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The Grassmann Space of a Planar Space

NICcOLA DURANTE, VITO NAPOLITANO AND DOMENICO OLANDA

In this paper we give a characterization of the Grassmann space of a planar space.
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1. INTRODUCTION

A linear spacds a pair(S, £), whereSis a set opointsand£ is a family of proper subsets
of S, calledlines each one with at least two points, such that

1.1 any two distinct points are on exactly one line.

A subsetH of Sis asubspacef (S, £) if it contains the lingx, y] through any paix, y
of distinct points ofH.

A planar spaceis a triple (S, £, P), where(S, £) is a linear space an® is a family of
proper subspaces ¢§, £), calledplanes such that

1.2 three points not on a line are contained in a unique plane;
1.3 every plane contains at least three non-collinear points.

Let (S, £, P) be afinite planar space. For every plandn P, denote byL, the set of the
lines of £ contained inr.

A planar spacqgS, £, P) is embeddablen a projective spac® if there is an injection
from S into P which preserves collinearities, complanarities, non-collinearities, and non-
complanarities.

If (S, L, P) is a planar space, for every poipt a star with centerp is the set of the lines
throughp; if 7 is a plane ang a point ofr, apencil of linesof centerp is the set of the lines
throughp contained int.

A partial line spaceis a pair(S, Ro), whereS is a set ofpointsandRg is a family of
proper subsets di, calledlines such that:

(1) Rois a covering of &
(2) every line has at least two points;
(3) any two distinct points are on at most one line.

If two different pointsp, p’ of § are collinear we writgp ~ p’. If pandp’ are not collinear,
we write p ¢ p'.

A subsetH of & is asubspacef (S, Ro) if for everyx, y € H, x andy are collinear and
the line[x, y] is contained irH.

Two partial line spacegS, R) and(S R’) areisomorphic if there is a bijectionp : S — S’
such that botlp and¢ ! preserve collinearities.

TheGrassmann spaaaf a planar spacéS, £, P) is the partial line spacg(S) = (S, Ro),
whosepointsare the lines of S, £, P) and whosdinesare the pencils of lines afS, L, P).
The lines of a stafly with centerx of (S, £, P) are the points of a maximal subspatef
(S, Ro), again called star.

Let 7 be the family of the stars afS, Ro). Then it is easy to see that the following prop-
erties hold.
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I. Through any point of S, Ro) there areat least two distinct stars. Moreover, [etbe a
star andp be a point not oT. Then, each staf’ throughp meetsT in a single point
P, thesef{p’ = TNT'}y5p = £p(T) is contained in alind ,(T), and¢p(T) consists
of all the points ofT collinear with p.

Il. Let T andT’ be twodifferent stars, witif N T" = {p}. If x € T, x # p, then for any
y € Lx(T"),y # p, we havel y(T) = [p, X].

If (S, L, P) is a projective space, th&€b(S) is called gprojectiveGrassmann space. In such
a case, for every stdr and for every poinp ¢ T, we havelp(T) = Lp(T).

If £p(T) = Lp(T), then Property | implies Property I, and Melone and Olandatave
shownthat this characterizes the Grassmann s of a projective spacP = (S, L, P).
Their theorem can be rephrased as follows.

THEOREM 1.1 (MELONE AND OLANDA [2]). Let (S, R) be aproper partial line space
whose lines are not maximal subspaceg.3fR) has a covering/ of maximal subspaces
with the property

foreach Te 7 and eab p € S— T, every element df through p intersects T in
a unique point, and these points trace out a ling(T) formed by all the points of T
collinear with p.

Then(S, R) is isomorphic to the Grassmann space of a projective space.

In their proof, Melone and Olanda constructed another fafilygf maximal subspaces in
(S, R) and showed that both the familigsandTII fullfil the following properties.

(a) Three pairwise collinear points & noton a common line, are contained in a unique
element of7 U IT;

b T,TeT, TT = |TNT'|=1;
) TeT,rell=TNr=0orTNx €R;
AVeR=—3IINTecT,Anel:TNr =¢.

These properties, as shown by Tallini in the celebrated paper [3], allow us to construct a
projective spaceé® whose Grassmann space is isomorphiSoR). Hence, using this result,
Melone and Olanda obtained their result.

In this paper we show that Properties | and Il characterize the GrassmannGoaf a
planar spacgS, £, P). Our main result is the following.

THEOREM 1.2. Let(S, R) be apartial line space whose lines are not maximal subspaces.
If (S, R) has a familyZ of maximal subspaces, whose elements are called stars, with Proper-
ties | and Il, then there exists a planar spd@g= (S, Lo, Po) such thaiG(Pg) is isomorphic
to (S, R).

