
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Article
Internally Recurring Hippo
campal Sequences as a
Population Template of Spatiotemporal Information
Highlights
d Without external cues, hippocampal dynamics

spontaneously display recurring sequences

d Recurring sequences span across a fixed traveled distance

d Sequences are an internal cognitive template that shapes

mouse behavior

d Sequences display an internally hardwired functional

structure
Villette et al., 2015, Neuron 88, 357–366
October 21, 2015 ª2015 The Authors
http://dx.doi.org/10.1016/j.neuron.2015.09.052
Authors

Vincent Villette, Arnaud Malvache,

Thomas Tressard, Nathalie Dupuy,

Rosa Cossart

Correspondence
arnaud.malvache@inserm.fr (A.M.),
rosa.cossart@inserm.fr (R.C.)

In Brief

The hippocampus supports

spatiotemporal cognition. Using calcium

imaging in the hippocampus of awake

mice, Villette and Malvache et al. show

that stereotyped sequences of neuronal

activation, integrating spatiotemporal

components of behavior, spontaneously

recur, without any external drive, under

the influence of self-motion.

https://core.ac.uk/display/82425056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:arnaud.malvache@inserm.fr
mailto:rosa.cossart@inserm.fr
http://dx.doi.org/10.1016/j.neuron.2015.09.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2015.09.052&domain=pdf


Neuron

Article
Internally Recurring Hippocampal
Sequences as a Population Template
of Spatiotemporal Information
Vincent Villette,1,2,3,4 Arnaud Malvache,1,2,3,4,* Thomas Tressard,1,2,3 Nathalie Dupuy,1,2,3,5 and Rosa Cossart1,2,3,*
1Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France
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SUMMARY

The hippocampus is essential for spatiotemporal
cognition. Sequences of neuronal activation provide
a substrate for this fundamental function. At the
behavioral timescale, these sequences have been
shown to occur either in the presence of successive
external landmarks or through internal mechanisms
within an episodic memory task. In both cases, activ-
ity is externally constrained by the organization of the
task and by the size of the environment explored.
Therefore, it remains unknownwhether hippocampal
activity can self-organize into a default mode in the
absence of any external memory demand or spatio-
temporal boundary. Here we show that, in the
presence of self-motion cues, a population code
integrating distance naturally emerges in the hippo-
campus in the form of recurring sequences. These in-
ternal dynamics clamp spontaneous travel since run
distance distributes into integer multiples of the span
of these sequences. These sequences may thus
guide navigation when external landmarks are
reduced.

INTRODUCTION

Hippocampal networks can display sequences of neuronal acti-

vation at the temporal resolution of behavior, or compressed

within the period of network oscillations (Buzsáki, 2010). The

occurrence and organization of these sequences are thought

to underlie numerous fundamental operations of the hippocam-

pus, from the sensing of sensory cues and building a cognitive

map of the environment, to mnemonic and planning functions

(Dragoi and Tonegawa, 2011; Skaggs and McNaughton, 1996;

Wilson and McNaughton, 1994). At the behavioral timescale,

these sequences were first shown to occur in the presence of

external landmarks that provide successive cues organizing

neuronal activity through exteroception. For example, hippo-
campal place cells are sequentially activated at consecutive po-

sitions in space when a rodent explores an environment naturally

delivering serially ordered external landmarks (Dragoi and Buz-

sáki, 2006), even when only tactile and visual cues are provided

(Royer et al., 2012). However, the sequential activation of hippo-

campal neurons at the behavioral timescale can also be disen-

gaged from external landmarks and instead occur in the absence

of changing sensory or feedback cues. This involves self-orga-

nized internal mechanisms but happens within a behaviorally

relevant context—for example, during the delay period of a

memory task (Itskov et al., 2011; Kraus et al., 2013; Pastalkova

et al., 2008; Wang et al., 2014).

To some extent, the reward that guides an animal’s behavior

within a defined task also provides an external drive on hippo-

campal dynamics. Hence, so far it remains unknown whether

hippocampal activity can also be organized at population level

in the absence of any driving external goal. It is also unknown

whether the span of hippocampal sequences is intrinsically pre-

determined in time or space in the absence of any temporal and

spatial boundary. Indeed, both externally and internally triggered

sequences observed until now at the timescale of behavior al-

ways cover a finite spatial and temporal extent that is con-

strained by external factors such as the temporal organization

of the task (Pastalkova et al., 2008) or the size of the environment

explored in space (Ravassard et al., 2013). This is an important

issue, since it defines the intrinsic determinants and behavioral

reach of hippocampal population coding.

Here, large-scale two-photon calcium imaging was used to

capture population dynamicswhile resolving single-cell behavior

in the CA1 region of awake mice. A simple experimental para-

digm was implemented to record spontaneous dynamics while

minimizing the influence of external spatiotemporal landmarks

or limits, which allows separating the contributions of time, dis-

tance, and external motivation to neuronal firing. In these condi-

tions, we show that hippocampal dynamics self-organize into

sequences of neuronal activation recurring one after another

within discrete run epochs and each spanning accross a fixed

traveled distance. These recurring sequences translate into a

behavioral correlate, since spontaneous run epochs display

some stereotypy: they distribute as multiple integers of the

distance unit represented in the sequences. We propose that
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Figure 1. CA1 Dynamics Display Recurring

Sequences of Neuronal Activation during

Run Epochs

(A) (A1) Cartoon of the experimental setup with the

mouse head-fixed below the objective (allowing for

two-photon imaging, red box, A2) but free to run on a

non-motorized treadmill. (A2) Schematic of the im-

aging conditions. (A3) Representative behavior on

two imaging sessions shows alternation between

run (light) and rest (dark) periods. Corresponding

speed as a function of time is displayed below

(black).

