
Labelled Markov Processes as Generalised

Stochastic Relations

Michael Mislovea,1 , Dusko Pavlovic c,2 and James Worrellb

a Tulane University, Department of Mathematics, New Orleans, USA

b Computing Laboratory, University of Oxford, UK
c Kestrel Institute, Palo Alto, USA

Abstract

Labelled Markov processes (LMPs) are labelled transition systems in which each transition has an associated
probability. In this paper we present a universal LMP as the spectrum of a commutative C∗-algebra
consisting of formal linear combinations of labelled trees. This yields a simple trace-tree semantics for LMPs
that is fully abstract with respect to probabilistic bisimilarity. We also consider LMPs with distinguished
entry and exit points as stateful stochastic relations. This allows us to define a category GSRel of generalized
stochastic relations, which has measurable spaces as objects and LMPs as morphisms. Our main result in
this context is to provide a predicate-transformer duality for GSRel that generalises Kozen’s duality for the
category SRel of stochastic relations.

Keywords: Labelled Markov process, (Generalized) Stochastic relation, Probabilistic bisimulation, Stone
duality, C∗-algebra, Comonad.

1 Introduction

Probabilistic models are important for capturing quantitative aspects of process

behaviour, such as performance and reliability, e.g., the average response time to

a given action, or the probability with which a failure occurs. For this reason

there has been extensive research into adapting the concepts and results of classical

concurrency theory to the probabilistic case. In particular, the notion of bisimilar-

ity has been adapted to probabilistic systems [17,9,16], and its equational theory

investigated in [22,4] among many others.

This paper is concerned with the semantics of certain probabilistic labelled tran-

sition systems, called labelled Markov processes (or LMPs) [9,11,7]. These can be

1 Supported by the Office of Naval Research, grant No. N000149910150 and the National Science Founda-
tion, grant No. CCR-0208743.
2 Supported by the EHS and SGER programs of the National Science Foundation, under contract No.
CCR-0209-004 and CCR-0345-397.

Electronic Notes in Theoretical Computer Science 172 (2007) 459–478
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.02.015
1571-0661 © 2007 Elsevier B.V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82424936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

seen as coalgebras of an endofunctor X �→ M(Act × X) on the category Mes of

measurable spaces, where Act is a set of actions and M(Act × X) is the space of

all subprobability measures on Act × X. The coalgebra homomorphisms yield a

natural notion of maps between LMPs, called zig-zag maps in [9].

Our first contribution is to construct a universal LMP. The universal property

here is finality: we construct an LMP that is final in the category of LMPs and zig-

zag maps. Such a universal LMP has previously been constructed as the solution

of a domain equation [11,7]. Here we exploit Stone duality for real commutative

C∗-algebras to characterise the universal LMP as the spectrum of a C∗-algebra

generated by a class of trace trees. These trace trees are closely related to the

tests introduced by Larsen and Skou [17] in their paper characterising bisimilarity

as a testing equivalence. A trace tree is essentially a finite Act-labelled tree, that

is, a trace with branching. Adding algebraic and order-theoretic structure trans-

forms the set of trace trees into a preordered, commutative ring, which can then

be completed relative to a natural semi-norm into a commutative C∗-algebra. The

spectrum of this C∗-algebra forms the state space of the universal LMP. An im-

portant consequence of this characterisation—one of our main results—is that two

LMPs are bisimilar iff they have the same probability of performing each trace tree.

A second contribution of this paper involves generalising the notion of labelled

Markov process to accommodate interfaces. We do this by specifying for each

LMP a measurable space of entry points and a measurable space of exit points. A

similar extension of labelled transition systems occurs in the work of Bloom and

Esik [6] in the context of iteration theories, and in the notion of charts, introduced

by Milner [18]. Thus we obtain a category GSRel whose objects are measurable

spaces and in which a morphism X → Y is an LMP with entry points X and

exit points Y ; i.e., a mapping X + S → M(Y + (Act × S)) in the category of

measurable spaces. (Thus GSRel should not be confused with the category of LMPs

and zig-zag maps, in which LMPs are the objects.) GSRel includes the category

SRel of stochastic relations [3,20] as a subcategory: stochastic relations can be seen

as stateless LMPs. Our main result in this context is to characterise the dual of

GSRel as the co-Kleisli category of certain comonad in the category of ordered rings.

Our duality for GSRel extends Kozen’s [14] duality for SRel. According to

the latter, the dual of a stochastic relation X → Y is a monotone linear map

B(Y) → B(X), where B(X) denotes the ordered vector space of bounded real-

valued measurable functions on X with the pointwise order. In fact, a stochas-

tic relation X → Y is a measurable map μ : X → M(Y), and the dual map

μ̂ : B(Y) → B(X) is defined by μ̂(f)(x) =
∫
Y

f dμx.

Kozen’s duality underlies a predicate-transformer semantics for an imperative

programming language with probabilistic choice. In this view predicates are mea-

surable functions on the set of exit points. However our development is in the

context of interactive processes rather than imperative programs. Correspondingly,

our class of predicates is richer than Kozen’s. Given an LMP with set of exit points

Y , the relevant predicates are trace trees whose leaves are labelled by elements of

B(Y). These trace trees generate a preordered ring that we call T B(Y). Then the

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478460

Morphism Dual

SRel X → M(Y) B(Y) → B(X)

[monotone linear map]

GSRel X + S −→ M(Y + (Act × S)) T B(Y) → B(X)

[monotone ring map]

Fig. 1. Dualities for SRel and GSRel.

dual of an LMP S : X → Y is a monotone ring map T B(Y) → B(X). We show

also that T is a comonad on the category of preordered rings, so that the dual of an

LMP is a map in the co-Kleisli category of T . We further show that composition

of LMPs corresponds to co-Kleisli composition on the dual side.

The situation is summarised in Figure 1 which shows that the addition of state

to stochastic relations corresponds to adding a comonad on the dual side. It is

also noteworthy that for SRel the dual maps preserve addition in B(Y), whereas for

GSRel the dual maps preserve both addition and multiplication in T B(Y). There is

no contradiction here; while T B(Y) is in some sense generated by B(Y), only the

additive structure of B(Y) is preserved in T B(Y). Thus every monotone additive

map B(Y) → B(X) extends to a monotone ring map T B(Y) → B(X). However the

multiplicative structure of T B(Y) plays an important role. Intuitively it reflects the

fact that we consider LMPs modulo bisimilarity, and bisimilarity is a branching-time

equivalence.

