.,

2005; Zhou et al., 2006). These two residues are found in

strategic locations within the nucleosome core particle,

suggesting that their acetylation could regulate maturation

of nascent chromatin and nucleosome stability. H4K91

lies within surfaces of interaction with H2A-H2B dimers

and conspicuously close to the H4 interaction surface

with Asf1 (English et al., 2006), whereas the side chains

of H3K56 contribute to weak contacts with DNA at the



Table 1. PTMs on Soluble Non-Nucleosomal H3.1 and H3.3 in Proliferating Cells

Histone Modification Residue Modification State

Non-Nucleosomal

H3.1 H3.3

H3 Methylation K9 unmod 56% 52%

me1 35.5% 17%

me2 0.5% 4%

me3 — —

Acetylation K14 Ac 7% 20.5%

K9/K14 diAc 0% 5%

H4 Acetylation — monoAc 18% 28%

K5/K12 diAc 72% 50.5%

(—) Not detectable. Modified from Loyola et al. (2006).
entry and exit points of the nucleosome core (Davey et al.,

2002). Mutations that abolish H3K56 or H4K91 acetylation

cause hypersensitivity to genotoxic agents that interfere

with DNA replication in a manner that is epistatic with mu-

tation of the Asf1 histone chaperone (Celic et al., 2006;

Recht et al., 2006; Ye et al., 2005). The fraction of new

H4 molecules that are K91 acetylated in nascent chroma-

tin has not been determined, but virtually all the new H3

molecules that are deposited throughout the genome in

S. cerevisiae are K56 acetylated (Celic et al., 2006). Repli-

cation in the absence of this PTM on de novo-deposited

histones leads to spontaneous DNA damage and chromo-

some rearrangements. Conceivably, the ubiquitous pres-

ence of acetylated histones behind replication forks en-

ables cells to repair DNA lesions independently of the

chromatin environment in which replication-blocking le-

sions occur.

The H3K56ac mark is transient similar to the tail acety-

lations, yet the deacetylation occurs with strikingly differ-

ent kinetics. During a normal cell cycle, H3K56 is deacety-

lated in G2/M phase (Maas et al., 2006; Masumoto et al.,

2005). The deacetylation requires Hst3 and Hst4, two pro-

teins that are related to the NAD+-dependent histone de-

acetylase Sir2 (Celic et al., 2006; Maas et al., 2006). Failure

to deacetylate histone H3K56 severely compromises

chromosome physiology. Cells lacking Hst3 and Hst4

are sensitive to genotoxic agents that impede replica-

tion-fork progression and exhibit a high incidence of mi-

totic chromosome loss and replication-linked spontane-

ous DNA damage. Thus, the acetylation of new histones

is a double-edged sword. Its presence is needed for effi-

cient repair of DNA lesions that block replication forks,

but its continuous presence throughout the genome has

even more disastrous consequences for the maintenance

of genomic stability. It is thus not simply the presence or

absence of these modifications that is important but rather

the proper coordination of acetyl addition and removal as

part of a regulated cycle that is essential. This has impor-

tant implications for the use of histone deacetylase inhib-

itors in cancer chemotherapy (Dokmanovic and Marks,

2005). Chemicals that nonspecifically inhibit the enzymes
that deacetylate new histones likely have undesirable ef-

fects, such as spontaneous DNA damage and chromo-

some rearrangements, in normal cells.

