Dismantlings and iterated clique graphs

M.E. Frías-Armentaa,1, V. Neumann-Larab,2, M.A. Pizañac

aUniversidad de Sonora, División de Ciencias Exactas y Naturales, Depto. de Matemáticas. Blvd. Rosales y Blvd. Luis Ensenas s/n. Hermosillo Sonora, Mexico

bInstituto de Matemáticas, U.N.A.M. Circuito Exterior, C.U. México 04510 D.F. Mexico

cUniversidad Autónoma Metropolitana, Depto. de Ingeniería Eléctrica. Av. San Rafael Atlixco 186, Col. Vicentina, Del Iztapalapa. México 09340 D.F. Mexico

Received 18 June 2002; received in revised form 29 November 2003; accepted 11 December 2003

Dedicated to the memory of our beloved friend Victor Neumann-Lara who passed away on 26 February 2004.

Abstract

Given a graph G and two vertices $x, y \in V(G)$, we say that x is dominated by y if the closed neighbourhood of x is contained in that of y. Here we prove that if x is a dominated vertex, then G and $G - \{x\}$ have the same dynamical behaviour under the iteration of the clique operator.

\textcopyright 2004 Elsevier B.V. All rights reserved.

Keywords: Clique graphs; Iterated clique graphs; Dismantlings; Clique behaviour

1. Introduction and terminology

All our graphs are finite, simple and loopless. We shall identify induced subgraphs with their vertex sets, in particular, we shall write $x \in G$ instead of $x \in V(G)$. Given $x \in G$, the closed neighbourhood $N_G[x]$ of x is the set consisting of x and all its neighbours. Given $x, y \in G$ we say that x is dominated by y (in G) if $N_G[x] \subseteq N_G[y]$. Note that every vertex is dominated by itself, however we say that x is dominated (without specifying who is y) only when x is dominated by a different vertex. Given two graphs G and H we say that G is dismantleable to H if there is a sequence of graphs G_0, G_1, \ldots, G_n satisfying $G = G_0$, $H \cong G_0$, and $G_{i+1} = G_i - \{x_i\}$, where x_i is a dominated vertex of G_i.

A clique of G is a maximal complete subgraph. The clique graph $k(G)$ of G is the intersection graph of all cliques of G: every clique is a vertex, two of them being adjacent if they share at least one vertex. Similarly, $c(G)$ is the intersection graph of all complete subgraphs of G. Clearly, $k(G)$ is an induced subgraph of $c(G)$. We define inductively the \textit{iterated clique graphs} by the formulas $k^0(G) = G$ and $k^{n+1}(G) = k(k^n(G))$. Iterated clique graphs have been studied in several papers, for a large bibliography see [10,11]. It is known (and easy to prove) that a graph G is either k-divergent (i.e. $\lim_{n \to \infty} |k^n(G)| = \infty$) or k-stationary (i.e. $k^n(G) \cong k^m(G)$ for some $n < m$). A special case of a k-stationary graph is a k-null graph: for some n, $k^n(G)$ is isomorphic to the one vertex graph K_1. We say that two graphs G and H have the same k-behaviour if both are k-divergent or both are k-stationary and both are k-null or both are not k-null.

Given two graphs G and H, we say that H is a \textit{retract} of G if there are two weak morphism of graphs (images of adjacent vertices are adjacent or equal) $x: H \to G$ and $\beta: G \to H$ such that $\beta \circ x$ is the identity in H.

E-mail addresses: eduardo@gauss.mat.uso.mx (M.E. Frías-Armenta), neumann@matem.unam.mx (V. Neumann-Lara), map@xanum.uam.mx (M.A. Pizaña).

URL: http://xamanek.izt.uam.mx/map.

1Partially supported by CONACyT, Grants 1-36596-E, 489100-1-010260.

2Partially supported by CONACyT, Grant 400333-5-27968E.
Since whenever G is dismantleable to H, we have that H is a retract of G, Neumann–Lara’s retraction theorem \cite{7,8} tells us that if H is k-divergent then so is G. Also, Prisner proved \cite{9} that if G is dismantleable to K_1 then G is k-null.

