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A Galton-Watson branching tree is sampled, yielding a derived vector process of family sizes. 

Exact and asymptotic distributions for this process are derived, rates of convergence given, and 

the probability of selecting different families is shown to converge rapidly to one. Consistent, 

asymptotically normal nonparametric estimates of the underlying offspring distribution are 

obtained and for power series distributions approximate MLE’s are shown to be asymptotically 

normal and efficient. 

branching process * sampling * inference in stochastic processes * likelihood inference * 

asymptotic theory 

1. introduction 

Consider N distinguishable “individuals” of the same type. These N individuals 

will be taken as the initial ancestors of a (Bienayme) Galton-Watson branching 

tree. That is, each of the N individuals dies but leaves a number of offspring (of 

the same type) in an i.i.d. way. These offspring then constitute the first generation 

of the tree and in an identical fashion generate a second generation and so on. 

A variety of observational patterns may arise in the study of a Galton-Watson 

tree. By far the most studied has been the Galton-Watson process {Z,,, n = 0, 1, . . .}, 

where Z, denotes the total population size at generation n. If the offspring distribu- 

tion is denoted by p( .I l), then it is well-known that {Z,,} is a Markov process with 

transition probabilities P(Z,, = i 1 Z,_, =j) = p( i Ij), where p( * 1 j) is the j-fold convo- 

lution ofp(.)l). 

The problem of estimating the mean, p, and variance, a*, of p( .I l), in a nonpara- 

metric context, has been considered by many authors (cf. Dion and Keiding (1978)). 

Consistent estimates have been provided and with the exception of the unresolved 

question of conditional versus unconditional inference (cf. Feigin and Reiser (1979), 

Sweeting (1986)), most of the problems seem to have been resolved, at least from 

the asymptotic classical view. An interesting and important result in support of this 
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statement, due to Lockhart (1982), is that under the assumption of the existence of 

the third moment of p( .I l), only the first two moments can be consistently estimated. 

The above discussion refers to nonparametric inference about p and c2 based 

on observing the process {Z,}. In this context it is of interest to note that Harris 

(1948) obtained an MLE for p on the basis of (a) observing {Z,,} and (b) maximizing 

a likelihood based on the (unobserved) underlying tree. Dion (1974) and Feigin 

(1977) independently showed that the Harris estimate was identical to an MLE 

obtained from a likelihood based solely on (a). It is clear that complete observation 

of the underlying branching tree leads to consistent estimation of the whole offspring 

distribution. Intermediate situations between observation of the underlying tree and 

recording the total population size Z, seem not to have been considered from a 

statistical point of view. It is the purpose of this paper to provide such an analysis 

in cases based on recording family (i.e. all those individuals having the same parent) 

sizes of individuals selected at random (i.e. uniformly) from the population. In 

particular, we consider incomplete observational schemes which occur when a 

random sample of individuals in a generation or successive ones is taken and their 

family sizes are recorded. Only processes with ~(0 11) = 0 and p > 1 are considered 

(which restricts us to supercritical ones). We derive the exact (when two individuals 

are sampled) and limiting (for ‘not too rapidly’ increasing sample sizes) joint 

distributions of the sampled individuals’ family sizes. In addition, some rates of 

convergence are given and conditions are found under which the probability that 

all sampled individuals belong to different families converges to one. These results 

are then used in order to obtain the asymptotic behaviour of the non-Markovian 

process {X,,}, where X, denotes the family sizes of r, randomly chosen individuals 

from generation n. From this we are then able to present various inference techniques, 

with respect to p(. 11) (’ m a nonparametric context) based on observing the process 

{Xn}. Parametric inference for the case of power series offspring distributions is 

considered. In this case, the ‘MLE’ of n (based on an approximate likelihood) is 

again shown to be consistent and asymptotically normal. In addition, the ‘MLE’ is 

shown to be efficient and a comparison is made with a method of moments type 

estimator. This theoretical comparison is then supplemented via a Monte Carlo 

experiment involving a modified geometric distribution. Also, the asymptotic 

behaviour of certain approximate weighted likelihood procedures is estimated and 

extensions to more general parametric families of offspring distributions are indi- 

cated. 

Finally, it should be noted that our study of randomly sampled branching trees 

is not solely motivated by statistical questions. Indeed, the random selection of 

individuals in an evolving population occurs quite naturally in demography and 

certain biological processes. For example, Joffe and Waugh (1982), in considering 

a kin number problem, have studied the case where a single individual is randomly 

sampled from some generation of a supercritical Galton-Watson tree. They have 

obtained both exact and limiting distributions of the generations sizes in the whole 

family tree of this one particular individual. 
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2. Sampling two individuals in a generation 

Consider a Galton-Watson branching tree starting from N individuals and having 

offspring distribution p( 3 11). Let { Yi”} be i.i.d. random variables with Yy’ denoting 

the number of offspring of the kth individual in generation n. Now pick two 

individuals at random from the nth generation and denote their respective family 

sizes by X’,” and Xi”. We now proceed to calculate the joint distribution of X’,” 

and X!,“. 