(B) (B1) Two-photon in vivo GCAMP5 fluorescence

image of the CA1 pyramidal layer; scale bar, 100 mm.

(B2) Contour map of imaged cells with neurons re-

cruited in a sequence (red), and other active neurons

(green).

(C) Individual calcium fluorescence signals as a

function of time (top) of one representative cell dis-

playing sustained firing (green) and three cells (red)

recruited in four consecutive sequences visible on

the rasterplot (middle) displaying a heatmap of the

signal of all the neurons involved. Corresponding

mouse behavior is indicated on the box below.

(D) (Left) Rasterplots of neuronal activation as a

function of time for two sequences occurring either

during continuous run or including a short immobility

period (dark green) and slope fit (red line); bottom

plots indicate mouse speed as a function of time.

Right rasterplot represents the pooled distribution of

neuronal activation onsets (median and interquartile

range) for all the sequences including a short

immobility period, taking the start of the pause as a

time reference (time 0, neuron #0, n = 91 pauses, 5

sessions, 3 mice). Temporal slopes before and after

the pauses are indicated (red lines). Right plot shows

the evolution of the normalized temporal slope (red);

95% confidence interval is indicated (CI, gray area,

see Experimental Procedures).
such sequences could be a default internal dynamic template for

spatiotemporal processing in the hippocampus.

RESULTS

Recurring Sequences of Neuronal Activation in CA1
under the Presence of Self-Motion Cues
To observe hippocampal dynamics, we examined the spatio-

temporal distribution of neuronal activity in the CA1 pyramidal
358 Neuron 88, 357–366, October 21, 2015 ª2015 The Authors
layer using two-photon calcium imaging

of awake head-restrained mice allowed to

self-regulate their motion in the dark on

a nonmotorized treadmill (Royer et al.,

2012) (Figure 1A). In contrast to previous

studies, we chose not to deprive mice of

water or food so that their behavior was

not guided toward receiving any reward.

In this way, during each daily imaging ses-

sion, mice spontaneously traveled on the

track through the alternation of run epochs

(interquartile range 4–10 s; see Figure S1
available online) and rest epochs (from 10 to 74 s; Figure 1A).

Within run epochs, mice moved at various speeds (average

10.4 cm/s, range: 5–20 cm/s) and displayed short periods of

immobility (< 2 s; Figures 1D and S1; see Experimental Proce-

dures). To map neuronal activity across consecutive days, we

used a viral vector (AAV2/1.syn-GCaMP5G) that makes

GABAergic and glutamatergic CA1 neurons express the calcium

indicator GCaMP5 (Akerboom et al., 2012). In order to image

from a large population of neurons (�1,000 cells, Figure 1), we



used a low-magnification objective that allows for imaging a

400 3 400 mm2 field of view centered on the stratum pyramidale

(Figure 1B) after surgical implantation of a chronic glass window

on the hippocampus (Dombeck et al., 2010). This surgical proce-

dure was previously shown to allow for the reliable recording of

place cell activity (Dombeck et al., 2010), and we show it has

no impact on exploratory activity (Figure S2).

After three to five habituation sessions, mice running on an

empty self-paced treadmill in the dark were imaged (Figure 1A),

an experimental configuration that allows studying CA1 dy-

namics under the sole influence of self-motion cues. Sponta-

neous behavior remained highly variable and did not display

any significant repetition pattern from one day to the next (Fig-

ures S1C–S1F). This lack of behavioral stereotypy enabled dis-

entangling the relative contributions of time and distance to the

firing of neurons. Most of the activity was observed during run

epochs (Figure 1C). Unexpectedly (Kentros et al., 2004; Pastal-

kova et al., 2008), out of 65 imaging sessions (Figure S1G), we

found that CA1 dynamics displayed recurring sequences of

neuronal firing exclusively during run epochs in 28 imaging ses-

sions (five mice; Figure 1C; Movie S1). Statistical analysis using

data reshuffling established that sequences were not occurring

by chance (p < 0.001, see Experimental Procedures). These se-

quences repeatedly engaged a sparse and scattered neuronal

population that represented about 5% of all imaged neurons

and 36% of the total fraction of active cells during run (Fig-

ure 1B). Cells engaged in these sequences were spatially inter-

mingled with other run active cells that displayed variable activ-

ity patterns (Figures 1B and 1C), including sustained firing (25%

of active cells, Figure 1C), or uncorrelated and sparse activa-

tion onsets (39% of active cells, Figure S3). Recent studies

have addressed the relative influence of external sensory

cues or behavioral context on the patterning of hippocampal

dynamics, and it is now well established that, at the single-

cell level, these can be controlled by absolute or relative loca-

tion and time depending on the available and relevant stimulus

for the task at hand (Aghajan et al., 2014; Chen et al., 2013; It-

skov et al., 2011; Kraus et al., 2013; Ravassard et al., 2013). We

thus asked whether the sequences of neuronal activation

observed here were driven by absolute location or time. We

can exclude a modulation of neuronal firing by the absolute po-

sition on the treadmill (as could occur if an undetected cue was

left on the track) since (1) sequence recurrence never matched

the length of the treadmill (180 cm, Figure 2D) and (2) as ex-

pected from a 0.05 statistical cutoff, less than 5% of the cells

recruited in sequences displayed significantly location-modu-

lated activation (1,048 cells out of 28 sessions, p < 0.05, Kol-

mogorov-Smirnoff uniformity test on firing onset distribution

along the treadmill, Figure 2E). Similarly, sequences could not

be integrating absolute elapsed time because (1) sequences

could repeat one after another either within the same run epoch

(defined as periods where speed exceeds 2 cm/s, Figure 3A) or

separated by rest periods of variable duration (Figures 1A and

S1); and (2) sequences could be transiently perturbed during

short immobility gaps (Figure S1) and then resumed when

running restarted, since the slope during the pause was signif-

icantly different from that before and after it (Figure 1D). Thus

the sequences observed are independent from absolute time
or location. Analysis was therefore next restricted only to run