Simplified versions of the results in this paper were first described in the extended

abstract [19].

2 Labelled Markov Processes

In this section we formally define the class of probabilistic transition systems that

we study in this paper: labelled Markov processes (LMPs). Our notion of LMP

extends that of [9] by specifying sets of entry and exit points. This extension allows

us to define composition of LMPs. The resulting category of LMPs includes the

category SRel of stochastic relations as a subcategory, where stochastic relations

can be seen as stateless LMPs. The connection with stochastic relations will be

explored in the next section.

Given a measurable space X = (X,ΣX) consisting of a set X and a σ-field ΣX

of subsets of X, we write MX for the set of subprobability measures on X. For

each measurable subset A ⊆ X we have an evaluation function pA : MX → [0, 1]

sending μ to μA. Then MX becomes a measurable space by giving it the smallest

σ-field such that all the evaluations pA are measurable. (In fact, this is the smallest

σ-field such that integration against any measurable function g : X → [0, 1] yields a

measurable map
∫

g d− : MX → [0, 1].) Next, M is turned into an endofunctor on

the category Mes of measurable spaces by defining M(f)(μ) = μ◦f−1 for f : X → Y

measurable and μ ∈ MX.

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478 461

Theorem 2.1 (Giry [12]) The functor M : Mes → Mes defines a monad on Mes;

the unit is given by ηX(x) = δx and the multiplication μ : M2 ·
−→M is given by

integration.

Henceforth we assume a fixed finite set Act of actions or events.

Definition 2.2 Given measurable spaces X and Y , a labelled Markov process

S : X → Y is a pair (S, μ) consisting of a measurable space S and a measurable map

μ : X + S → M(Y + (Act × S)).

We think of X and Y as the interfaces of S, where X is the space of entry points

and Y is the space of exit points, and we think of S as the state space. Given s ∈ S

and a ∈ Act, μs({a} × E) is the probability that the process in state s makes an

a-transition to a measurable set of states E ⊆ S. Similarly if E ⊆ Y is a measurable

set of exit points, then μs(E) is the probability that state s makes a transition to

the set E. Note that μs is a sub-probability distribution on (Act × S) + Y . We

interpret the difference between the total mass of μs and 1 as the probability of

deadlock. We also adopt the notation μs,a for the subprobability measure on S

given by μs,a(E) = μs({a} × E), and we write μs,ε for the subprobability measure

on Y given by μs,ε(E) = μs(E). Thus transitions to exit points are thought of as

ε-transitions.

If we take X = {1} and Y = in Definition 2.2, we recover the standard definition

of LMP from [11] in which there is a unique initial state and no exit states.

Next we generalise the notion of zig-zag maps between LMPs [9] to the case with

entry and exit points.

Definition 2.3 Let S,S ′ : X → Y be LMPs, where S = (S, μ) and S ′ = (S′, μ′).

A function h : S → S′ between their respective state spaces is a zig-zag map if the

following diagram commutes.

X + S

idX+h

��

μ
�� M(Y + (Act × S))

M(idY +(idAct×h))
��

X + S′
μ′

��M(Y + (Act × S′))

The commuting of this diagram is equivalent to the following two conditions,

where g is the function idX + h:

• μs,a(h
−1(E)) = μ′

g(s),a(E) for all s ∈ X + S, measurable E ⊆ S′ and a ∈ Act.

• μs,ε(E) = μ′
g(s),ε(E) for all s ∈ X + S and measurable E ⊆ Y .

Note that we only define zig-zag maps between LMPs with the same sets of

entry points and exit points (see below).

X

S′

��

S

��
⇓ h Y

This suggests that zig-zag maps could be seen as 2-cells in a bicategory whose 0-

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478462

cells are measurable spaces and whose 1-cells are LMPs. However we do not pursue

this idea; rather we use zig-zag maps to define a notion of bisimulation equivalence

between LMPs, and we focus on the resulting (genuine) category of measurable

spaces and equivalence classes of LMPs.

2.1 Probabilistic Bisimulation

Probabilistic bisimulation was introduced by Larsen and Skou [17] as a probabilistic

analog of strong bisimulation for labelled transition systems. They defined a prob-

abilistic bisimulation on an LMP (with countable state space) to be an equivalence

relation on the state space such that equivalent states have the same probability of

transitioning to each equivalence class under a given action. This relational defini-

tion was extended to LMPs with non-discrete state spaces in [9]. However, in this

paper it will be more technically convenient to work with an alternative formulation

of a bisimulation as a cospan of zig-zag maps [8].

Definition 2.4 Let S,S ′ : X → Y be LMPs. We say that S and S ′ are bisimilar if

there exists a third LMP S ′′ : X → Y and zig-zag maps h : S → S ′′ and g : S ′ → S ′′.

Note that the entry points of S and S ′ are identified by g and h. 3 Intuitively,

Definition 2.4 captures the idea that S and S ′ are indistinguishable at each entry

point x ∈ X.

3 LMPs as Generalised Stochastic Relations

In this section we define the category SRel of stochastic relations and its stateful

generalisation the category GSRel of LMPs. We also summarise Kozen’s duality for

SRel in anticipation of its later generalisation to GSRel.

Definition 3.1 The category SRel of stochastic relations is the Kleisli category of

the Giry monad. Thus a stochastic relation f : X → Y is a measurable function

f : X → M(Y).

The composite of stochastic relations f : X → Y and g : Y → Z is given by

(g ◦ f)(x)(C) =

∫
Y

g(·)(C) dfx ,

where x ∈ X, C ∈ ΣZ , and fx denotes the measure f(x) on Y . Identities in SRel

are given by point measures: idX : X → X is defined by idX(x) = δx where

δx(A) =

⎧⎨
⎩ 1, x ∈ A

0, x �∈ A.

3 Strictly speaking we should say that the entry points of S and S′ are identified in S′′ by idX + g and
idX + h.

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478 463

Note that coproducts lift from Mes to SRel. In particular, the binary coproduct

of X and Y in SRel is the disjoint sum X + Y , with injections inl : X → X + Y

and inr : Y → X + Y given by inl(x) = δx and inr(y) = δy.

Next we describe Kozen’s [14] duality between stochastic relations and linear

maps.

Definition 3.2 The category SPT of stochastic predicate transformers has as

objects measurable spaces. To such a measurable space X we can associate the

ordered vector space B(X) of bounded, real-valued measurable functions on X, en-

dowed with the pointwise order. A morphism X → Y in SPT is then a linear,

monotone function ϕ : B(X) → B(Y) satisfying ϕ(1) ≤ 1.