We first note that 

P(X’,“= i, X’,” =j) = E[P(Xy’= i, Xf’=jlZ,_,)] 

=C P(X’,“= i, X’,“=j/Z,_, = N)P(Z,_, = N) 

=~P(X:“=i,X~2’=j)P(ZH_,=N). (1) 
N 

In the above Z, denotes the size of the nth generation. 

Now, to evaluate P(Xi” = i, Xc*‘- , -J) we consider the three cases i = j = 1, i fj, 

and i = j > 1. First, note that there are N families in the first generation of sizes 

Y:“, Ya’ ,..., YbN’ respectively. So 

P(Xi”= 1, Xi2’ = 1) = P(two different families of size 1 are selected) 

= T;, P(f amt tes s and d are selected and are of size 1) ‘1’ 

= T;, P(f am1 tes s and f are selected 1 they are of size 1) ‘1’ 

x P(families s and f are of size 1). 

Clearly P(families s and t are of size 1) = p(1) 1)2 while by symmetry 

P(families s and t are selected 1 they are of size 1) 

= P(families 1 and 2 are selected ) they are of size 1) 

and hence 

P(Xi” = 1,2x;“’ = 1) 

x E[P(families 1 and 2 are selectedlthey are of size 1) 1 Yh”, . . . , YbN’] 

(2) 
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Notice, incidentally, that 

E 
2+ yf$'+. . .+ y(N) 0 

2 

7+@‘+. . .+khN’ -l 

2 > 
p( yr’ = @‘) . . . P( yi”’ = @” 

)I 

2kc3)+. . .+.k(N) -’ 

0 0 
2 

p(kb3’I 
1) . . 

.p(kiN’ll) 1 . 

For i # j a similar argument to that which led to (2) yields 

p(i\l)p(jll) E ij z+J+y”; 
1 C( 

. . ..+y$N’ P1 
P(X’,” = i, xi” =j) = 

I. (3) 

When considering the case i =j> 1 we must take into account the possibility of 

both individuals belonging to the same family. The number of ways that this can 

happen is of course N and the probability that the common parent produces i 

offspring is p( i 11). Hence, splitting the expectation into a part corresponding to 

different families and another corresponding to identical ones yields 

P(X$” = j, x’,2’ = j) 

=[(~)~(i,1)']E[i'(Zi+YI:'+2 .*+w-'1 

+Np(i(l)E ; 
[( ‘)(i+Y”)+.- . + y$“’ ~1 

0 

2 > 1, 
(4) 

In order to obtain P(X(,” = i, X’,z’=j) we use (l), which is just 

P(X’,” = i, x ‘,2’zj) = E[P(Xi”= i, Xl’)= j(zh)] 

where 2; z Z,_, is independent of YLk’, n 2 1, along with (2), (3), (4) replacing N 
by Z& This can be equivalently summarized as 

P(X’,“‘= i, x’,” =j) 

2$-z,_, - YVA, - Y,_r(2) 

2 7 i=j=l 

-G, =ijp(ill)p(jllP 2 
K >( 

i+j+Z,- Yjl’l,-- Y$?, -’ 

2 )3 > i#j 

= j'p(i)l)zE z~-' K >( 
+(i)EIZ.,(i+znZy~~l)-‘], i=j>l. 

(5) 
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Of course, as before, each expectation in (5) may be replaced by an infinite sum 

involving only the offspring distribution. 

Now consider the following heuristic approach to the behaviour of (5) for large 

n (or equivalently for large N). It is well-known that Z, grows exponentially so 

that the terms within the first three expectations behave as 

z2,_,z,*+ /.L -2 a.s., as n+co, 

while the last expectation tends to 0. Formally we then have 

P(Xy’=i, Xp’=j)+[ip(ill)][jp(j]l)]/~*, (6) 

so that Xy’, X’,” a re approximately i.i.d. with marginals as found in Joffe and 

Waugh (1982). This informal argument will be made rigorous in the next section. 

We do note, however, that the methods used in determining (5) can be extended 

to the sampling of more than two individuals (at a considerable cost in notational 

complexity). Moreover, the resulting family sizes can still be shown to be asymptoti- 

cally i.i.d. with marginals as in (6); for a rigorous statement and proof see Section 

4. As we shall see, this result is of considerable importance from a statistical 

viewpoint. 

3. The probability of selecting different families 

When sampling r,, > 2 individuals from generation n, we noted that the joint distribu- 

tion of family sizes becomes increasingly complex. This is simply due to the fact 

that we must take into account the possibility of different individuals coming from 

the same family. We are led, therefore, to consider the event 

0, = {all r,, selected individuals belong to different families}. 

In this section we will show that P( D,) + 1 as n + co, the convergence being rapid. 

We also demonstrate similar results if r,, is not necessarily constant but may increase 

‘not too rapidly’ with n. 

Consider first P(D,) with r, = 2. Then 

P(Q) = 1 P(families s and t are selected) 
.P<, 

= P(families 1 and 2 are selected) 

Now, as in the argument leading to (5), condition on Z,,_, to obtain 
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An identical argument also yields the extension 

(7) 

The behaviour of P(D,,) for large n is extremely important. An answer is provided 

by the following result. 