Compared to acetylation, histone methylation is gener-

ally a stable mark. Even though several histone demethy-

lases have now been identified, histone lysine methylation

has a low turnover rate and is most likely important for

memory (Volkel and Angrand, 2007). A significant fraction

of soluble dimeric histone H3.1 and H3.3 was recently

found to carry specific methylation marks (Loyola et al.,

2006; Table 1). This raises an important point concerning

the mechanism of de novo nucleosome assembly and epi-

genetic inheritance; are histone PTMs imposed prior to (on

soluble histone dimers) or after their incorporation into

chromatin (on nucleosomal histones)? Analysis of PTMs

on non-nucleosomal (predeposition) H3-H4 dimers com-

pared with those found on (H3-H4)2 in mononucleosomes

supports the general view that most histone methylations

are imposed after deposition (i.e., H4K4me, H3K27me,

and H3K36me; Loyola et al., 2006). Yet, intriguingly, a sig-

nificant fraction (36%) of soluble H3.1 was monomethy-

lated at lysine 9, whereas soluble H3.3 in addition to

K9me also presented significant amounts of K9me2 and

K9Ac. Thus, some methylation marks can be established

at a step prior to nucleosome assembly. Furthermore,

since H3.1 and H3.3 are incorporated into chromatin via

different pathways (Ahmad and Henikoff, 2002; Tagami

et al., 2004), it can be suggested that the assembly line

may determine the predeposition PTM signature. This

initial PTM pattern may direct the activity of modifying en-

zymes acting at the nucleosomal level (i.e., Suv39h) and

thereby influence the final PTM pattern. Curiously the

Suv39h histone methyltransferase preferentially operates

on H3 tails monomethylated at lysine 9 (Loyola et al.,

2006). An important issue will be to resolve at what stage

in the methylation process each of the enzymes are work-

ing, as mono-, di-, and trimethylation occur in separate

steps during nucleosome assembly and chromatin matu-

ration (Loyola et al., 2006). Given that several of these

enzymes are present at the site of de novo histone depo-

sition behind the replication fork (Figure 3), they could
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Figure 4. Resetting the Epigenetic Land-

scape after DNA Repair

Packaging of DNA into chromatin presents

a dual challenge for DNA-repair processes.

First, the lesion has to be made accessible for

repair enzymes, and, second, chromatin orga-

nization has to be restored as described in the

Access-Repair-Restore model (Green and

Almouzni, 2002; Smerdon, 1991). During the

repair process, chromatin surrounding the le-

sion is rearranged and modified to recruit

checkpoint/repair factors. The restoration

process can entail nucleosome reassembly

through recycling or deposition of new

histones, clearance of PTMs imposed during

lesion detection and repair, and restoration of

specific domains (i.e., through DNA methyla-

tion). Examples of factors involved in restora-

tion are indicated (for details on the access

process see van Attikum and Gasser, 2005;

Wurtele and Verreault, 2006). The fidelity of

the restoration process is not clear, and it is

thus important to resolve whether genotoxic

insults challenge epigenetic stability.
operate in a coordinated fashion to set up the final H3K9

methylation pattern.

Chromatin Restoration Coupled to DNA Repair

Coordination of DNA repair and chromatin dynamics is re-

quired to ensure maintenance of both genetic and epige-

netic information in cells that experience DNA damage. To

highlight that chromatin represents a challenge for DNA

repair, Smerdon put forward the so-called ‘‘Access-

Repair-Restore’’ model (Figure 4; Smerdon, 1991). During

the access and repair processes nucleosomes are remod-

eled, extensively modified, and, in certain cases, even

evicted (see below and Green and Almouzni, 2002; Peter-

son and Cote, 2004). In addition to these local changes,

DNA damage can also lead to long-range effects on chro-

matin as illustrated in yeast, where relocalization of Ku and

SIR proteins in response to double-strand breaks (DSBs)

causes loss of telomeric silencing (Martin et al., 1999;

McAinsh et al., 1999; Mills et al., 1999). PTMs imposed

during lesion detection and repair may increase the plas-

ticity of chromatin to facilitate repair and/or act as docking

sites for repair and checkpoint proteins (van Attikum and

Gasser, 2005; Wurtele and Verreault, 2006). Following

successful completion of DNA repair the region must be

cleared of these PTMs to restore pre-existing chromatin

structure and turn off checkpoint signaling (Figure 4).

Additionally, two other general restoration steps can be

envisaged: (1) nucleosome reassembly involving either

histone recycling or de novo deposition and (2) restoration

of locus-specific organization. Here we discuss recent in-

sights into mechanisms that operate to restore chromatin

structure following DNA repair and highlight why epige-
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netic states may be challenged by genotoxic insults. If

this is the case, epigenetic damage at postrepair sites

may well contribute to chromosomal instability and aber-

rant gene expression in diseases, such as cancer, and

aging.

As is the case for transcription, histone acetylation and

ATP-dependent chromatin remodeling have been estab-

lished, mainly through studies in yeast, as plausible mech-

anisms to open chromatin structure for the repair of both

DSBs and UV-induced lesions (Peterson and Cote,

2004; van Attikum and Gasser, 2005; Wurtele and

Verreault, 2006). For instance, histone-tail acetylation

destabilizes the folding of chromatin into higher-order

structures (Shogren-Knaak et al., 2006). Thus, at least in

principle, chromatin opening to repair DNA has the poten-

tial to activate silenced genes (Yu et al., 2005). Interest-

ingly, following the initial recruitment of histone acetylases

(HATs), several histone deacetylases (HDACs) associate

with chromatin near DSBs, and a clear decrease in histone

acetylation takes place upon completion of repair (Tam-

burini and Tyler, 2005). HDACs could act to restore chro-

matin higher-order structure following DSB repair to pre-

vent inappropriate gene activation. In addition, reduction

of chromatin plasticity may be essential to inactivate the

DNA-damage response by inhibiting further recruitment

of checkpoint mediators that directly bind to constitutive

histone marks, such as H3K79me3 and H4K20me3

(Huyen et al., 2004; Murr et al., 2006; Sanders et al., 2004).