epochs in order to determine whether neuronal sequences

were constrained by the integration of time or distance during

mouse travel.

Distance Sequences: Sequential Neuronal Activation
Integrating Traveled Distance
To test whether sequences integrated travel duration or dis-

tance, we analyzed, for each imaging session, the correlation be-

tween the slopes of the sequences (in the temporal or spatial

domain) and the median mouse speed of the corresponding

run epochs. If the progress of neuronal activation was set by

the run distance, then the temporal slope of the sequences (ex-

pressed as cell/s) should correlate with speed while the spatial

slope (in cm/cell) should be constant and thus independent

from speed (Figures 2A and 2B). For each imaging session, we

calculated the Spearman correlation coefficient between the

temporal or spatial slope and the speed (Figure 2B); this analysis

is a robust way to assess distance or time representation in noisy

data (see data simulation in Figures S3B–S3D). Across sessions,

sequences could be modulated by time and distance (28 imag-

ing sessions, n = 5 mice, Figures 2B and S1). However, in

many cases they were principally modulated by distance alone

(14 out of 28 sessions, Spearman p < 0.05; Table S1). In the in-

termediate cases, both time and distance representations

seemed to intermingle (11 out of 28), whereas time alone was

organizing neuronal activation in a minority of the sessions

(3 out of 28). This demonstrates that, as previously described

at single-cell level, hippocampal dynamics capture both spatial

and temporal information at the population level (Kraus et al.,

2013). However, when integrating information at the population

level over each imaging session, we observe that on average

distance is more likely to be represented in our experimental

conditions (Figures 2B and S1).

As distance-modulated sequences were frequent, analysis

was next restricted to the imaging sessions in which these

were observed (n = 14 sessions, 5 mice, 493 sequences, Exper-

imental Procedures, and Figure S1G). Such distance-modu-

lated sequences (DS) repetitively engaged the same neurons

within an imaging session (Figures 1C and 2C, on average

70%). They spanned most but not all the distance traveled

within a run epoch. A period of travel could therefore sometimes

not be represented within neuronal dynamics (a ‘‘nonencoded

travel distance,’’ Figure 2C). This indicated that DSs do not pro-

vide a metric integrating the total distance covered by the

mouse but instead display a finite size that is intrinsically set.

This ‘‘nonencoded travel distance’’ did not involve the coordi-

nated firing of another group of cells, as only one recurring

pattern of neuronal activation was detected per session. Also,

as expected, the onsets of the calcium transients of the neurons

engaged in the DS (DS neurons) were not locked to the treadmill

lap in contrast to those of the neurons displaying location-

dependent firing after a few days of spontaneous run in the

presence of serial tactile cues (i.e., place cells, n = 3 mice, Fig-

ure 2D). Neither were these onsets periodic, given the occur-

rence of ‘‘nonencoded traveled distances’’ between sequences.

Nor were the DSs triggered by a undetectable cue on the track

(Figure 2E). Therefore, in conditions dominated by idiothetic
Neuron 88, 357–366, October 21, 2015 ª2015 The Authors 359



A

B

C

D E

Figure 2. Distance-Modulated Sequences

(A) (A1) Rasterplots of neuronal activation as a

function of run time (black) and robust fits (red)

of three sequences occurring at different running

speeds (bottom, raw data gray, median speed

black). (A2) Superimposed fits for the three

examples in (A1).

(B) (B1) Graph of speed versus temporal slope for

each sequence (dots) recorded in this represen-

tative imaging session; solid line indicates fit

through origin while dashed line indicates ±10%

interval (slope, 0.64 cell/cm). (B2) Graph plotting

speed versus spatial slope for the same set of

sequences (dots). Spearman correlation coeffi-

cient and corresponding p value are indicated. (B3)

Graph plotting, for each imaging session (n = 28

sessions, 5 mice), the Spearman correlation co-

efficients for the spatial (rt) and the temporal slope

(rd). Many sessions fell in the area where more

information is carried by run distance (gray).

Significant sessions for distance, time or nonsig-

nificant representations are indicated by black,

open or gray dots, respectively.

(C) (C1) Representative rasterplot of neuronal

activation as a function of run distance displaying

successive sequences within an imaging session.

Sequences were recurring but separated by gaps

of non-encoded run distance (gray areas). (C2)

Histogram plotting the distribution of 14 imaging

sessions as a function of the fraction of the total

run distance encoded within a distance sequence.

(D) Polar representation of the firing field of

representative neurons with 360� corresponding

to one lap as schematized on the top left; firing

probability is represented by the heatmap while

black dots indicate activation onsets; three cells

from an experiment on an empty treadmill (D1),

three with tactile cues (D2). Heatmap represents

the probability distribution of activation onsets.