Theorem 1. Let p( * 11) have$nite mean and variance, p and cr2, respectively. Assume 

r:FL-” +O. (8) 

Then, for 0~ a < -ln[E(l/ Y)]/ln[p], where Y-p( * 1 l), we have 

(a) P(D,)+ 1 as n+W, 

(b) panrn2(l-P(D,))+O as n+a. 

We will require the following Lemma in the proof of Theorem 1. 

Lemma 1. For O<a<-ln[E(l/Y)]/ln~, ~LOlnE(l/Z,,)-+O, ~+KI. 

Proof. By using the inequality a, + * . . + ak 3 k(a, . . . ak)‘lk for ai 2 0, i = 1, . . . , k, 

we have 

E[.Z,‘~Z,_,]~Z,‘,{E[ Y- ““~-~~z,_,]}“~~-~~Z,1,E(l/ Y), 

for Y -p( * 11) independent of Z,, Z,_, . Hence 

E(/_?‘Z,‘) G E(p “‘“P1’Z,‘,)/_PE(l/ Y), 

and so by iteration, 

E(p”“Z,‘) s E(~~Z;‘)[~~E(l/ Y)]“-‘+ 0. 

This last statement is a consequence of 

OGCX<-[lnE(l/Y)]/ln~ implies ~~E(l/Y)cl. 

Proof of Theorem 1. Consider first the case where p( . 11) is of bounded support, 

say {k, , kI + 1, . . . , k2}. Now, for degenerate p(. 11) it is easily shown that the 

probability of selecting r, different families of size k when p( k ) 1) = 1 is greater 

than the probability of selecting r,, different families of size k + 1 when p( k + 111) = 1. 

Therefore 

(Notice that the LHS of (9) is simply the probability of selecting r,, different families 

from the first generation when the initial population size is Z,,_, and the offspring 
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distribution degenerates at k2. A similar interpretation holds for the third term of 

(9).) Now 

so that I$P” + 0 implies ri/Z,, ti 0 and since 

k2 ( z;“l)( k2;-1)-’ 3 kk(Z,_, -r,, + 1)r~~(k2Zn_1)pr,~ 

= { 1 - (r, - l)/z”_,}r~I 

2 1 - r,(m - 1)/Z,_, 

we have 

Now use (9) to get P(D, (Z,_,) + 1 a.s. and the Dominated Convergence Theorem 

to conclude that P(D,) = E[P(D,, (Z,_,)]- 1. 

For the case of offspring distributions of (possibly) unbounded support consider 

the event 

G,, ={ Y’,“s Zn_,, . . . , Y’,Z~~~I’S Z,_,}. 

If we denote the second moment of p( . 11) by p2 then 

P(G,IZ,_1)~(1-~2Z,21)z”~1-,l a.s. 

so that P(G,,)+ 1. 

Now, 

Using F,, = (z;,:,rl)(z;l,;l))‘, we have 

~Unn~,“[l-P(D,)J~~uan~~2{l-E[Z~~~F,]}+~=nr,2{E[ZZ’,F~]E(~2Z,~~)} 

s panr;2{E[ 1 - Z>-,F,,] + E[pZZ;il]} 

qPanr;2{E[(r,-l)2Z,!1(l-(r~-l)2Z;’,)]+E[~2Z,~,]} 

s pcL”“r,2{E[r’,Z,!,]+ E[p2Z,!,]} 

+O (10) 
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by Lemma 1 thus proving (b). To see (a) we note from (10) that 

l-P(D,)~E[r2,2,1,]+E[~.,Z,1,] 

=(~‘~cL~“)cL”E(Z,‘,)+E(CL~Z~~~) 

+O, 

again by Lemma 1 (along with (8)). This completes the proof of Theorem 1. 

4. Asymptotic behaviour of family sizes 

In the previous section we saw that the probability of picking r,, different families 

rapidly approaches one, exponentially fast for constant r,,. This suggests approximat- 

ing the distribution of X, = (X’,“, . . . , X(nr,,‘)’ by the joint distribution of X,, and I,,,, 

where I,,,, denotes the indicator function of the event of selecting r,, different families. 

Thus, arguing along the lines of the derivations of Section 2 we see that 

P(X, = i,, ID,, = 1) 

= jfi, ig’p(i$‘)l) E 
] (11) 

where i: = (ic’, . . . , i’,‘,“) and l’= (1, . . . , 1). 

Set tL,,=(ti,... , t,,) and denote the characteristic function of X,, by c,(t,,). In 

addition, let c(rr,) denote the characteristic function of r, i.i.d. random variables 

each having probability function ip( i 11)/p. The main result of this section deals 

with the convergence of c, to c and is given in the following Theorem. 

Theorem 2. Under the assumptions of Theorem 1, 

lim IG(~,,,) - c(c,)l = 0. 
n+m 

Remarks. From Theorem 2 we see that any fixed subset of r, say, coordinates of X,, 

are asymptotically i.i.d. with marginal probability functions ip( i ) 1)/p. Moreover, 

since all r.v.‘s are positive integer valued the corresponding probability functions 

converge. A rate of convergence of these probability functions is given in 

Theorem 3. 