Our main Theorem (Theorem 5) states a stronger result: If G is dismantleable to H then G and H have the same k-behaviour. A special kind of dismantlings will play a key rôle in what follows:

Definition 1. Let G and H be graphs, we say that $G \xrightarrow{k} H$ if H is isomorphic to an induced subgraph H_0 of G such that every vertex x in G is dominated by some (not necessarily different) vertex y in H_0.

It is straightforward to verify that $G \xrightarrow{k} H$ implies that G is dismantleable to H. Also G is dismantleable to H iff there is a sequence of graphs satisfying $G \xrightarrow{k} G_0 \xrightarrow{k} G_1 \rightarrow \cdots \rightarrow G_r = H$. Note that $c(G) \xrightarrow{k} k(G)$ for every graph G.

2. Dismantlings and k-behaviour

Lemma 2. Assume H_0 is an induced subgraph of G satisfying that every vertex in G is dominated by some vertex in H_0. Let $Q_1, Q_2 \in k(G)$ (not necessarily different), then $Q_1 \cap Q_2 \neq \emptyset$ iff $Q_1 \cap Q_2 \cap H_0 \neq \emptyset$.

Proof. Take $Q_1, Q_2 \in k(G)$ and $x \in Q_1 \cap Q_2$, as x is dominated by some $y \in H_0$ (possibly $y = x$) it follows that $Q_1 \cup Q_2 \subseteq N_0[x] \subseteq N_0[y]$, therefore $Q_1 \cap Q_2 \cap H_0 \supseteq \{y\} \neq \emptyset$. \(\square\)

Theorem 3. If $G \xrightarrow{k} H$, then $k(G) \xrightarrow{k} k(H)$.

Proof. Let $H_0 \cong H$ be a induced subgraph of G such that every vertex in G is dominated by some vertex in H_0. For each clique $Q \in k(H_0)$ select a fixed clique $f(Q) \in k(G)$ satisfying $Q \subseteq f(Q)$. Obviously $Q = f(Q) \cap H_0$, so we know f to be injective. Now Lemma 2 tells us that $Q_1, Q_2 \in k(H_0)$ are adjacent iff $f(Q_1)$ and $f(Q_2)$ are adjacent (in $k(G)$). It follows that $k(H) \cong k(H_0) \cong f(k(H_0))$, where $f(k(H_0))$ is the subgraph of $k(G)$ induced by $\{f(Q) : Q \in k(H_0)\}$.

Finally, if $Q \in k(G)$ let $Q_0 \in k(H_0)$ satisfying $Q \cap H_0 \subseteq Q_0$. We claim that Q is dominated by $f(Q_0)$. By Lemma 2 for every $Q_i \in k(G)$ we have $Q_i \cap Q \neq \emptyset$ iff $Q_i \cap Q \cap H_0 \neq \emptyset$, but $Q_i \cap Q \cap H_0 \subseteq Q_i \cap Q_0 \subseteq Q_i \cap f(Q_0)$. \(\square\)

Theorem 4. If $G \xrightarrow{k} H$ then $k(G) \rightarrow k^2(G)$.

Proof. Let $\mathcal{Q} = \{Q_1, Q_2, \ldots, Q_r\} \subseteq k^2(G)$. We know by Lemma 2 that $\{Q_1 \cap H_0, \ldots, Q_r \cap H_0\}$ is a set of pairwise intersecting completes of H_0. Then for every clique $\mathcal{Q} \subseteq k^2(G)$ select a fixed clique $f(\mathcal{Q}) \in k(G)$ satisfying $f(\mathcal{Q}) \supseteq \{Q_1 \cap H_0, \ldots, Q_r \cap H_0\}$. We claim that f is an isomorphism onto its image and that every vertex in $k(G)$ is dominated by a vertex in $k^2(G)$.