Theorem 3.3 (Kozen [14]) The category SRel is dually equivalent to the category

SPT under the correspondence that associates to h : X → Y in SRel the mapping

from ϕ : B(Y) → B(X), where

ϕ(f)(x) =

∫
Y

f dhx ,

and to ϕ : B(Y) → B(X) the SRel morphism h : X → Y , where

h(x)(A) = ϕ(χA)(x) .

As we shall see later, our main theorem gives a stateful generalisation of this

duality.

3.1 The Category GSRel

In this subsection we extend SRel to a category GSRel whose objects are measurable

spaces and whose morphisms are (bisimulation-equivalence classes of) LMPs. Given

measurable spaces X and Y , an LMP S : X → Y represents a morphism from X

to Y in GSRel; another LMP S ′ : X → Y represents the same morphism iff S and

S ′ are bisimilar. Comparing Definitions 2.2 and 3.1, we observe that a stochastic

relation X → Y can be regarded as LMP with empty state space. It is also clear

from Definition 2.4 that two stochastic relations X → Y are bisimilar qua LMPs iff

they are identical. Thus stochastic relations are morphisms in GSRel.

Next we define composition in GSRel. We define composition of LMPs (rather

than of equivalence classes) following the composition-as-integration pattern for

stochastic relations. Proposition 3.4 then shows that this lifts to a well-defined

composition in GSRel. Let S : X → Y and S ′ : Y → Z be LMPs with S = (S, μ)

and S ′ = (S′, μ′). Intuitively, the composition (S ′ ◦ S) : X → Z is obtained by

connecting the exits of S with the entries of S ′. Formally S ′ ◦S = (S +S′, ρ), where

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478464

the transition measure ρ is given by

ρs(B) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μs(B) if s ∈ X + S,B ⊆ Act × S∫
Y

μ′
(·)(B)dμs if s ∈ X + S, B ⊆ (Act × S′) + Z

μ′
s(B) if s ∈ S′, B ⊆ (Act × S′) + Z

0 if s ∈ S′, B ⊆ Act × S .

Proposition 3.4 Composition in GSRel is well-defined and associative. The iden-

tity maps and coproducts in GSRel are inherited from SRel.

The proof of Proposition 3.4 is routine. However we will give an indirect proof

later as an application of our duality for GSRel.

4 Stone Duality for C∗-Algebras

This section contains some background definitions and results about preordered

rings and C∗-algebras from the monograph of Johnstone [15].

Let A be a commutative ring with identity 1. Since we are primarily interested

in rings of functions, we use f, g to denote typical elements of A. As is usual, given

n ∈ N, we write n ∈ A for the n-fold sum of the identity. We say that A is a

preordered ring if it is equipped with a preorder satisfying

• 0 � f2 (all squares are positive)

• f � f ′ implies f + g � f ′ + g

• f � f ′ and 0 � g implies f · g � f ′ · g.

Equivalently we can define such a preorder by specifying a set P ⊆ A that is closed

under addition and multiplication, and which contains all squares. Such a set is

called a positive cone in A. Then a preorder on A is defined by f � g iff g − f ∈ P .

We denote by ORng the category of preordered rings and monotone ring homo-

morphisms.

We say that a preordered ring A is Archimedean if for all f there exists a positive

integer n with f � n. If the additive group of A is torsion-free and divisible, so that

A admits a Q-algebra structure, then we may define a seminorm on A by

||f || = inf{q ∈ Q : −q � f � q}. (1)

(Here if q = n/m ∈ Q, then we let q denote the unique element of q ∈ A satisfying

m · q = n.) This seminorm satisfies

||f + g|| ≤ ||f || + ||g|| and ||f · g|| ≤ ||f || ||g|| .

However we may have ||f || = 0 for nonzero f , that is, we have a seminorm rather

than a norm.

Definition 4.1 A partially ordered ring A is a real C∗-algebra if

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478 465

• the additive group of A is torsion free and divisible, and

• Equation 1 defines a norm with respect to which A is complete.

The category C∗-Alg is the full subcategory of ORng determined by the class of C∗-

algebras. .

Here we should emphasise that we work with the notion of real C∗-algebras as

opposed to the more widely known notion of complex C∗-algebras (cf. Naimark [13,

Theorem III.2.1]). Also we recall from [15, Lemma 4.5] that an element of a C∗-

algebra is positive iff it is a square. Thus the partial order is determined by the ring

structure, and ring homomorphisms between C∗-algebras are automatically order

preserving.

Example 4.2 Let Y be a measurable space and B(Y) the set of bounded measurable

real-valued functions on Y equipped with the pointwise order. Then B(Y) is a C∗-

algebra. The induced norm is here is just the supremum norm, and B(Y) is complete

in this norm since the pointwise limit of a sequence of measurable functions is again

measurable.

Definition 4.3 A character of a C∗-algebra A is a ring homomorphism

ϕ : A → R. The spectrum of A, denoted SpecA, is the space of characters of A in

the Zariski topology, which is generated by the cozero sets coz(f) = {ϕ : ϕ(f) �= 0}
where f ∈ A.

The spectrum of a C∗-algebra is a compact Hausdorff space. Conversely, the

ordered ring C(X) of continuous real-valued functions on a compact Hausdorff space

X is a C∗-algebra. This association of compact Hausdorff spaces and C∗-algebras

is functorial, and yields a dual equivalence:

Theorem 4.4 (Stone) The category KHaus of compact Hausdorff spaces and con-

tinuous maps is dually equivalent to C∗-Alg.

5 Trace Trees

Fix a measurable space Y of exit points. We define a grammar of trace trees,

generated from the set B(Y) of bounded measurable real-valued functions on Y by

prefixing and multiplication. These trace trees are simplified versions of the tests

considered by Larsen and Skou [17] in their paper characterising bisimulation as a

testing equivalence, but adapted to the fact that we consider LMPs with exit points.

The trace trees are given by the grammar

t ::= 1 | ε.g | a.t | t ∗ t , (2)

where g ∈ B(Y) and a ∈ Act.

We think of 1 as the null trace; a.t is read as t prefixed by a ∈ Act; ε.g is read

as g prefixed by the silent action ε; finally we call t1 ∗ t2 the product of t1 and t2.