(E) p values obtained from the uniformity test

(Kolmogorov-Smirnoff) applied to the distribution

of firing onsets of individual cells along the track

(1,048 cells, pooled data over all sessions dis-

playing sequences); red line indicates the sta-

tistical threshold (0.05). (Inset) Representative

distribution of the onsets of one cell displaying a

uniform distribution (p = 0.43).
cues, some fixed distance metric can be represented in the

hippocampus in the form of recurring sequences of neuronal

activation.

We next asked whether the finite size of the DS was due to

experimental limitations, or instead could represent an intrinsic

metric for distance. To this aim, we first analyzed the topo-

graphical arrangement of DS neurons. The spatial distribution

of DS neurons within the pyramidal layer did not display any

remarkable pattern since these were not more clustered than

expected by chance, even when taking into account their
360 Neuron 88, 357–366, October 21, 2015 ª2015 The Authors
time of recruitment within the sequence

(Figure S4). This indicates that our imag-

ing field of view sampled from a random

representative subset of DS neurons and
that the distance span covered by each sequence was unlikely

to be truncated.

The ‘‘Distance Unit’’: An Internal Cognitive Template
that Varies on a Daily Basis and Shapes Mouse Behavior
Mouse behavior may control or be controlled by the firing of hip-

pocampal neurons. Thus, the distance encoded at population

level in the DS could be set by themouse behavior or conversely,

spontaneous runs could be internally predetermined by the

spatial extent of the DS. In order to address the former
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Figure 3. Distance-Modulated Sequences

Can Repeat One after the Other within a

Continuous Run

(A) Representative rasterplots of neuronal activa-

tion as a function of time for three run epochs (light

green) displaying an integer number of sequences

during the same imaging session. Bottom graphs

indicate corresponding speed as a function of time.

(B) (B1 and B2) Perievent triggered distribution of

the mouse speed (median: black line, inter-quartile

range: gray area) aligned to the onset (B1) or to the

offset (B2) of all first DS detected in each run epoch

(n = 325DS). (B3 andB4) Same as (B1) and (B2), but

speed distribution now uses the onsets (B3) or the

offsets (B4) of the DS that repeated after another in

the middle of a run epoch (n = 64 DS). Gray area

indicates the 95% confidence interval (CI).

(C) Representative plot showing the uniform dis-

tribution on the absolute track position of repeating

DS onsets for one imaging session (n = 25 DS,

Kolmogorov-Smirnoff test, p > 0.1).
hypothesis, we have plotted the distribution of the mouse speed

centered on the time of DS start or stop.We first used the first DS

of each run epoch as a reference (Figure 3B). In this case, DS on-

setswere time-locked to the start of the run (Figure 3B1) whereas

DS offsets occurred before its end (Figure 3B2). DS could also

repeat in the middle of a run epoch one after another (Figure 3A),

and this repetition is expected to be triggered by an external

drive, such as a short pause in mouse run or a cue on the track.

To test the first possibility, the onsets and offsets of these DS

were specifically used as a reference for the mouse speed distri-

bution plots (Figures 3B3 and 3B4). Surprisingly, no significant

pause or deceleration were observed. However, speed signifi-

cantly increased by about 20% (Figure 3B3). This is a potentially

interesting finding that may relate to the mechanisms of

sequence initiation given that the firing frequency of CA1 pyrami-

dal neurons increases with speed (Hirase et al., 1999; Geisler

et al., 2007; Fuhrmann et al., 2015). In addition, DS repetition

wasnot linked to a cueon the track (uniformityKolmogorov-Smir-

nov test Figure 3C, p > 0.1). Hence, both the onset and offset of a

DS could be uncorrelated to the start and end of the run, in

contrast to previous reports where the span of neuronal activa-

tion sequences was constrained by the underlying task (Kraus

et al., 2013; Pastalkova et al., 2008; Ravassard et al., 2013; Royer

et al., 2012). This shows the intrinsic finite extent of sequences of

neural activation in CA1 that encode traveled distance without

being locked to behavior. We thus refer to such discrete span

of the DS as the ‘‘distance unit’’ (DU) encoded at population level

within the imaging session.

Quantification of the DU for each imaging session revealed

that these spanned across a wide range (12–112 cm, Figure 4A),

even for the same mouse across imaging days, indicating that

this value is not preset. We took advantage of this variability to

test if, as for place cells where the size of place fields scales

with that of the explored environment (Diba and Buzsáki, 2008;

Muller and Kubie, 1987; O’Keefe and Burgess, 1996), the

‘‘average distance field width’’ (Experimental Procedures) line-

arly scaled with the DU. Such a relationship could be observed

(Figure 4E, Pearson, R = 0,94, p < 0.001), indicating a shared

property between distance and place fields.
Since the DU could considerably vary across days, we

compared the set of neurons involved within the DS from one im-

aging session to the next. Almost one-third of the cells involved

within a DS one daywere still recruited the next (28%±8%, three

sessions paired, two mice, Figures 4B and 4C). In addition,

although no serial external cues were provided to support and

recall the sequence organization, the relative order of the neu-

rons within the sequences was also maintained (Figures 4C

and S4B). This indicates that DS rely on intrinsically prewired

functional links between neurons. DS thus provide an internal

template for the integration of incoming sensory signals.