Proof of Theorem 2. We have c,(t,,,) = E[exp{it:,aX,}] while 

c(il,) = E[~-‘,~Y~?, . * . Y’,:! exp{it:,,Y,_,}], 

where YL-, = (Yjl’l,, . . . , Yt:\). We now approximate c,(t,,,) by c”,(t,,) defined by 

c%.) = El&,,, expW,,XJl. 
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(Recall that P( D,,) = 1 so that ID,, will ‘usually’ equal 1.) Using (1 l), a straightforward 

calculation yields 

Now consider 

~~~lc”(t,,)-c(t,,)l~ ~~~lc~(l,,)-c~(t,,,)l+~_m_lc~(l,,~)-c(t,,~)l. 

The first term in the RHS is simply 

!i_m,lE[(l -IQ,) expIiC,,XJll~ i-m < im E(l-I,,,)=!$;[l-P(D,)]=O, 

while the second term is 

where we have used 

and the Pj are the C,, r.v.‘s of the form Y’nil’, Y$‘I . . . Yi”;‘. We will show that 

( CJ_L~~~)-’ C,?:, P, 5 1 and 

and therefore that their product converges to zero in probability. Denote the product 

by V,,, and define A, to be the event A, = {I V,l > E}. Now, 

Also, 

E(V,)=P(A,)E(V,(A,)+P(A~)E(V,IA’,) 

l+(Cn/~‘~)-r 3 Pj &P(Az) 
j=l 1 

Since E is arbitrary, we have E ( V,,) + 0 as n + KL 
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To show that (C,p”‘))’ I,‘_, Pj s 1 we calculate its expected value and variance 

to be 1 and 

respectively. It is easily verified that both terms in the variance go 

Finally, to show that 

notice that 

to zero. 

The first term on the right-hand side can be expressed as 

Clearly the quantity in absolute values a”i 0 if rz/Zn_l % 0. Thus it remains 

to show that 

I(+)“-11’0. 
Now, 

al-Var 
( > 

2 {l-(l+E)-“‘~~]~2 
n 1 

=l-~E(z~‘,(l-(l+p~~}-‘) 

Using a Taylor series expansion, we find that 

Z,_,{l -(l+e)-“‘~}‘=Zn_,~*r~*[l - e/2(1+ r~1)(l+z)-(1”~‘+2)]2 
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where ]z] < 1~1. Clearly this is bounded below by E’[ 1 - e/2( 1 + z))‘]’ and converges 

almost surely to 0 if rz/Z,_, a.S. 0. Thus 

and this completes the proof. 

Theorem 3. Assume the conditions of Theorem 1 hold. Then, for any jxed subset of 

r coordinates of X,,, X’,“, . . . , X’,“, say, and any a E [0, -In[E( I/ Y)]/ln p), we have 

lim q 
n-r rn { 

r iipo 
P(X’,” = i, . . . , Xc’ = i,) - fl 

j=l P I 

=o, 

Proof. Consider the case where r = 1 and notice that 

!!$T @(iI 1) p(X’,” = i) _- 

r, 1 P I 
xc 

2 { 
p(X’,“= i)-p(X’,“= i, In,, = 1) 1 

+E P(Xf'= i, ID,1 
r’, i 

= ,)_ip(ill) 
- 

I p . 
(12) 

it 

Since the first term in (12) is greater than or equal to zero and <p”.““r,‘{ 1 - P( D,,)}, 

converges to zero by Theorem 1. 

Consider the second term in (12). Summing over all i we have 

Thus, if we can show that (p”“/rt){P(Xy’ = i, ID,, = 1) - ip(il 1)/p} has the same 

limit for all values of i, then this limit must be zero. 

Let 

u,; = i+z$J’ y(jJ n , and b,,i = E Yy!, . ’ ’ 
;=2 ( 

Yj:..:(z;y)( y’). 

We need to show that (pLna/r~){bn,l - b,,i+,} + 0. Now, 

p”narn2{b,,i - b,,i+,} =q E Yk2?, . . 
r, ( 
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where CL = (z;,;~yl ) and the Pl,‘s are products of the form Y!,?, * * * Y’,?,. (Note: 

none of them includes Yy?r.) We can write 

S pnaril( U,,O- r, + 1)-l. 

_ By Lemma 1, the expected value of this last r.v. -+O. Thus, we have ~nar~2{b,,i - 

b,i+,}+ 0 and consequently ~“ar~2{b,,i -~-1} has the same limit for all i. 

This completes the proof for r = 1. The proof for r 3 2 is similar to that given for 

r = 1 and is omitted. 

5. Sampling from consecutive generations 

A more complete picture of the underlying branching tree is obtained when family 

sizes of individuals, selected at random in each of T+ 1 consecutive generations, 

are recorded. In an obvious notation, this yields data X,,, . . . , XntT of sizes 

r,, . . . , r n+T respectively. In this section we will state conditions under which for 

large n X,, . . . , X,,, are ‘approximately independent’ with ‘asymptotically i.i.d.’ 

components. As before these results will be seen to hold when r,, increases ‘not too 

rapidly’ and also, under conditions, for certain increasing T,,. As the techniques 

used in providing the following theorems are similar to those used in previous 

sections, we shall simply provide the proof of the first and state the others. For 

convenience, set 

XL,, = (XL, . . . , xl+,), cl,, = (C,,, . . . , ‘:,,+,h 