Note the distinction between prefixing and product. We adopt the convention that

prefixing binds more tightly than product. We also sometimes elide the symbol 1

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478466

when denoting non-trivial trace trees, e.g., we write a ∗ b.c for a.1 ∗ b.c.1.

We call the terms generated by (2) trace trees because there is a very natural

way to view them as trees whose edges are labelled in Act ∪ {ε} and whose leaves

are either unlabelled or labelled by elements of B(Y). For instance, the term a.1 ∗
b.((a.1 ∗ ε.g) ∗ b.1) is pictured as

•
a

��
��

��
�

b

��
��

��
�

• •
a

��
��

��
��

ε b

��
��

��
��

• g •

Definition 5.1 specifies the probability tS(s) that an LMP S in state s can

perform the trace tree t. The null trace is performed with probability one in any

state. The probability of performing a.t is the probability of performing an a-action

and then doing t. Prefixing by ε is interpreted similarly. For instance, if g = χA

is the characteristic function of a measurable set A ⊆ Y , then the probability of

doing ε.g is the probability of making an ε-transition to a state in A. Finally, the

probability that a state performs t1 ∗ t2 is the product of the probability it performs

t1 and the probability it performs t2.

Definition 5.1 Given an LMP S : X → Y , where S = (S, μ), each trace tree t is

interpreted as a real-valued function tS on S + X by:

1S(s) = 1

(a.t)S(s) =

∫
S

tS dμs,a

(ε.g)S(s) =

∫
S

g dμs,ε

(t1 ∗ t2)S(s) = (t1)S(s) · (t2)S(s) .

Without product, the grammar (2) would just specify a language of traces,

and tS(s) would give the probability that state s can perform trace t. Product

is required to discriminate between processes that are trace equivalent but not

bisimilar. We refer the reader to Larsen and Skou [17] and Abramsky [1] for further

discussion about related classes of branching traces (or tests), both in the context

of probabilistic and nondeterministic labelled transition systems.

The following theorem, our first main result, states that LMPs are characterised

up to bisimilarity by their trace-tree semantics. The proof, which will be given

later, relies on an application of Stone duality for real C∗-algebras.

Theorem 5.2 Two LMPs S,S ′ : X → Y are bisimilar iff tS(x) = tS′(x) for all

trace trees t and x ∈ X.

Excepting the additional details concerning exit and entry points, Theorem 5.2

already appears in [7]. However the proofs here are quite different. Following

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478 467

Larsen and Skou [17], the paper [7] uses statistical arguments, including Chebyshev’s

inequality, whereas here the characterisation follows from Stone duality.

As we have mentioned, Theorem 5.2, generalises and simplifies a result of Larsen

and Skou [17] on characterising probabilistic bisimulation as a testing equivalence.

Our class of tests is (equivalent to) a subset of theirs, and their result applied to

LMPs with a strong discreteness assumption. This situation is analogous to the way

in which Desharnais, Edalat and Panangaden [9] simplified and generalised Larsen

and Skou’s logical characterisation of probabilistic bisimulation. For a full discussion

of this analogy we refer the reader to [7]. Intuitively, the idea is that the tests above

are only combined conjunctively: to pass t1 ∗t2 one must pass t1 and t2. Larsen and

Skou’s testing formalism implicitly allowed also disjunctive combinations of tests. In

particular, in [7] it is shown that Larsen and Skou’s framework is expressive enough

to characterise probabilistic simulation, whereas the above framework is not.

6 A Comonad of Trace Trees

In this section, we define a comonad (T , ξ, δ) on the category ORng based on a

generalised notion of trace tree. Given a preordered ring R, we present a new

ring T (R) by generators and relations, where the set of generators is given by

the following grammar (which corresponds to (2), but with B(Y) replaced by an

arbitrary ring R):

t ::= 1 | ε.r | a.t | t ∗ t,

where a ∈ Act and r ∈ R.

The terms generated by the above grammar are called the trace trees over R;

thus our original notion of trace tree in Section 5 gives the trace trees over B(Y).

For each trace tree t we include a generator [t] in the presentation of T (R). (We

distinguish between trace trees and the corresponding generators in the interests of

clarity, but we will later drop the distinction.) The relations we postulate in the

presentation of T (R) include the following equations, where r1, r2 ∈ R and t1, t2 are

trace trees.

[ε.0] = 0 (3)

[ε.r1] + [ε.r2] = [ε.(r1 + r2)] (4)

[1] = 1T (R) (5)

[t1 ∗ t2] = [t1] · [t2] (6)

Intuitively, Equations 3 and 4 say that prefixing by ε is linear. Equation 5 says

that the null tree 1 is interpreted as the multiplicative identity in T (R). Lastly,

Equation 6 says that the product operation ∗ on trace trees corresponds to multi-

plication in T (R) (which is denoted ·).

We define the preorder on T (R) to be the least one satisfying the axioms for a

preordered ring (cf. Section 4), plus the following clauses in which r1, r2 ∈ R and

t1, t2 are trace trees over R.

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478468

[t1] � [t2] =⇒ [a.t1] � [a.t2] (7)

r1 � r2 =⇒ [ε.r1] � [ε.r2] (8)

[ε.1R] +
∑

a∈Act

[a.1] � 1T (R) . (9)

These inequalities are connected with our interpretation of prefixing as integra-

tion against a positive measure. Inequalities 7 and 8 say that prefixing by a ∈ Act

or by ε is monotone, whereas Inequality 9 is connected with the fact that the to-

tal mass of each transition measure μs in an LMP is at most one (cf. the proof of

Proposition 7.1).

Definition 6.1 Given a preordered ring R, T (R) is the preordered ring presented

with generators the trace trees over R and Relations (3—9).

Since the class of trace trees is closed under multiplication in T (R) it follows

that a typical element of T (R) is equal to a linear combination (over Z) of trace

trees. In turn, this entails that prefixing by a ∈ Act extends uniquely to a selfmap

of T (R) that distributes over finite sums, i.e., we write a.0 = 0 and a.([t1] + [t2]) =

[a.t1] + [a.t2].

Proposition 6.2 If R is Archimedean then so is T (R).

Proof. All the terms in the sum on the left-hand side of Inequality 9 are positive.

This entails that each individual summand is dominated by the right-hand side,

that is, [ε.1R] � 1 and [a.1] � 1 for all a ∈ Act. We use these inequalities and

structural induction to verify that the Archimedean axiom holds for all trace trees.