Last, we asked whether the template metric provided by the

DU shaped spontaneous mouse runs. To this aim, analysis

was focused on the distribution of the distance traveled within

single run epochs (that comprised a detected DS), expressed

in DU (rather than cm). The median value of this normalized dis-

tance, calculated per imaging session, segregated into two

groups (group 1, 1–2 DU, 235 run epochs, 10 sessions; group

2, 2.5–3.2 DU, 90 run epochs, 4 sessions; Figure S4C; Table

S1). When pooling together group 1, we noticed that the distribu-

tion was significantly bimodal with peaks at 1.1 and 2.1 DU (Fig-

ures 4D and S4; p < 0.001, see Experimental Procedures),

whereas it was log-normal without normalization. Regarding

group 2 distribution bimodality, the occurrence of imaging ses-

sions displaying a majority of run epochs with more than 2DS

was too infrequent to draw any significant conclusion. Thus,

spontaneous run epochs tended to distribute as integer multi-

ples of the distance intrinsically integrated in the respective

DS. This further supports the idea that DSs are a representation

of distance encoded in the hippocampal network.

DISCUSSION

This study shows that sparse and stereotyped chains of neuronal

activation, integrating spatiotemporal components of behavior,

spontaneously recur one after another, without any external

drive, in the hippocampus under the influence of self-motion.

We show that the ‘‘distance unit’’ associated to these intrinsically

finite sequences provides a population metric for distance
Neuron 88, 357–366, October 21, 2015 ª2015 The Authors 361
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Figure 4. The Distance Unit Provides an In-

ternal Template that Varies on a Daily Basis

(A) Evolution of the ‘‘distance unit’’ over four

daily imaging sessions for five mice (colored

lines).

(B) Representative example of the contour maps of

imaged cells indicating neurons involved in dis-

tance sequences on the first day where sequences

could be imaged (yellow, left) and the next (middle,

red) or both (orange, right and black contours on all

three maps).

(C) (C1) Rasterplots showing the activation, as a

function of distance, of the nine cells involved in

distance sequences on both days. Neurons are

ordered based on their average activation delay

on the first day; day 1 (left), day 2 (right). (C2)

Superimposed average rasterplot of the se-

quences on both days (day 1, orange; day 2, red);

the median delay of onset (dot) and the corre-

sponding interquartile range (rectangle) are indi-

cated for each cell and calculated taking cell #5

as reference. Note that the ‘‘distance unit’’ (DU)

calculated for each day (same color code) varied

significantly.

(D) Probability distribution histograms of the

normalized (1) and absolute (2) run distance (n =

235 run epochs, 10 sessions with a median run

distance smaller than 2 DU). The normalized run

distance displays a bimodal distribution (r2 = 0.98)

with a first peak at 1.1. DU and a significant second

one at 2.1 DU (Figures S4D–S4H, ***p < 0.001). The absolute distance histogram distribution is log-normal (r2 = 0.91) with a peak at 77 cm.

(E) Graph indicating the correlation between the average size of single-cell distance fields (median values and interquartile ranges, see Experimental Procedures)

and the ‘‘distance unit’’; the fit (red, Pearson, R = 0,94, p < 0.001) indicates that the average distance field represents one-fifth of the distance unit.
encoded in CA1 dynamics. This DU is not entirely engraved, as it

could vary on a daily basis. However, the partial replay of se-

quences fromoneday to thenext strongly suggests theexistence

of internally prewired networks (Dragoi and Tonegawa, 2014).

Animals were more likely to travel spontaneously once or twice

the ‘‘distance unit,’’ suggesting that linear path integration may

use dead reckoning cycles and that this internal representation

is limited. In natural environments, this function is complemented

by landmark recognition (McNaughton et al., 1991). In contrast, in

the absence of external cues, integer multiples of the DU operate

as attractor states for spontaneous behavior. This finding was

madepossiblebyacombinationof factors thatwerenot gathered

before (Chen et al., 2013; Kraus et al., 2013; Pastalkova et al.,

2008; Poucet et al., 2014; Ravassard et al., 2013) and that include

(1) the absence of sensory or cognitive external drive, (2) the

absence of reward, (3) the absence of temporal or spatial borders

(Solstad et al., 2008), (4) the sampling of activity froma large num-

ber of neurons, (5) a large range of running speeds to allow disen-

tangling elapsed time fromdistance even for short travels, and (6)

the use of a one dimensional environment. Last, we cannot

exclude that keeping head direction signals constant also

contributed in revealing such stereotyped dynamics (Cowen

and Nitz, 2014; Sargolini et al., 2006). It is also possible that the

filtering of neuronal spiking, an experimental limitation of the

use of calcium indicators, is here providing a first integration

step of hippocampal dynamics.

Besides spatial cognition andmemory, sequences of neuronal

activation have been previously reported in different brain re-
362 Neuron 88, 357–366, October 21, 2015 ª2015 The Authors
gions and species where they have been associated with a vari-

ety of brain computations, including song generation (Long et al.,

2010), odor encoding (Wehr and Laurent, 1996), choice decision

(Harvey et al., 2012; Pastalkova et al., 2008), associative learning

(Modi et al., 2014), or brain-state transitions (Luczak et al., 2007).

Here we show that sequences can display an intrinsic finite

spatiotemporal extent. They can repeat one after another within

a continuous behavioral episode, sometimes following a spatio-

temporal gap lacking any significant neuronal activity pattern.