where t:,, = (t,, . . . , t,,,), t:,,,, = (t,,,, , . . . , tr,,+r,,+,), etc. . . . , and denote the event of 

selecting r, + r,,,, +. * . + r,,+= different families by D,,. 

Theorem 4. Under the assumptions of Theorem 1, 
(a) P(D,,,)+ 1 as n +cO. 

(b) P a(n+T)r~:T[l -P(D,,)]+O, for any 0s a <-ln[E(l/ Y)]/ln p. 
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Proof of Theorem 4. Since Dn,T. = n:znT 4, 

l-E(D,,)C i [l-p(Dn+j)l+o as n+oo, 
J=o 

by Theorem 1. Also 

O==/_L ++‘)r&[ 1 - P( Dn,r)] 

again as a consequence of Theorem 1. This completes the proof. 

Theorem 5. Under the assumptions of Theorem 1 we have: 

(4 Ic,,r(G,r) - c(G,r)I + 0 as n + 00. 
(b) For anyjxed r and 0~ a < -ln[E(l/ Y)]/ln p 

P a(n+r’)ri:T. P(X’,“=i,,...,X’,“=i,)- fi i,p(i,ll)p-’ +O 
j=I 

where c,,r denotes the characteristic function of X,,, while c is the characteristic function 

of r,+r,+,+. . .+r,+r i.i.d. random variables with probability function ip( i) 1)/p. 

Theorem 6. Under the assumptions of Theorem 1 we have: 

(a) P(D,,)+ 1 i+ for some a < -ln[E(l/ Y)]/ln p, 

n+T, 
j;n rTt_-“’ -f 0. 

(b) Fa”T;‘rz2[1 -P(D,,,)]+O, for all 0~ a < -[ln E(l/ Y)]/ln p. 

Results concerning the limiting behaviour of X,,7;, are derived as before. For 

instance, Theorem 6 may be used to show that 

Ic”,_r,(~n,7,,)-c(fn,~,,,)l~0 (13) 

and that for any fixed subset of r coordinates of Xn,-r., Theorem 5(b) holds with rate 

of convergence n”ln( T,ri))‘. In the case where sample sizes remain constant from 

the nth generation to the (n + T,,)th, this can, of course, be strengthened to n”“r,‘. 

Now the following two conditions play a key role in the development of our 

statistical results. 

Condition (A): r’,tL” + 0, as n + 03. 

Condition (B): For some a < -ln[E(l/ Y)]/ln(p), Y g YLk’, Ci”=‘,lV rT/paj+O, as 

n+co. 

Recall, since Z,,/ NW” a.S. W ? 0, that (A) is equivalent to rz/Z,, a.S. 0. Moreover, 

since cy > 1 

SO that (B) implies (A). The following three lemmas will be used repeatedly. 
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Lemma 2. Condition (B) implies P( Dn,T,,) + 1 while Condition (A) implies P( D,) + 1. 

Lemma 3. 

where Yn-,,T,, = (Yk-,, . . . , YL_I+T,,) and Y,, = (Y’,“, . . . , Yjlr,z’)‘. Moreover, if we take 
x m,7,, to be an R, x 1 random vector consisting of i.i.d. p(i) r.v.‘s, then 

Lemma 4. Condition (B) implies 

(14) 

while Condition (A) implies (14) with T,, = 0. 

A proof of Lemma 2 is identical to that of Theorem 4(a) (see also Theorem 6(a)). 

The first part of Lemma 3 follows on considering the joint distribution of I(D,.,) 

and Xn,~, while the second assertion is a consequence of the relationships p(i) = 
ip(ill)/p. Of course this lemma holds only for those g’s for which the relevant 

expectations exist. Finally, we note that the proof of (14) in Lemma 4 is contained 

in the proof of Theorem 2. The extension to T,, > 0 follows along similar lines. 

6. Asymptotic method of moments estimates 

Suppose that our partially observed Galton-Watson tree {Xn} yields X,,T,,. Then 

under assumption (B) we may approximate the distribution of X,,-r, by that of 

R,=r,+. . *+r,,+,, i.i.d. random variables having probability function p(i) = 
ip(i 11)/p. If X -p(i) then 

E(lIX) = I/P, E[Z({X=i})]=p(i) 

which suggests the ‘approximate’ moment estimators 

i 0 - ~ AM =*,gl CX~~J’, PI,4idj) = $ $ Z({X!$,, = i)) 
n, 1 

where X$, is the jth component of X”,T,,. Now set FAM = (i/p)i& and take 

~A~(~II)=~~MPI~M(~)I~. 
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The following theorem then demonstrates the asymptotic normality (“) of these 

estimators. 

Theorem 7. Under conditions (A) and (B), the following hold: 

(a) (l/iLM, PIAM (i))’ a N((l/p,p(i))‘, R,‘I) where 

I 4X 
2= 

( > :-b p(i) 

( ) I :-d p(i) p(i)(l -p(i)) 

cff:,, = Var(l/X), where X-p(i)), 

(b) b z N(/J., R,‘P~&), 

(c) P^(i I IlAM rt NMil I), &lR,), where 

Proof of Theorem 7. Results (b) and (c) follow directly, after some calculation, 

from (a) using the (well-known) method of “statistical differentials”. To show (a) A 
we employ the Cram&-Wold technique and consider the linear combination p given 

by 

$ = cIIKAM + GAM(i) 

where c,, c2 E R. If the Xl;” were i.i.d. X -p(i) then p^ would have variance ai/ R, 