For the base case, suppose g ∈ R. Since R is Archimedean, there exists n ∈ N

such that g � n in R. Then [ε.g] � [ε.n] = n · [ε.1R] � n (where the last inequality

holds because [ε.1R] � 1).

The inductive case for prefixing by a ∈ Act is similar. Suppose t is a trace

tree and [t] � n. Then by monotonicity and linearity of prefixing in T (R) we

have [a.t] � a.n = n · [a.1] � n. The inductive case for product of trace trees

is straightforward. This completes the proof that each trace tree is dominated by

some n ∈ N.

Finally, since each element of T (R) is equal to a linear combination of trace

trees, the Archimedean axiom immediately follows. �

Remark 6.3 Given a preordered ring A, to define a monotone ring homomorphism

h : T (R) → A it suffices to define an interpretation in A of the trace trees over R

that respects Relations (3—9). Note that Equations 5 and 6 force us to interpret

multiplication of trace trees as multiplication in A, so we need only specify the value

of h on trace trees of the form a.t and ε.r.

Next we complete the definition of the comonad (T , ξ, δ). Note that in the sequel

we omit square brackets when referring to trace trees as elements of T (R).

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478 469

Definition 6.4 The comultiplication δ : T ⇒ T 2 has components δR : T (R) →
T 2(R) defined by the following clauses, where t is a trace tree over R and r ∈ R

(cf. Remark 6.3):

δR(a.t) = a.δR(t) + ε.(a.t)

δR(ε.r) = ε.ε.r .

The counit ξ : T ⇒ Id has components ξR : T (R) → R defined by

ξR(a.t) = 0

ξR(ε.r) = r.

Following Remark 6.3, it should be verified that the above definitions of δR and

ξR respect Relations (3—9). This verification is routine: as a representative, we

give details of the argument that δR respects Inequality 9.

δR(ε.1R +
∑

a∈Act

a.1T (R)) = δR(ε.1R) + δR(
∑

a∈Act

a.1T (R))

= ε.ε.1R +
∑

a∈Act

δR(a.1T (R)) [Defn. of δR]

= ε.ε.1R +
∑

a∈Act

(a.1T 2(R) + ε.a.1T (R)) [Defn. of δR]

= ε.(ε.1R +
∑

a∈Act

a.1T (R)) +
∑

a∈Act

a.1T 2(R) [Eqn. 4]

� ε.1T (R) +
∑

a∈Act

a.1T 2(R) [Eqn. 9]

� 1T 2(R) . [Eqn. 9]

Observe that comultiplication maps a trace tree t to the sum of all possi-

ble decompositions of t. First a simple example without branching: δR(a.b.c) =

ε.(a.b.c) + a.ε.(b.c) + a.b.ε.c + a.b.c. Next, an example with branching:

δR(a.(b ∗ c)) = ε.a.(b ∗ c) + a.(ε.b ∗ ε.c) + a.(ε.b ∗ c) + a.(b ∗ ε.c) + a.(b ∗ c) .

Theorem 6.5 (T , δ, ξ) is a comonad on ORng.

Proof. The counit laws are trivial. We will verify the associativity law for comul-

tiplication. This asserts that the following diagram commutes.

T (R)

δR

��

δR
�� T 2(R)

T (δR)
��

T 2(R)
δT (R)

�� T 3(R)

By Remark 6.3 it suffices to show that δT (R)(δR(t)) = T (δR)(δR(t)) for all trace

trees t. We do this by structural induction on t ∈ T (R).

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478470

For the base case we observe that δT (R)(δR(ε.r)) = ε.ε.ε.r = T (δR)(δR(ε.r)) for

all r ∈ R.

The inductive clause for prefixing is as follows:

δT (R)(δR(a.t)) = δT (R)(a.δR(t) + ε.a.t) [defn. of δR]

= δT (R)(a.δR(t)) + δT (R)(ε.a.t)

= a.δT (R)(δR(t)) + ε.a.δR(t) + δT (R)(ε.a.t) [defn. of δT (R)]

= a.δT (R)(δR(t)) + ε.a.δR(t) + ε.ε.a.t [defn. of δT (R)]

= a.T (δR)(δR(t)) + ε.a.δR(t) + ε.ε.a.t [ind. hyp.]

= a.T (δR)(δR(t)) + ε.(a.δR(t) + ε.a.t) [Eqn. 4]

= a.T (δR)(δR(t)) + ε.δR(a.t) [defn. of δR]

= T (δR)(a.δR(t) + ε.a.t) [action of T (δR)]

= T (δR)(δR(a.t)) . [defn. of δR]

The inductive clause for multiplication straightforwardly follows from the fact

that the components of δ, being ring maps, respect multiplication. �

7 Duality

The class of trace trees as originally defined in Section 5 can now be seen as the

generators of T B(Y). Next we verify that the semantics of trace trees relative to

an LMP S : X → Y , as given in Definition 5.1, uniquely specifies a map T B(Y) →
B(X + S) in ORng. To denote this map we reuse the notation (−)S introduced in

Definition 5.1.

Proposition 7.1 Let S : X → Y be an LMP, with S = (S, μ). There is a unique

monotone ring homomorphism

T B(Y)
(−)S
−→ B(X + S)

satisfying the following two clauses:

(a.t)S(s) =

∫
S

tS dμs,a

(ε.g)S (s) =

∫
Y

g dμs,ε .

for all g ∈ B(Y), trace trees t ∈ T B(Y), and s ∈ X + S.

Proof. By Remark 6.3 it suffices to verify that (−)S respects Equations 3–9. Equa-

tions 3—6 are respected because integration is linear, and Inequalities 8 and 7 are

respected because integration is monotone. It remains to verify that Inequality 9 is

respected.

To this end, writing t = 1Y +
∑

a∈Act a.1 we have

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478 471

tS(s) =

∫
Y

dμs,ε +
∑

a∈Act

∫
S

dμs,a

= μs(Y + Act × S)

� 1 = tS(1) .

�

We now come to the central definition of this paper: the dual of an LMP.

Definition 7.2 Let S : X → Y be an LMP and let πX : B(X+S) → B(X) be given

by πX(f) = f |X . Following on from Proposition 7.1, define Ŝ : T B(Y) → B(X) to

be the following composition

T B(Y)
(−)S
−→ B(X + S)

πX−→ B(X) .