Interestingly, spontaneous repetition of neuronal activation has

been reported at the single-cell level for example for cells dis-

playing multiple place fields when large environments are

explored (Rich et al., 2014), and at the population level when

identical repeating environments are successively explored

(Mizuseki et al., 2012). The same way that cells with multiple

place fields somehow provide a natural segmentation of large

environments, it is possible that the repetition of finite sequences

reflects a similar phenomenon where an infinite environment is

divided into discrete cognitive chunks (Gupta et al., 2012). This

activity repetition may reflect a self-generated behavioral strat-

egy (Cabral et al., 2014) or the limit of the internal representation

of the world, the latter being more likely for we show that

behavior tends to follow hippocampal dynamics and not the

opposite. Hence, for a given imaging session, we observed

that mice could run once or twice the DU, with no strategical

preference for either one of these options. Therefore, DS may

represent the full capacity of the available working memory for

a given experience. When animals are trained for a particular



task, sequential neuronal activation covers the entire length of

the task at hand (in time or space) (Dragoi and Buzsáki, 2006; It-

skov et al., 2011; Kraus et al., 2013; Pastalkova et al., 2008;

Royer et al., 2012; Wang et al., 2014). As a consequence of the

intrinsic finite size, sequences scale to match the experienced

episode, which implies that the coding resolution is inversely

proportional to the size of the task. Hence, we observed that

‘‘average distance field width’’ linearly scaled with the DU.

Absolute distance from a fixed starting point has recently been

reported to be represented in hippocampal firing at single-cell

level (Kraus et al., 2013) and to contribute to place coding in the

absence of visual cues (Chen et al., 2013) or in virtual environ-

ments (Ravassard et al., 2013). The critical implication of self-

body cues in the distance representation within place fields has

recently been demonstrated in virtual environments (Chen

et al., 2013). From that, itwas thusexpected, in ourparticular con-

ditions where self-motion cues are prominent, that sequential

neuronal firing integrates traveled distance. However, the sin-

gle-cell activity recorded here cannot provide a measure of run

distance since runepochs comprise periodsof non-encodeddis-

tance. In addition, in the case of the DS described here, as re-

ported before for single-cell hippocampal activity (Kraus et al.,

2013), it is very likely that time is also contributing to single-cell

firing.Probablybest supporting that point is the fact that theorga-

nizationof sequenceswasnot affectedbyshort rest periods, indi-

cating that somecells are bridging the temporal gapbetween two

diconstinuous runs within a single sequence. Alternatively, infor-

mation may be transiently stored and hidden for example in the

decaying synaptic weights over time accross short temporal

gaps (less thanone second long) (Buonomano andMaass, 2009).

Distance was known to be represented within hippocampal

dynamics at a shorter timescale, in the form of the sequential

firing of place cells sharing overlapping place fields within a theta

cycle (Dragoi and Buzsáki, 2006). Interestingly, theta phase pre-

cession is preserved after stimulation-induced perturbation of

hippocampal activity (Zugaro et al., 2005), the same way se-

quences described here resumed after a short immobility period.

In addition, theta sequences were recently shown to be critically

related to internally generated hippocampal sequences formed

during an episodic memory task (Wang et al., 2014). It will thus

be important to examine the link between these two temporal

scales of distance representation, which may ultimately require

determining the translation of distance sequences in a two-

dimensional environment. Sequences were also shown to occur

at an even more compressed timescale, during sharp wave ac-

tivity and quiet wakefulness. These sequences reflect previous

sensory experience (Buzsáki et al., 1992; Karlsson and Frank,

2009). In the same way, distance sequences may recapitulate

a recent experience thus supporting the view of the hippocam-

pus as a ‘‘relational processing system’’ (Eichenbaum and

Cohen, 2014), linking sequential body movements to an existing

distance template supported by internally preconfigured net-

works. In this way, these may contribute to the generation of

place fields in the absence of proximal sensory cues as likely oc-

curs in the dark (Poucet et al., 2014), or when large environments

are explored (Wang et al., 2014). These may also contribute to

temporal integration when time becomes a more prominent

component (MacDonald et al., 2013).
Future studies are needed to address the cellular mechanisms

of sequence generation, in particular their link to entorhinal in-

puts from grid cells, the standard metric for space in the brain

(Moser and Moser, 2008), or to medial septum inputs that pace

the internal hippocampal clock at theta frequency. The precon-

figured character of hippocampal dynamics, dominated by a

small minority of active cells in many states and contexts (Mizu-

seki and Buzsáki, 2013), may provide a cellular substrate by

which hippocampal dynamics spontaneously collapse into these

default sequences, based on the preferential activation of a

highly excitable subset of neurons triggering a chain of pre-exist-

ing functional links. Interestingly, sequences of neuronal activa-

tion lacking spatial specificity (Cheng and Ji, 2013) have been

recently observed in an Alzheimer disease model, suggesting

that these may represent the minimum default operational

mode of the hippocampus when sensory perception is reduced.

EXPERIMENTAL PROCEDURES

Mice

All protocols were performed under the guidelines of the French National Ethic

Committee for Sciences and Health report on ‘‘Ethical Principles for Animal

Experimentation’’ in agreement with the European Community Directive 86/

609/EEC under agreement #01413. Male adult wild type Swiss mice (n = 8,

25–40 g body weight) were used for experiments. All mice were housed in

standard conditions (12 hr light/dark cycles light off at 7:30 a.m., housed

one per cage, water and food ad libitum). Mice were handled before recording

sessions to limit head restraint associated stress and experiments were per-

formed during the dark cycle.

Virus Infection

In order to perform large-scale calcium imaging, mice were injected with a viral

solution (titer, �1012 genomes copy/ml; Penn Vector Core) of AAV2/1.Syn.