In the proof of the theorem we show that the fariilyenables us to construct the planar
spacePy. Moreover, we show that, if in Property¢h(T) = Lp(T) holds, then Property |
implies Property I, and furthermore the planar spBgds a projective space (possibly re-
ducible).

Hence, the theorem of Melone and Olanda follows from Thedtedas a corollary. On the
other handyve obtain a new direct proof of Theorelnl without using the result of Tallini.
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2. CONSTRUCTION OF THEPLANAR SPACE Pg

Let us first show some properties of a partial line space, whose lines are not maximal sub-
spaces, and with a family of maximal subspaces, callsthrs, satisfying Properties | and Il.
From Property | it easily follows:

PrROPOSITION2.1. Two distinct stars intersect at a single point.
Moreover, the following holds.

PROPOSITION2.2. Every liner is contained in a unique star().

PrROOF From Propositior.1it follows that there is at most one star containmg-et p
bea point onr and letT be a star througip. We may assume that does not contain. Put
y e r — {p}. Sincep € T and p is collinear withy, there exists a staFy, throughy which
intersectsT in p. Hencer C Ty. |

We now construct a planar spac®, Lo, Po) by using the family7 .

The setS of pointsis defined to b&. A line is a subset ofy consisting of all members of
T through a fixed poinp € S, which we denote by ,. Denote byLg the family {L p}pes.
Since two stars intersect in a single point, tlip, Lo) is a linear space. For every lines R,
aplanegenerated by is the following subset; of &

o ={T eT:TNr #0@}.
The following propositions describe the subsets

PROPOSITION2.3. Every planer; is asubspace ofSy, £o) and it contains at least three
non-collinear points.

PrROOF We first show thatr; is asubspace. LeT = T(r) be the unique star containing
the liner, and letT’ andT” be two points ofr;. Let p be the poinfT’ N T”. If p € r, then
the line L p through the pointd” and T” is contained inz;. If p ¢ r, thenT  andT” are
different fromT and, since = L p(T), it follows that the lineL p through the point§ " and
T” is contained int, . Hencer; is a subspace.

Let a andb be two points of and letT; and Ty be two stars through andb resp., both
different fromT. The three point3,, Ty, T of 7y are not collinear. O

PROPOSITION2.4. Letr,r’ € R. If r and r’ are contained in a star T, then eithef N
= {T}orm Nmisaline.

PrROOFR Letr andr’ be twolines of (S, R) and letT be the star containing bothandr’.
If r Nr’ = @ then, since two stars intersect at a single point, it follows thdg € 7 — {T},
thenTy ¢ 7y . Henceny N = {T}.

If r nr’ = {p}, then clearlyry N = Lp. O

PROPOSITION2.5. Letr,r’ € R.Ifr Nnr’ = {p} and there is no star containing both r and
r’, then
mr =me < Jaer —{p}and3a’ er’ — {p} such that ~ a'.
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PROOR «. Leta € r — {p} and leta’ be a point ofr’ — {p} such thata ~ a’. Let T
andT’ be two stars containingandr’, respectively, and |€ly be the star containing the line
[a, @']. The starsT, T’ and Ty are pairwise different. Moreovedr,(T') = [p,a’] = r’ and
La(T) =[p,a] =r. Itfollows that, ify e r = Ly(T), thena’ € Ly(T') =r'.

Thus, if T” is a star througly, thenT” N T’ is a point ofr’. Hencer, C 7. Similarly one
can showr; C 7y. Thenmy = my0.

=. Let T be the star containing. If a € r, thenLy C 7;. Since|La| > 2, there exists
To € La, To # T andTy € 7/ (= 7y ). Hence,To meets’ in a pointa’ # p and sca’ ~ a. O

PROPOSITION2.6. Letr,r’ € R. Ifr Nr’ = @ and there is no star containing both r and
r’, thenm, £ m/.

PROOF. Let T and T’ be thetwo stars containing andr’, respectively, and letp} =
TNT.If 7y = m, then fromT € x, it follows thatT Nr’ # @, hencep € r’; similarly,
sinceT’ € n;yr, thenT’ Nr # @andp er. Itfollowsr Nr’ = {p}, a contradiction. O

Denote byPg the family of distinct planesg;,r € R. The following holds.

PROPOSITION2.7. Letw; andn, be twodistinct elements dPy. Thens, andzw,;, have at
most one line in common.

PROOF Letsw; andr,s be twodistinct planes generated byandr’, respectively. I and
r’ lie in a common stall, then from Propositio.4 it follows that eitherr; N7, = {T} or
mr N isaline.