where 

u’p = c:crf,,+ czp(i)(l -p(i))+2c,c2 

Set p = c,/p+c2(i) and V,, =(p*-/3)/(up/a). We now show V,, A N(0, l), 

V(c, , c2) # (0,O) which is sufficient to demonstrate (a). Thus let g be a bounded (by 

1, say) continuous function and Z - N(0, 1). It suffices to show E(g( V,,))+ E(g(Z)). 

Consider then 

l~[g(V,~-g(Z)lJ~I~[(1-~(~,,,))(g(V,)-g(Z))ll 

l tlE[~(~,,)(g(V,)-g(Z))ll 

~2[1-P(D,,,~)l+IE[~(~,~,~)(g(V,)-g(Z))l~. 

Now P(D,,,,,) + 1 while 

E[~(Q,,~MZ)l= E[~(R,,)lE[dZ)l 

= P(Dn,T,,)EMZ)l+ EMZ)l. 
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Write V,, = V,,(Xn,-r,,). Then by Lemma 3 

Using Lemma 3 and the Central Limit Theorem we obtain 

E ppR,~ 
1 [ 

“?I I! Yj+g(v.(Y.-,,,;> j=n k=l 
HI] = Ek(V,(&,a))l-, &G-H. 

On the other hand Lemma 4 yields 

Piecing everything back together then yields the desired result IE[g( v,,) - g(Z)1 + 0. 

Note, incidentally, that one consequence of Theorem 7 is the weak consistency 

(G) of GAM, ~AM(I’Il), and PIAM( In fact, it can be shown that the latter two 

estimates are uniformly (in i) weakly consistent. 

7. Approximate likelihood estimation 

In the classical i.i.d. case, it is well-known that method of moments estimates need 

not be asymptotically efficient (in the sense of attaining the Cramer-Rao bound in 

their limiting normal distributions), while maximum likelihood estimates usually 

are (under suitable regularity conditions). Since the process of family sizes {X,,} 

behaves asymptotically in an i.i.d. fashion, one may expect similar results to hold 

here. Indeed, despite having to base our methods on approximate likelihood, we 

shall, in this section, see that analogous results continue to hold for incompletely 

observed branching trees having power series offspring distributions. The case of 

more general parametric families of offspring distributions is discussed briefly in 

our concluding section. 
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Consider offspring distributions with probability functions 

P(kll)=S, n-1,2,... 

where 8 > 0. The constants ak 3 0 are assumed known while 

A(B)= f ekak, 
k=l 

so that A(e), A’(e), A”(e) > 0. Notice that the existence of the rth moment of p( .Il) 
implies the existence of A”‘(e) as well as ensuring A”‘(e) > 0. The offspring mean 

p may be expressed as 

P = 8; [A(e)1 

which implies a one-to-one relationship between p and 8. Thus, as is well-known, 

the power series family (with finite first moment) may also be parametrized by its 

mean. Now, since p(i) = ip( i [1)/p we find that the asymptotic family size distribu- 

tion is also in the power series class and is given by 

@iai p(i) _ 

eA'(e) 
i=l,2,.... 

Consider now the approximate likelihood LA(e) obtained by assuming X,,-r,, to 

consist of random variables which are i.i.d. p(i). This yields 

where the arbitrary positive constant of proportionality does not involve f3 (but may 

depend on X,,,r,,), and 

n+r ‘, 
s, = c n 2 Xj? 

j=n k=l 

The approximate score function is therefore 

A”(B) 1 
&lnL,(e)=-R,- +-(S,-R,). 

Aye) 8 

The score equation 

is equivalent to 

S 
_A= e- 

RI 
A”(e)+ 1 
A’(B) * 

(15) 
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Now, it is easily shown that the derivative of the RHS of (15) is >O, for every f3 > 0, 

while 

e A”(e) _ 
A’(e) 

f k(k+l)aktlOk 
k=O 

,;1, (k+ l)%+#k 
> 

so that (15) has a unique solution, say h(S,/R,). Moreover, since LA( 0) --, 0 as 

either 8 + cc or 0&O we can conclude that LA( 0) is unimodal with a maximum 

occurring at 

Note that h is simply the inverse function of (t3A”(O)/A”(O))+ 1, while S,/R, is 

the average of all R, observations. For convenience set X = S,/R,. We have the 

following result. 

Lemma 5, Under either con&tion (A) or (B) and assuming a power series o&spring 

distribution with jinite second moment 

x ” NL, d/R,) 

where px = E(X), a:=Var(X), X-p(i). 

Using the mean value theorem, the above lemma, the equation 6AAML = h(X) then 

yields the following theorem. 

Theorem 8. Under the conditions of Lemma 2, 

Proof of Lemma 5. Proceeding as in the proof of Theorem 7, we select a bounded 

(by 1) continuous function g and show that E[g(Z,(X,,,,)) -g(Z)]+ 0, where 