One of the most intensively studied histone modifica-

tions associated with DSB repair is the phosphorylation

of histone H2AX variants (H2AX in mammals, H2Av in

Drosophila, and H2A in yeast). This phosphorylation, for



simplicity referred to as g-H2AX, is induced very rapidly in

large chromatin domains surrounding DSBs (van Attikum

and Gasser, 2005). The significance of this PTM for repair

and checkpoint signaling has been extensively reviewed

elsewhere (van Attikum and Gasser, 2005; Wurtele and

Verreault, 2006). Here we focus on recent studies high-

lighting the importance of histone dynamics in g-H2AX

maintenance and clearance. The emerging concept is

that the timely removal of g-H2AX from chromatin relies

on a highly dynamic interplay between histone exchange

and dephosphorylation of the evicted histone variant. In

yeast the exchange is mediated by a complex interplay

between the INO80 and SWR1 chromatin-remodeling

complexes, likely in conjunction with the NuA4 HAT, all

of which are recruited to the break partly through their

binding to g-H2AX itself (Bird et al., 2002; Downs et al.,

2004; Morrison et al., 2004; Papamichos-Chronakis

et al., 2006; van Attikum et al., 2004). The SWR1 complex

replaces g-H2AX with the H2AZ variant (Papamichos-

Chronakis et al., 2006), which cannot be phosphorylated.

This action is antagonized by the INO80 complex that

maintains H2AX, such that it can continue to be phosphor-

ylated at unrepaired DSBs (Papamichos-Chronakis et al.,

2006). Although the exact purpose of this DSB-induced

H2A-variant exchange is not known, it is likely important

for DNA damage survival because loss of H2AZ and

SWR1 function causes sensitivity to genotoxic agents

(Downs et al., 2004). The human and Drosophila Tip60

complexes share many subunits with yeast INO80,

SWR1, and NuA4 (van Attikum and Gasser, 2005), sug-

gesting that the Tip60 complex is a hybrid of two or per-

haps all three yeast complexes. The Drosophila Tip60

complex specifically acetylates nucleosomal phospho-

H2Av and exchanges it with unmodified H2Av (Kusch

et al., 2004). Given that H2Av shares similarity with both

H2AZ and H2AX, the exchange resembles the situation

in yeast, although it does not entail incorporation of a var-

iant that cannot be phosphorylated. The mammalian Tip60

complex is likewise recruited to DSBs where it acetylates

H4 and H2A (Murr et al., 2006), but it remains to be tested

whether it also catalyzes g-H2AX-H2B eviction. Following

displacement from chromatin, soluble g-H2AX-H2B is

dephosphorylated by the HTP-C phosphatase complex

in yeast (Keogh et al., 2006). Mutation of the phosphatase

Pph3 significantly delayed checkpoint recovery (Keogh

et al., 2006), suggesting that the presence of soluble

g-H2AX influences checkpoint signaling, perhaps by be-

ing recycled. This highlights that persistence of certain

PTMs on evicted histones may have hazardous conse-

quences.