Let $\mathcal{Q} = \{Q_1, Q_2, \ldots, Q_r\}, \mathcal{P} = \{P_1, P_2, \ldots, P_s\} \subseteq k^2(G)$. If $f(\mathcal{Q}) \neq f(\mathcal{P})$ we have $Q_i \cap H_0 \neq f(\mathcal{P})$ for all $i = 1, \ldots, r$, since $f(\mathcal{P})$ is a clique, we have $Q_i \cap H_0 \cap P_j \neq \emptyset$ for all i and j. Then $Q_i \cap P_j \neq \emptyset$ for all i and j. It follows that $\mathcal{Q} \neq \mathcal{P}$ and therefore f is injective. Obviously f preserves adjacencies. If $f(\mathcal{Q})$ is adjacent to $f(\mathcal{P})$ for some $\mathcal{Q}, \mathcal{P} \subseteq k^2(G)$, let $C_0 \in f(\mathcal{Q}) \cap f(\mathcal{P})$ and let Q_0 be any clique in $k(G)$ containing C_0. Then $Q_0 \in \mathcal{Q} \cap \mathcal{P}$ and therefore \mathcal{Q} and \mathcal{P} are adjacent in $k^2(G)$. Thus f is an isomorphism onto its image.

Now take $\mathcal{Q} = \{C_1, \ldots, C_l\} \subseteq k^2(G)$. Let $\mathcal{Q} \subseteq k^2(G)$ such that $\{Q_1, \ldots, Q_r\} \subseteq \mathcal{Q}$. We claim that $f(\mathcal{Q})$ dominates \mathcal{Q}: If $\mathcal{P} \subseteq k(G)$ is adjacent (or equal!) to \mathcal{Q}, without loss, assume $C_1 \in \mathcal{Q} \cap \mathcal{P}$. Now $Q_i \cap H_0 \in \mathcal{Q} \cap \mathcal{P}$ since every complete of H_0 intersecting C_1 also intersects $Q_i \cap H_0 \supseteq C_1$. It follows that \mathcal{P} is also adjacent to $f(\mathcal{Q})$. \(\square\)

Theorem 5. If G is dismantleable to H, G and H have the same k-behaviour. In particular, if x is a dominated vertex of G, $G \xrightarrow{k} k(H)$ have the same k-behaviour.

Proof. Obviously, we only have to prove this in the case $G \xrightarrow{k} H$.

If H is k-null we have $k^n(G) \xrightarrow{k} k^n(H) \cong K_1$ for some n, but then $k^n(G)$ must be a cone (must have a universal vertex), then $k^{n+2}(G) \cong K_1$. On the other hand, if G is k-null we have $K_1 \cong k^n(G) \xrightarrow{k} k^n(H)$ which implies $k^n(H) \cong K_1$.

If H is k-divergent, then $k^*(G) \overset{\leq}{\to} k^*(H)$ implies $|k^*(G)| \geq |k^*(H)|$ and therefore G is also k-divergent. Now, let us assume H to be k-stationary, hence $k^*(H) \cong k^{n,m}(H)$ for some $n \geq 0, m \geq 1$. Using Theorem 3 we know that $k^{n+m}(G) \overset{\leq}{\to} k^{n+m}(H) \cong k^n(H)$ for all j. Then Theorem 4 gives us $kck^n(H) \overset{\leq}{\to} k^{n+m}(G)$ for all j. Since any finite graph may only be dismantled to a finite number of (non-isomorphic) graphs, it follows that $k^{n+m}(G) \cong k^{n+m+2}(G)$ for some $i < j$. Thus, G is also k-stationary.

If $k^t(G) \cong k^{t+\psi}(G)$ for some minimum $p \geq 1$ and some $t \geq 0$, we say that p is the period of G (we set $p = \infty$ for k-divergent graphs). The previous theorem tells us that the finiteness of p is invariant under dismantlings, we shall show now that p itself is not. Consider the graph R obtained from Fig. 1 identifying the following pairs of vertices: \{a, a'\}, \{b, b'\} and \{c, c'\}.

It has three dominated vertices: u, v and w. The period of R is 3, but $R - \{u\}$ and $R - \{v\}$ have periods 6 and 1 respectively. You may check this either by computer (we used GAP [2]) or by applying the theory of clockwork graphs developed in [4]. Clockwork graphs have been successfully used to construct examples in [6] (see also [5]) and others.

Precursors of clockwork graphs were also used to construct examples in [1,3].

References