and Z - N(0, 1). As before 

I~[(1-z(~,,,))(g(Z,(~~,,~))-g(Z))11~2P(~’,.~~,)~0, 

while ECI(Q,,T,,)g(Z)l + E[g(Z)l. N ow we use the Central Limit Theorem and 
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Lemmas 3 and 4 to obtain (after some simplification), 

from which we conclude E[g(Z,,(X,,, T,,))]+ E(g(Z)). 

At this point we are in a position to compare the asymptotic distributions of 

estimates of p based on the approximate likelihood and moment procedures. Indeed, 

the offspring mean p is related to 0 via 

which is easily seen to be one-to-one and continuous. The approximate MLE of p 

is therefore 

?. 
pAML= P(eAh4L) ” Nb-4 rP’(~)~‘(Pu,)12/K), 

this last result again following from the method of statistical differentials. Now 

notice that the Fisher information about 0 contained in a sample of R, i.i.d. 

p(i) = ia,8”/A’(B) random variables is precisely 

R,/&‘(PJI~, 

and this is the reciprocal of the asymptotic variance of iA,,,. In terms of h the 

Fisher information is 

W&O)UPU,)~~. 

Applying the method of moments to this i.i.d. sample yields 

&I, - N(& K’P’(~)-~P(~)~&) 

so that 

A 

from which we conclude that OAML is asymptotically efficient relative to e^,,,. 

Hence EAML is asymptotically efficient relative to bAMM. A measure of the relative 

efficiency of fiAMM to GAML is the ratio 

where we have used the result bAMM a N(p, p’cr:,,/R,) given in Theorem 7. 
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We know, from the preceding arguments, that 0 s e( 0) < 1. This inequality is not 

of course strict and there are cases where both gAM,_ and bAMM are equally efficient 

for all 0 > 0. For example, suppose the offspring distribution is the shifted Bernoulli 

p(i11)=0’[0(1+f3)]-‘, i=l,2. 

Then both bAMr_ and kAMM have asymptotic variance 

f3(1 +20)2 

2(1+ e)4R, 

so that e( t9) = 1. On the other hand, for the shifted geometric 

p(ill)=fY’ !-$ , 
( 1 

i = 1,2,3, . . . , 

[(i - e)-‘(1 - e)2/2]2[2e(i - e)-‘1 

e(B)=[(i - 0)-~]“[-(i-e)~(e-‘i0g(i -e)+l)] 

= [2(3+ e/3+ P/4+. . .)I-‘, 

which varies continuously from 0 (0 = 1) to 1 (0 =O). In this case a Monte Carlo 

experiment was conducted in order to compare kAML and cAMM from a different 

perspective. A Galton-Watson process was started from 10 ancestors. The shifted 

geometric offspring distribution had t3 = 0.25 and hence p= 413. A sample of 

rj = r = 5 individuals was taken from each of the first 10 generations and fiAML, 

fiAMM were calculated from the data at each generation (thus q = 0). This procedure 

was replicated 402 times. Two measures of the error made in approximating the 

exact distributions of GAML and fiAMM may be obtained via the Central Limit 

Theorem and the known asymptotic distribution of the Kolmogrov-Smirnov statistic 

(cf. Serfling (1980, p. 62)). These yield 

and 

P(Jfi/&) - FG(X)\ < 0.04) = 0.90 (16) 

P(sup]&x) - F;(x)\ s 0.06) = 0.90, 
X (17) 

respectively. The bounds in (16) and (17) apply to both EAML and kAMM and refer 

to errors obtained through use of a finite (402) number of replications. The “=” 

results from use of asymptotic approximations to the distributions involving the 

empirical distribution function. To obtain tighter bounds in (16) and (17) a larger 

number of replications would be necessary. For example to reduce 0.04 to 0.01 in 

(17) requires about 1700 replications, while a further reduction to 0.001 necessitates 

169 000. For a bound of 0.01 in (4) we would require 15 000 replications and a 0.001 

bound would result through the use of about 1.5 million! The results of the experiment 

are summarized in Table 1. A corresponding summary for a similar Monte Carlo 

study with rl=7, r,=ll, r,o= 16 is provided in Table 2. These results point to a 

better performance of kAML over cAMM-from the point of view of lower observed 
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Table 1 

Estimated properties of the distributions of b,,,, and &,,, based on 402 replications. True mean = +, 

u,,(b,,,)=O.2108, a,,(fi,,,)=O.2315 

Gen. Mean Standard deviation Skewness Kurtosis 

MME MLE MME MLE MME MLE MME MLE 

1 1.3941 1.3184 0.3499 0.2571 1.8335 1.2658 5.7304 1.9683 

2 1.3512 1.2925 0.3036 0.2235 1.4717 0.8499 3.1380 0.7203 