We call Ŝ the dual of S. Notice that Ŝ is a map B(Y) → B(X) in the co-Kleisli

category of the trace tree comonad (T , ξ, δ). Later we will show that composition

of LMPs, as defined in Section 3.1, corresponds to composition in the co-Kleisli

category. However the remainder of this section is devoted to proving Theorem 5.2,

which can now be reformulated as asserting that S is bisimilar to S ′ iff Ŝ = Ŝ ′.

The proof of Theorem 5.2 involves completing T B(Y) to a C∗-algebra A(Y)

and constructing a final LMP whose state space is the spectrum of A(Y). In this

representation, a state of the final LMP is a character ϕ of A(Y). Such states have

the following extensionality property: the value ϕ(t) of ϕ on a given trace tree t is

just the probability that ϕ, regarded as a state, can perform t.

7.1 A C∗-algebra of Trace Trees

Let ARng be the full subcategory of ORng consisting of Archimedean preordered

rings. In this section we observe that C∗-Alg is a reflective subcategory of ARng.

Recall from Section 4 that an Archimedean preordered ring A is a C∗-algebra iff

the additive group of A is torsion-free and divisible (equivalently, if A admits a

Q-algebra structure) and if A is complete in the norm (1).

Definition 7.3 Given commutative rings A and B, the tensor product of A and B

as Abelian groups can be turned into a ring by defining (a ⊗ b) · (x ⊗ y) = ax ⊗ by

and then extending linearly. This is the ring tensor product A ⊗ B of A and B.

Note that the ring tensor product Q ⊗A is nothing but the free Q-algebra over

A. In case A is a preordered ring, we can equip Q ⊗ A with the smallest preorder

such that 0 � q ⊗ a whenever 0 � q in Q and 0 � a. In this case it is clear that

Q ⊗ A inherits the Archimedean property from A.

Proposition 7.4 The inclusion U : C∗-Alg ↪→ ARng has a left adjoint F .

Proof. Write ARngQ for the subcategory of ARng consisting of the torsion-free

divisible rings. We can factor U into two parts: the inclusion U1 : C∗-Alg ↪→ ARngQ

and the inclusion U2 : ARngQ ↪→ ARng. We show that both U1 and U2 have left

adjoints. Indeed we have already observed that the map A �→ Q ⊗ A gives a left

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478472

adjoint to U2. The left adjoint to U1 is given by Cauchy completion, as we explain

below.

A ring A ∈ |ARngQ| can be equipped with the seminorm (1) from Section 4. Let

B denote the Cauchy completion of A in this norm, and write η1 : A → B for the

unit of the Cauchy-completion adjunction. Note that η1 identifies all elements of A

with zero norm, so it need not be injective. However, given f ∈ A, we will denote

η1(f) ∈ B by just f .

We define a ring structure on B by f + g = limn(fn + gn) and fg = limn fngn,

where f, g ∈ B are such that f = limn fn and g = limn gn for fn, gn ∈ A. We also

define a partial order on B by specifying the cone of positive elements. We say that

0 � f if f = limn fn for fn ∈ A with 0 � fn. It is easy to show that the ring

structure is well-defined, that B is a Q-algebra, and that the order is Archimedean.

We can now consider two different norms on B: the norm it inherits as the

Cauchy completion of A and the norm (1). It is straightforward that these two

coincide, and we conclude that B is complete in the norm (1) and is therefore a

C∗-algebra. �

Definition 7.5 Let A(Y) denote the reflection of T B(Y) in C∗-Alg.

Recall from Proposition 7.1 that an LMP S : X → Y induces a monotone ring

homomorphism (−)S : T B(Y) → B(X + S). Since B(X + S) is a C∗-algebra (cf.

Example 4.2), by Proposition 7.4 the above map factors through A(Y) yielding a

map (which we denote by the same name) (−)S : A(Y) → B(X + S).

Write η : Id → UF for the unit of the adjunction defined in Proposition 7.4.

The following proposition shows that F (A) is free over A even if we consider maps

that don’t preserve multiplicative structure.

Proposition 7.6 Let A be an Archimedean preordered ring, B a C∗-algebra, and

f : A → UB a monotone function that is also a group homomorphism with respect

to the additive structure of A and B. Then there is a unique R-linear monotone

map f : F (A) → B such that Uf ◦ η = f .

Proof. The map f is defined exactly as if f were a monotone ring map: first f

extends uniquely to a monotone Q-linear map Q⊗A → B given by q⊗a �→ q ·f(a).

This last map extends to an R-linear map on the Cauchy completion of Q ⊗ A. �

Note that prefixing by a ∈ Act is a monotone map a.(−) : T B(Y) → T B(Y)

that is a homomorphism with respect to the additive group structure of T B(Y) →
T B(Y). By Proposition 7.6 this extends to monotone R-linear map A(Y) → A(Y).

7.2 A Universal LMP

We now define a universal LMP with state space SpecA(Y) 4 . To manufacture the

transition probabilities we use the Riesz representation theorem [21].

4 By definition of A(Y) there is a bijection between SpecA(Y) and ORng(T B(Y), R). Nevertheless it is
convenient to work with A(Y) since there is no way to recover T B(Y) from ORng(T B(Y), R).

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478 473

Theorem 7.7 (Riesz) Let K be a compact Hausdorff space and ϕ : C(K) → R a

monotone R-linear map. Then there is a unique positive Borel measure μ on K

such that ϕ(f) =
∫

fdμ for all f ∈ C(K). The total mass of μ is given by ϕ(1).

Given ϕ ∈ SpecA(Y), define its derivative ϕa : A(Y) → R with respect to

a ∈ Act by ϕa(f) = ϕ(a.f). Then ϕa is monotone and linear in the sense of

Theorem 7.7 since both ϕ and the prefixing map a.(−) are monotone and linear on

A(Y).

Definition 7.8 Define μ : SpecA(Y) −→ M(Y + (Act × SpecA(Y)) as follows.

Given ϕ ∈ SpecA(Y) and a ∈ Act, define μϕ,a to be the Borel measure on

SpecA(Y) corresponding by Theorem 7.7 to the linear map

C(SpecA(Y)) ∼= A(Y)
ϕa

−→ R .

(Note that the isomorphism C(SpecA(Y)) ∼= A(Y) comes from Theorem 4.4.) Fur-

thermore, define a positive Borel measure μϕ,ε on Y by μϕ,ε(A) = ϕ(ε.χA) for each

measurable A ⊆ Y . This completes the definition of μϕ and it remains to observe

that μϕ is a subprobability measure since its total mass is given by

μϕ,ε(Y) +
∑

a∈Act μϕ,a(SpecA(Y)) = ϕ(ε.1Y) +
∑

a∈Act ϕa(1)

= ϕ(ε.1Y +
∑

a∈Act a.1)

� ϕ(1) [Eqn. 9]

= 1 .