H3-H4 Dynamics at Repair Sites

Within chromatin the overall exchange of H2A-H2B is

rapid in comparison to that of H3-H4 (Kimura and Cook,

2001). Consistently, most known epigenetic marks are

carried on the (H3-H4)2 tetramer. Thus, exchange of

H3-H4 is likely to have a more dramatic impact on the epi-

genetic status of a chromatin region as compared to H2A-

H2B exchange. A recent study showed that DSB repair in
C

yeast results in nucleosome depletion through a region

spanning at least 2 kb on either side of the break (Tsukuda

et al., 2005). This extent of chromatin disruption will ne-

cessitate a reassembly event. The mechanistic basis of

this event is important, as de novo histone deposition

will challenge the epigenetic state of the cell, whereas his-

tone recycling may not. It is now clear that new histone

H3-H4 is incorporated during repair of UV lesions (Polo

et al., 2006). Stable de novo incorporation of histone

H3.1 was visualized at sites of local UV damage, and it

was dependent on proficient nucleotide excision repair

(NER) and CAF-1 function (Polo et al., 2006). This is rather

surprising given that NER only involves relatively short

patches of DNA synthesis (30 nucleosides). Nonetheless,

these data establish that major rearrangements of chro-

matin occur in vivo during NER and directly prove a role

for CAF-1 in H3.1 deposition at repair sites. This is consis-

tent with the fact that CAF-1 mediates nucleosome as-

sembly onto UV-damaged DNA in vitro and is recruited

to sites of UV repair in vivo (Gaillard et al., 1996; Green

and Almouzni, 2003). Several studies in yeast point out

Asf1 as a potential player in chromatin rearrangements

at repair sites (Mousson et al., 2006). Moreover, there is

evidence in mammalian cells that Asf1 can be subject to

checkpoint control through the Tousled-like kinases

(Groth et al., 2003; Krause et al., 2003). It will thus be im-

portant to examine in general how Asf1 can contribute to

DNA-damage responses, whether it acts at repair sites,

and, if so, whether it functions in access, restoration, or

both. CAF-1-mediated de novo histone deposition likely

contributes to chromatin restoration following a wide

range of repair processes, as it is directly recruited to sites

of single-strand breaks and DSBs that are marked by

g-H2AX (Lan et al., 2004; Nabatiyan et al., 2006; Polo

et al., 2006). These findings highlight the fact that the

loss of pre-existing histones during DNA repair potentially

represents an important threat to the maintenance of epi-

genetic information. However, it is not yet established

whether DNA repair is a major source of epigenetic insta-

bility. As is the case during replication, it is possible that

cells possess mechanisms that allow repair to take place

with minimal loss of epigenetic information. The existence

of such mechanisms was recently illustrated by the find-

ing that DNMT1 is recruited via PCNA to sites of DNA-

repair synthesis, presumably to ensure that the newly syn-

thesized DNA is appropriately methylated (Mortusewicz

et al., 2005). Even when pre-existing histones are evicted

to repair cytotoxic lesions, cells may have mechanisms to

restore the histone modifications that are characteristic of

a given locus onto the newly deposited histones. For in-

stance, the restoration of PTMs onto histones deposited

during DNA repair could be achieved through a self-sus-

taining mechanism dependent on a neighboring nucleo-

some or transcription. It is also formally possible that cells

could use an intact sister chromatid or even a homologous

chromosome as a source of epigenetic information to

restore histone modifications following repair at the

damaged site.
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An important issue is the fate of parental histones that

are displaced from chromatin as result of DNA repair or

other processes. In S. cerevisiae, the checkpoint kinase

Rad53 controls degradation of excess histones (Gunjan

and Verreault, 2003). This is particularly important to limit

accumulation of newly synthesized histones, but it may

also provide a mechanism to get rid of evicted parental

histones. No histone-degradation pathways have been

described so far in mammalian cells; however, the

CUL4-DDB-ROC1 ubiquitin ligase recently was found to

mediate UV-induced H3 and H4 ubiquitylation and facili-

tate nucleosome eviction (Wang et al., 2006). It will be

interesting to know whether any of these ubiquityl marks

target evicted histones for degradation. In S. cerevisiae,

some of the H3 molecules bound to CAF-1 are K79 meth-

ylated (Zhou et al., 2006). Because 90% of nucleosomal

H3 is K79 methylated (van Leeuwen et al., 2002), there is

a possibility that the K79-methylated molecules bound

to CAF-1 originated from pre-existing histones that were

evicted from chromatin by DNA metabolic events. Histone

recycling presents a potential epigenetic hazard because

the histones evicted from chromatin carry with them the

PTMs typical of the locus from which they were displaced.

Through its ability to bind PCNA, CAF-1 could inappropri-

ately deposit methylated histones during replication or

repair. To avoid this, it seems likely that the pool of soluble

histones has to be sanitized, either through degradation of

displaced histones and/or reversal of modifications that

should be absent from newly synthesized histones. Con-

ceivably, some of the histone lysine demethylases that

were recently uncovered could protect the epigenetic

landscape by removing methylation from the pool of

histones available for de novo nucleosome assembly.

This section has focused on the mechanisms implicated

in re-establishing chromatin organization following DNA

repair; however, it is possible that complete resetting

does not take place. Indeed, it may be important to keep

memory of the repaired region by marking it with specific

postrepair chromatin features, as discussed in Polo et al.

(2006). The g-H2AX-dependent loading of cohesin (that

mediates sister-chromatid cohesion) provides one exam-

ple of a postrepair feature of the damaged region (Strom

et al., 2004; Unal et al., 2004). In relation to histone

exchange, the potential persistence of acetyl marks on

de novo-assembled histones may function as a recognition

mark. Alternatively, incorporation of specific histone vari-

ants (i.e., H3.1) may change the local H3.1/H3.3 pattern

and thereby provide a tracer in certain quiescent cell types

where H3.3 dominates (i.e., neurons). In any case, such

memory of damage may contribute to phenomena, such

as radiation genome instability, that arise in progeny of

damaged cells after several generations (Little, 2003).
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Note Added in Proof
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