3 1.3357 1.3107 0.3022 0.2537 1.5365 1.4585 3.8079 3.1734 

4 1.4029 1.3396 0.3211 0.2387 1.3983 1.2279 2.4807 2.4345 

5 1.3911 1.3326 0.3356 0.2464 1.8983 1.2715 5.0919 2.0410 

6 1.3996 1.3368 0.3338 0.2461 1.7614 1.0086 5.5897 1.3621 

7 1.3705 1.3264 0.2734 0.2233 1.5067 1.2796 4.1876 2.8340 

8 1.3711 1.3204 0.2907 0.2181 1.6374 0.9236 3.9523 1.0090 

9 1.4179 1.3517 0.3061 0.2192 1.5023 0.6845 4.0772 0.2784 

10 1.3699 1.3281 0.2502 0.2040 1.0512 0.6672 1.8259 0.4260 

Table 2 

Gen. MME 

Mean Standard Asymptotic Skewness Kurtosis 

deviation standard deviation 

1 1.3794 0.3186 0.1957 1.5439 3.4435 

5 1.3534 0.1992 0.1561 1.2670 3.065 1 

10 1.3453 0.1585 0.1294 0.5477 0.0204 

Gen. MLE 

Mean Standard Asymptotic Skewness Kurtosis 

deviation standard deviation 

1 1.3102 0.2419 0.1782 1.1862 1.6166 

5 1.3236 0.1740 0.1421 1.1126 2.3907 

10 1.3261 0.1414 0.1179 0.5630 0.3259 

mean square error and in the adequacy of the normal approximation to their 

respective distributions. 

8. Conclusion 

This article has provided some techniques for estimating offspring parameters on 

the basis of a sampled branching tree {X,,}. While the emphasis has been on 

estimation other modes of inference can be developed. For example, from a likeli- 

hood point of view, and for power series offspring distributions, conditions (A)/(B) 
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yield 

L(LlL+ r&n,) p -,2/z 

Lt(LlL) -e ’ 

where c?i2= -(d2/do2) In L,I,qj~,,, . If a weighted likelihood procedure is to be 

employed then for continuous strictly positive weight functions w(0) satisfying 

5 w(o)L,(B) d0<oo we have 

The results can be demonstrated as in Fraser and McDunnough (1984). 

While the discussion of the asymptotic distribution of e^,,, has taken place in 

the context of power offspring distributions, the results extend readily to more 

general parametric families sharing the property that LA(e) be unimodal. Indeed, 

since 

=0 

when 0 = B0 (where X -peO(i)) and it can be shown, as in the proof of Theorem 7 

that under (A)/(B) 

j$-;lnL,(B):E 
n ( 

-&lnp&X) 
> 

we obtain 

Thus follows from the unimodality of LA(o) and the fact that E((d/dB) In pa(X)) 

is strictly decreasing in a neighborhood of 0 = IV,,. Hence the usual differential 

method yields 

Ll-~) d = -$ln(L,( 0)) 
I 

2 ln(L,(B)). 

Now apply the method of proof found in Theorem 7 again to get (under (A)/(B)) 

and 

))+-E $lnp,(X) 
( >i ( 

= Var -$lnp,(X) 
>I 

PI 

so that 

: N 0 Var LL Inp,(X) ( , (do 
>> 

JKl&ML. -0):N 0,Var glnp,(X) 
( ( >I 

. 
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That is, 

Notice that R,[Var((d/dB) In p,,(X))]-’ is the Fisher information about 0 contained 

in a sample of R,, i.i.d. X’s. 

Finally, we mention an unresolved question. This article has dealt with some 

exact and approximate distributions of the non-Markovian process {X,,}, where X, 

represents the family sizes of r,, individuals selected at random in the nth generation 

of a Galton-Watson branching tree. Our results indicate that the process behaves, 

asymptotically as a sequence of independent random vectors with i.i.d. components 

(provided r,, increases moderately). This suggests that the offspring distribution may 

be completely estimated from {X,,}. In addition complete estimation of the offspring 

distribution could possibly be achieved by only recording {X:1}, where XL1 is 

simply the total size of all families corresponding to the r, selected individuals from 

the nth generation. Since we found XL1 to be approximately independent, with 

XL1 approximately distributed as an r,-fold convolution of the distribution 

ip(i 11)/p, it would appear likely that the offspring distribution could still be 

completely estimated from even this more limited information provided r,, increasing 

exponentially on the order of 2, brings only the first two moments of the offspring 

distribution can be estimated consistently. The authors (Maki and McDunnough 

(1989)) have investigated this matter, as well as related questions arising from an 

incomplete observation of a random walk (cf. Guttorp and Siegel (1985)). 
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