Definition 7.8 specifies an LMP of type ∅ → Y . The following proposition

formalises the idea that this is a universal LMP on the space of exit points Y . It

says that for an arbitrary LMP S : X → Y we can augment the universal LMP by

specifying a space of entry points X, thus obtaining an LMP S∗ : X → Y , such

that there is a zig-zag map from S to S∗.

Definition 7.9 Given an LMP S : X → Y , define π : X → SpecA(Y) by

π(x)(f) = fS(x). Furthermore write S∗ : X → Y for the LMP with state space

SpecA(Y) and transition map

[μ ◦ π, μ] : X + SpecA(Y) −→ M(Y + (Act × SpecA(Y)) ,

where μ is as in Definition 7.8.

Proposition 7.10 The function h : S → SpecA(Y) defined by h(s)(f) = fS(s) is

a zig-zag map S → S∗.

Proof. Let ρ : X + S → M(Y + (Act × S)) be the transition function of S.

According to Definition 2.3, h : S → SpecA(Y) is a zig-zag map iff (i) ρs,a ◦h−1 and

μh(s),a are identical measures on SpecA(Y) for each s ∈ S and a ∈ Act, and (ii) ρs,ε

and μh(s),ε are identical measures on Y for each s ∈ S. We will demonstrate that

(i) holds in this case; the justification of (ii) is similar.

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478474

Given f ∈ A(Y) let f̂ ∈ C(SpecA(Y)) be defined by f̂(ϕ) = ϕ(f). Note that

f̂(h(s)) = h(s)(f) = fS(s) for all s ∈ S. Thus we have

∫
f̂ d(ρs,a ◦ h−1) =

∫
(f̂ ◦ h) dρs,a

=

∫
fS dρs,a

= (a.f)S(s) [defn. of (−)S]

= h(s)(a.f)

=

∫
f̂ dμh(s),a . [by Defn. 7.8]

By the Riesz representation theorem, two Borel measures on SpecA(Y) are equal

iff their respective integrals against any continuous function are equal. But each

continuous function on SpecA(Y) has the form f̂ for some f ∈ A(Y). We conclude

that ρs,a ◦ h−1 = μh(s),a. �

We obtain the following corollary, which is a restatement of Theorem 5.2: if two

LMPs have the same dual then they are bisimilar.

Corollary 7.11 LMPs S,S ′ : X → Y are bisimilar if Ŝ = Ŝ ′.

Proof. According to Definition 7.9, if Ŝ = Ŝ ′ then S∗ = S ′
∗. But then two appli-

cations of Proposition 7.10 yield a cospan S −→ S∗ = S ′
∗ ←− S ′ of zig-zag maps,

showing that S and S ′ are bisimilar according to Definition 2.4. �

8 Structure of the Dual Category

In this section we characterise the dual category of GSRel, which we call Eval.

Definition 8.1 The objects of the category Eval are the measurable spaces, and an

arrow X → Y is a homomorphism T B(X) → B(Y) of preordered rings. Compo-

sition in Eval is just as in the co-Kleisli category of T . We call the morphisms in

this category evaluations.

In this section we extensively rely on Remark 6.3, that is, we define a monotone

ring map h : T B(Y) → B(X) just by specifying the values h(ε.g) and h(a.t) for

each g ∈ B(Y), a ∈ Act and trace tree t. This suffices to define h on the set of all

trace trees over B(Y), and it then remains to check that h respects the relations in

the presentation of T B(Y).

Example 8.2 Recall from Section 3 that binary coproducts in GSRel are given by

the stochastic relations inl : X → X+Y and inr : Y → X+Y . Here we describe the

dual maps înl = π1 : T B(X + Y) → B(X) and înr = π2 : T B(X + Y) → B(Y).

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478 475

These are defined by

π1(a.t) = 0

π1(ε.g) = g |X ,

and

π2(a.t) = 0

π2(ε.g) = g |Y .

The fact that the coproduct injections are stateless corresponds to the fact that

π1 and π2 map any trace tree not of the form ε.g to 0. The subcategory of maps

with this property is (isomorphic to) SPT, the category of stochastic predicate

transformers of Definition 3.2.

The following proposition shows that composition of LMPs corresponds to com-

position in Eval.

Proposition 8.3 Given LMPs S1 : X → Y and S2 : Y → Z, (S2 ◦ S1)̂ = Ŝ1 ◦ Ŝ2.

Proof. Write S1 = (S, μ), S2 = (S′, μ′) and, following Section 3.1, denote the

transition function of S2 ◦ S1 by ρ.

We show that the following two statements hold for all trace trees t ∈ T B(Z).

(i) tS2◦S1(s) = tS2(s) for all s ∈ S′.

(ii) tS2◦S1(s) = ((T Ŝ2 ◦ δB(Z))(t))S1(s) for all s ∈ S + X.

Before proving them, we observe that (ii) yields our desired conclusion. Indeed for

t ∈ T B(Z) and x ∈ X we have

(S2 ◦ S1)̂ (t)(x) = tS2◦S1(x) [Defn. 7.2]

= ((T Ŝ2 ◦ δB(Z))(t))S1(x) [by (ii)]

= (Ŝ1 ◦ T Ŝ2 ◦ δ)(t)(x) [Defn. 7.2]

= (Ŝ1 ◦ Ŝ2)(t)(x) [co-Kleisli composition]

It remains to prove (i) and (ii). Statement (i) says that the probability of

performing a trace tree starting from s ∈ S′ does not depend on whether we regard

s as a state of S2 or of S2 ◦ S1. The proof is straightforward given the fact that for

s ∈ S′ and E ⊆ Z + (Act × S′) we have μ′
s(E) = ρs(E).

We prove (ii) by structural induction on trace trees.

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478476

(a.t)S2◦S1(s) =

∫
S+S′

tS2◦S1 dρs,a

=

∫
S

tS2◦S1 dμs,a +

∫
Y

λy.

(∫
S′

tS2◦S1 dμ′
y,a

)
dμs,ε [defn. of ρs.a]

=

∫
S

tS2◦S1 dμs,a +

∫
Y

λy.