We may therefore assume thatandr’ lie in different starsT and T’, respectively. Let
{p=TNT.IfrNr" # @, thenr Nr’ = {p}andLp € =y N 7. Sincer andr’ generate
two distinct planes, from Propositidh5 it follows that for everya € r — {p} andfor every
a er’ —{p} itisa a’. Hencer; Ny = Ly,

If rNr’ = @ and one of them, say, containsp, then the two planes; andr;, have at most
one line in common. In fact, i, N, contains three non-collinear poinks, T, andTs, then
at least two of them, sa¥y; andT», are different fromT. Thenp ¢ T1. Leta = Ty Nr and
a’ = Ty Nr’. SinceTy, T and Tz are three non-collinear points, at least ondpandTs, say
Ty, does not contain. Letc = ToNr andc’ = T, Nr’. Sincec’ € La(T'), thena € L (T).
Butc € L¢(T),soLg(T) =r and sincep € Ly (T), we havep < r, contradicting Nr’ = ¢.

If r Nnr’ = @ and no one of them contains let T and T, be two points ofr, N 7;» and
let {y} = T1 N To. Sincer; Ny is a subspace, it contains the lihg, soy ¢ T U T'. Put
a=TiNr,a =TiNr',b=ToNr,andb’ = ToNr'. If s=[y,a] # [y,a] = ¢, then
from Propositior2.5it follows thatrs = 7y andry = m. Hence Ly = nsNg = 7y Ny
We may therefore assume that= s’ and[y, b] = [y, b’]. From Propositior2.5 it follows
s = 7y andrs = s, hencer, = 7y, contradicting Propositiog.6. O

Now we prove that:

PROPOSITION2.8. The triple(S, Lo, Po) is aplanar space.

PrROOFE We only have to show that every three non-collinear points lie in a plane, which
is uniqueby Propositior2.7. LetT, T/, T” bethree non-collinear points. Pgt=T' N T”,

P=TNnT",p =TnT andr = [p, p"],r' = [p,p'],t" = [p, p']. The plane
7y (= = myr) contains the three poin®, T', T” and this completes the proof. O
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If T e 7 andr is aline contained inT, then all linesL , with p e r, form the pencil of
lines, 71 with centerT, in the planer,.

Conversely it is not difficult to show, by using Propositich® and2.5 and I, that every
pencil oflines of the planar space can be obtained in this way.

To complete the proof of Theorein2, we only have to show that the Grassmann space of
(S, Lo, Po) is isomorphido (S, R).

Let (S, R) = G(S) be the Grassmann space (&, Lo, Po). We recall that the points
of (S, R’) are the lines o &, Lo, Po) and the lines of S, R’) are the pencils of lines of
(S0, Lo, Po).

The mapf : Lp € S — p € Sis a bijection. It remains to show thdt maps lines to
lines. LetL’ € R’. ThenL’ is a pencil of lines of S, Lo, Po), so are all the lines contained
in a planer; and containing the common poifit= T (L). Hence, every line of the pendil
determines a point df, then f maps the lind.’ to the lineL € R.

Conversely, ifp e L, L € R, the lineL, containsT = T (L) and it is contained irr.. So,
it is a line of the pencil’. It follows that bothf and its inverse map lines to lines and s
an isomorphisms betwed®, R') and(S, R). Theoreml.2is completely proved.

We conclude with the following:

PROPOSITION2.9. If £,(T) = Lp(T), pe Sand T € 7, then the planar spaces, Lo,
Po) is a projective space (possibly reducible). Moreo\&,, Lo, Pop) is irreducible if and
only if (S, R) is irreducible.

PROOF Itis enough to show that the planesff are projectie planes (possibly reducible).
Let 7, be a plane ofPy and letLy, Ly be two of its lines. Denote by the starT (r). We
showthatLy "Ly #@. Ify,y er,thenLyNnLy ={T}).Ifyer,y ¢r,thenLy(T)=r
soy ~ y'. HenceLy N Ly = {T'}, whereT' is the unique star containing the lifig, y'].
Finally, if y,y" ¢ r, then letT; be a star througly and letT, be a star througly’. Put
a=TiNT,a =T,NTandz= T, NTy. ThenLy(T1) = [a, y], SOT2 meetsT; in a point
of [a, y]. It follows thatLy (T1) = [a, Y], soy ~ y'. Then, the unique staF’ containing the
line [y, y'] is the point of intersection df y andL .

Since it is easy to see théf, Lo, Po) is irreducible if and only if(S, R) is so, the proof is
complete. a
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