GCaMP5G.WPRE.SV40. Mice were first anesthetized (100 mg/kg ketamine,

10 mg/kg xylazine), and 500 nl of viral solution was injected at a rate of

100 nL/min into the left dorsal hippocampus at following coordinates: AP,

2 and 2.5; ML, 1.6 and 2.1 relative to bregma; DV, 1.3 relative to brain surface.

The constrained tissue was allowed to recover for 1 min prior and 3 min after

injections to prevent injection backwash. Craniotomy was then protected with

skin stapled. Mice were allowed to recover for a minimum of 7 days.

Implantation of Chronic Hippocampal Window

This procedurewas inspired fromDombeck et al. (2010) and adapted for large-

scale imaging. After 4 days of water deprivation to transiently modify hemody-

namics to help for the surgery (1.5 ml/24 hr; <20% loss of initial body weight),

mice were anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg),

and a 3 mm diameter craniotomy centered over virus injection sites was per-

formed. The dura was gently cut and a portion of the overlying cortex was

aspirated to allow optical access to the hippocampus. The cortex was contin-

uously irrigated to limit bleeding during cortex withdrawal. Similarly to the orig-

inal method, the external capsule was exposed and allowed to dry until tacky,

upon which a stainless steel canula (Microgroup) attached to a glass coverslip

was placed in the hole, sealed with uncured kwik sil (WPI), and fixed to the skull

using Super-bond (DSM Dentaire). A custom-made bar was fixed at the back

of the head. Mice were allowed to recover for 4–6 days and then handled for

2 days in order to limit head restraint-associated stress.

Imaging Procedure and Treadmill Setup

Mice were head-fixed on a nonmotorized treadmill (adapted from Royer et al.,

2012) allowing them self-paced locomotion, and all experiments were per-

formed in the dark. No reward was given. After three to five habituation ses-

sions, mice were watchful but calm and alternated between periods of moving

and resting activity during recordings. The treadmill was made from a 180 cm

black velvet seamless belt for the experiments done in the absence of external
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cue (n = 5 mice). In the experiments aiming at imaging place cell firing (n = 3

mice), the belt was enriched in tactile cues as follows: we delineated four zones

of 45 cm displaying the following items: (1) 2 cm wide disks of white Velcro;

(2) small white pressure buttons; (3) gray diamond shaped textured plastic fab-

ric; (4) no cue. For all experiments, extra sound, odor, touch, and light were

minimized during the imaging session (in preliminary experiments where the

seam was too prominent we observed cue-related firing; data not shown).

The mouse speed and instantaneous position were tracked using a graded

wheel, as previously described (Royer et al., 2012) (1 cm position resolution).

Imaging was performed with a single beammultiphoton pulsed laser scanning

system coupled to a microscope (TriM Scope II, LaVision Biotech). The Ti:

sapphire excitation laser (Chameleon Ultra II, Coherent) was operated at

920 nm. GCaMP fluorescence was isolated using a bandpass filter (510/25).

Images were acquired through a GaSP PMT (H7422-40, Hamamatsu) using

a 16 immersion objective (NIKON, NA 0.8). Using Imspector software (LaVision

Biotech), the fluorescence activity from a 400 mm2 field of view was acquired at

9.62 Hz with a 1.85 ms dwell time per pixel (2 mm/pixel). Imaging fields were

selected to sample the dorsal CA1 area and maximize the number of imaged

neurons in the stratum pyramidale. Speed, position, and image triggers were

synchronously acquired and digitized using a 1440A Digidata (Axon instru-

ment, 2 kHz sampling) and the Axoscope 10 software (Axon instrument). A

typical imaging session occurred as follows: (1) the mouse was handled

then fixed on the treadmill; (2) five consecutive 3,000 frames movies were ac-

quired; (3) the mouse returned to its homecage. The next imaging session

occurred 24 hr after. Mice were imaged once a day for up to 4 weeks.

Data Analysis

Active Cell Detection during Run Epochs

Run epochs were defined as continuous periods of time during which the

average mouse speed exceeded 2 cm/s. A custom-made algorithm based

on PCA/ICA was used and combined to morphological identification. Move-

ment correction was first performed for each frame using the cross-correlation

with a reference image. Only frames corresponding to mouse run were used

for cell detection. The offset PCA method was next applied (Kaifosh et al.,

2013). Principal components displaying a variance greater than noise were

fed to an iterative ICA algorithm (Mukamel et al., 2009). Cells were identified

in the output of the ICA using 2D-spatial wavelet filtering matching the ex-

pected cell size (7–15 mm diameter). Cell contours were next extracted. The

obtained ROI were finally smoothed using a closing algorithm thus defining

the active cell population. The fluorescence trace of each cell was calculated

by averaging over the ROI.

Detection of Recurring Activity Patterns

Principal component analysis was performed on the fluorescence traces of

active cells. GCaMP fluorescence traces were smoothed in time (Gaussian

filtering, s=5s) before fed to the offset PCA algorithm (Kaifosh et al., 2013).

The smoothing adds correlation between neighbouring time points in order

to gather the activity of cells that fire successively. The principal component

which displayed recurring fluorescence patterns during each run epoch

(among the five with the highest variance) was manually selected. The reason

for manual selection was (1) the need to select a principal component that con-

tained information about population activity during run epochs (i.e., displaying

transients at each run); and (2) among the five extracted principal components,

it also often happened that traces reflecting for example high activity of a single

neuron outside from run epochs or movement artifacts, were considered as

holding the most information by the PCA. The derivative of that principal

component (Figure S3, green) was then cross-correlated with the activity of

each individual cell. The use of the derivative preferentially select cells with

short calcium transient and thus remove cells that fire during the entire run

epoch which are not part of a sequence. The correlation coefficients thus ob-

tained were used as a metric to determine the participation of each cell to

recurring activity: a threshold was calculated applying Otsu’s method (Otsu,

1979) to the distribution of this metric in the cell population (Figure S3). Cells

whose correlation was higher than the threshold were considered as involved

in such recurring activity. Note that in several instances (37 out of 65 imaging

sessions from five mice, see Figure S1G), no recurring pattern was detected.