(∫
S′

tS2 dμ′
y,a

)
dμs,ε [by (i)]

=

∫
S

tS2◦S1 dμs,a +

∫
Y

(a.t)S2 dμs,ε [Defn. 5.1]

=

∫
S

((T Ŝ2 ◦ δB(Z))(t))S1 dμs,a +

∫
Y

(a.t)S2 dμs,ε [ind. hyp. (ii)]

= (a.T Ŝ2(δB(Z)(t)))S1(s) + (ε.Ŝ2(a.t))S1(s) [Defn. 5.1]

= (a.T Ŝ2(δB(Z)(t)) + ε.Ŝ2(a.t))S1(s)

= (T Ŝ2(a.δB(Z)(t) + ε.a.t))S1(s) [action of T Ŝ2]

= T Ŝ2(δB(Z)(a.t))S1(s) [Defn. 6.4]

�

Corollary 8.4 Composition in GSRel is associative.

Proof. This follows immediately from the fact that composition in the co-Kleisli

category of T is associative. �

9 Conclusions

This paper characterised bisimulation equivalence of LMPs as trace-tree equiva-

lence. This characterisation was proved using Stone duality for real C∗-algebras

to construct a universal LMP as the spectrum of a C∗-algebra of trace trees. The

fact that bisimilarity has such a simple characterisation as a trace-like equivalence

corresponds to the intuition that probabilistic branching is better behaved than

genuine nondeterminism.

We also considered LMPs with distinguished sets of entries and exits as gener-

alised stochastic relations. Using the notion of trace tree over a ring, we defined

a comonad on ORng and established a duality between LMPs and maps in the

co-Kleisli category of the comonad.

One aspect of the category GSRel that we have not touched on here is its traced

structure. It is not hard to show that GSRel is not partially additive. 5 Never-

theless, it is easy to define a trace structure on GSRel using the partially additive

structure of SRel (as outlined in [20]). A question for future work is to isolate some

extra structure on the comonad T that corresponds to the trace on GSRel, just as

5 Indeed, using X = {∗}, S a one-point set, Act = {a}, let f : X → ∅ be the LMP with f(∗)(a) = s with
probability 1. Then the Compatible Sum Axiom [20] is violated for fi = Pri ◦ f .

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478 477

comultiplication corresponds to composition. Here we are thinking of a decomposi-

tion of trace trees, along the lines of Definition 6.4, that captures the sum-of-paths

intuition that lies behind the definition of the trace in SRel and GSRel.

References

[1] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical Computer Science, 53:225–
241, 1987.

[2] S. Abramsky. A Domain Equation for Bisimulation. Information and Computation 92:161–218, 1991.

[3] S. Abramsky. Retracing some paths in process algebra. In Proceedings of the 7th International
Conference in Concurrency Theory (CONCUR’96), LNCS, Volume 1119, pages 1–17, Springer-Verlag,
1996.

[4] L. Aceto, Z. Ésik and A. Ingólfsdóttir. Equational Axioms for Probabilistic Bisimilarity. In Proceedings
of 9th International Conference in Algebraic Methodology and Software Technology (AMAST’02),
LNCS, Volume 2422, pages 239–253, Springer-Verlag, 2002.

[5] M. Arbib and E.G. Manes. The Pattern-of-Calls Expansion Is the Canonical Fixpoint for Recursive
Definitions. Journal of the Association for Computing Machinery, 29(2):577–602, 1982.

[6] S. Bloom and Z. Esik. Iteration Theories. EATCS Monographs on Theoretical Computer Science.
Springer, 1993.

[7] F. van Breugel, M. Mislove, J. Ouaknine and J. Worrell. Domain theory, Testing and Simulation for
Labelled Markov Processes. Theoretical Computer Science, 333(1-2):171–197, 2005.

[8] V. Danos, J. Desharnais, F. Laviolette and P. Panangaden. Bisimulation and Cocongruence for
Probabilistic Systems. Accepted for publication in Information and Computation, Special issue for
selected papers from CMCS’04, 22 pages, 2006.

[9] J. Desharnais, A. Edalat and P. Panangaden. Bisimulation for Labelled Markov Processes. Information
and Computation, 179(2):163–193, 2002.

[10] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for Labeled Markov Processes.
In Proceedings of the 10th International Conference on Concurrency Theory (CONCUR’99), LNCS,
Volume 1664, Springer-Verlag, 1999.

[11] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating Labeled Markov Processes.
Information and Computation, 184(1):160–200, 2003.

[12] M. Giry. A categorical approach to probability theory. In Proceedings of the International Conference
on Categorical Aspects of Topology and Analysis, Lecture Notes in Mathematics, Volume 915, Springer,
1981.

[13] M.A. Naimark. Normed Rings, 2nd ed., Nauka, Moscow 1968; reprint of the revised English edition,
Wolters-Noordhoff, Groningen 1970.

[14] D. Kozen. The Semantics of Probabilistic Programs. Journal of Computer and System Science, 22:328–
350, 1981.

[15] P. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[16] B. Jonsson, K. Larsen and W. Yi. Probabilistic Extensions of Process Algebras. In J.A. Bergstra, A.
Ponse and S. Smolka, editors, Handbook of Process Algebra, pages 685–710, Elsevier, 2001.

[17] K.G. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information and Computation,
94(1):1–28, 1991.

[18] R. Milner. A Complete Inference System for a Class of Regular Behaviours. Journal of Computer and
System Sciences, 28(3):439–466, 1984.

[19] M. Mislove, J. Ouaknine, D. Pavlovic and J. Worrell. Duality for Labelled Markov Processes. In
Proceedings of the 7th International Conference in Foundations of Software Science and Computation
Structures (FOSSACS’04), LNCS, Volume 2987, Springer-Verlag, 2004.

[20] P. Panangaden. Probabilistic relations. In C. Baier, M. Huth, M. Kwiatkowska, and M. Ryan, editors,
PROBMIV98, pages 59–74, 1998.

[21] K.R. Parthasarathy. Probability Measures on Metric Spaces. Academic Press, 1967.

[22] E.W. Stark and S.A. Smolka. A complete axiom system for finite-state probabilistic processes. In Proof,
Language, and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

M. Mislove et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 459–478478

	Introduction
	Labelled Markov Processes
	Probabilistic Bisimulation

	LMPs as Generalised Stochastic Relations
	The Category GSRel

	Stone Duality for C-Algebras
	Trace Trees
	A Comonad of Trace Trees
	Duality
	A C*-algebra of Trace Trees
	A Universal LMP

	Structure of the Dual Category
	Conclusions
	References