To identify another group of cells that would display another recurring pattern,

we reiterate this procedure with the previously identified cells removed. After
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reshuffling between active cells independently in each run epoch, i.e., the fluo-

rescence trace is divided in different time interval inside which cells activity is

permuted (e.g., cell 1 gets the activity of cell 5 during the first run epoch and of

cell 3 during the second one, etc.), no recurring activity (at least two sequences

of five cells) was detected which validated our detectionmethod (0 occurrence

out of 1,000 reshufflings).

Sequence Slope Analysis

For each recurring activity pattern, cell activation onset was defined by

the maximum of the first derivative of the smoothed trace (Gaussian filtering,

s = 2s). Onsets displaying a maximal derivative smaller than 5% DF/F.s1

were discarded. Cells were then ordered in a sequence according to their

median onset delay in each run epoch. The sequences that involved at least

half of the cells were linearly fitted using a regression algorithm that ignores

outliers (Matlab function robustfit). The fits displaying a robust root mean

square error exceeding 20% of the duration of the sequence were discarded.

The remaining sequences were used for all quantitative analysis (n = 389 fitted

sequences, 79%of all sequences). This linear fit provided the slope (in cell/s) of

each sequence. To assess whether the dynamics of these sequences de-

pended on run distance, we analyzed the correlation between the slope and

the corresponding median speed. In the case of a statistically significant

correlation (p < 0.05, Spearman, n = 14 out of 28 sessions), a distance unit

DU that links the speed v, the slope S, and the number of cells N could be

defined as follows: DU is the spatial extent of the run distance from the first

to the last cell of the sequence. Such recurring sequences were classified as

distance sequences (DS).

The same analysis was performed in the spatial domain by converting acti-

vation onsets in time to onsets in space using the measured mouse position. A

few sessions (3 out of 28) displayed a significant correlation, which indicated

that run time could also modulate sequence dynamics.

Statistics on Short Pauses within Run Epochs

Short pauses were defined as the periods when the speed was lower than

2 cm/s for more than 500 ms and less than 2 s. To analyze whether the occur-

rence of short pauses affected the dynamics of DS, the distribution of neuronal

activation onsets centered on each pause start was computed. The five ses-

sions that displayed more than ten pauses (n = 3 mice) were kept for further

analysis. In addition, only pauses which roughly occurred in the middle of a

sequence (20%–80% of sequence completion, n = 91 pauses) could be

analyzed, since information was needed about cell activation before and after

the pause. We next used the onset of the last cell before the pause as a refer-

ence to center all sequences on the pause. The temporal slope of the se-

quences was normalized to the average. In that way, the arrangement of the

sequences around the pauses could be pooled across sessions. The evolution

of the normalized temporal slope was measured using a linear fit over a sliding

window of six cells; the 95% confidence interval was calculated using the dis-

tribution of these slopes before the pause (n = 8 slope values, Gaussian

approximation).

Distribution of Speed around DS

In order to reveal a potential link between the animal’s speed and the dynamics

of the DS, speed was normalized across sessions and pooled using a 20 s time

window centered either on the onsets or the offsets of DS. These were calcu-

lated using the median activation onsets of the first or last five cells in the

sequence, respectively. The 95% confidence interval was calculated using

the speed distribution before the pause (from the time when speed plateaus

to pause onset, Gaussian approximation).

Statistical Analysis of Distribution Peaks

In order to assess whether a second peak in an apparently uniform distribu-

tion was significant, tests were performed as follows. First, the distribution

histogram was fitted using an ad hoc uniform function (log-normal in our

case) and a least-squares fit algorithm (lsqcurvefit function in matlab). Sec-

ond, the probability distribution for the value of each bin was calculated by

computing random samples (n = 105 samples) using the fitted distribution.

Third, a significance curve was defined by applying the same percentile to

all bins (equiprobability). The value of the percentile was chosen so that the

probability of having at least one peak bigger than the significance curve

was 5% (see Figure S4). This statistical test was robust against binning

phase and size as long as the peak was not split between two bins (see Fig-

ures S4F–S4H).



Distance Field Calculation

For each cell involved in a ‘‘distance sequence,’’ we detected the onset and

offset of its mean fluorescence transient over all sequences; the onset being

the time when the fluorescence transient reached 10% of its maximum value

and the offset the time when the trace derivative reached its minimum value.

This gave an estimate of the firing duration for each cell; the distance field

was defined as the product of the median speed and the firing duration thus

calculated.
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Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl.

Acad. Sci. USA 104, 347–352.

MacDonald, C.J., Carrow, S., Place, R., and Eichenbaum, H. (2013). Distinct

hippocampal time cell sequences represent odor memories in immobilized

rats. J. Neurosci. 33, 14607–14616.

McNaughton, B.L., Chen, L.L., and Markus, E.J. (1991). ‘‘Dead reckoning,’’

landmark learning, and the sense of direction: a neurophysiological and

computational hypothesis. J. Cogn. Neurosci. 3, 190–202.
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