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The Grassmann Space of a Planar Space

NICOLA DURANTE, V ITO NAPOLITANO AND DOMENICO OLANDA

In this paper we give a characterization of the Grassmann space of a planar space.

c© 2000 AcademicPress

1. INTRODUCTION

A linear spaceis a pair(S,L), whereS is a set ofpointsandL is a family of proper subsets
of S, calledlines, each one with at least two points, such that

1.1 any two distinct points are on exactly one line.

A subsetH of S is a subspaceof (S,L) if it contains the line[x, y] through any pairx, y
of distinct points ofH .

A planar spaceis a triple (S,L,P), where(S,L) is a linear space andP is a family of
proper subspaces of(S,L), calledplanes, such that

1.2 three points not on a line are contained in a unique plane;
1.3 every plane contains at least three non-collinear points.

Let (S,L,P) be afinite planar space. For every planeπ in P, denote byLπ the set of the
lines ofL contained inπ .

A planar space(S,L,P) is embeddablein a projective spaceP if there is an injection
from S into P which preserves collinearities, complanarities, non-collinearities, and non-
complanarities.

If (S,L,P) is a planar space, for every pointp, a star with centerp is the set of the lines
throughp; if π is a plane andp a point ofπ , apencil of linesof centerp is the set of the lines
throughp contained inπ .

A partial line spaceis a pair(S0,R0), whereS0 is a set ofpointsandR0 is a family of
proper subsets ofS0, calledlines, such that:

(1) R0 is a covering of S0;
(2) every line has at least two points;
(3) any two distinct points are on at most one line.

If two different pointsp, p′ of S0 are collinear we writep ∼ p′. If p andp′ are not collinear,
we write p 6∼ p′.

A subsetH of S0 is asubspaceof (S0,R0) if for every x, y ∈ H , x andy are collinear and
the line[x, y] is contained inH .

Two partial line spaces(S,R) and(S′R′) areisomorphic if there is a bijectionφ : S → S ′
such that bothφ andφ−1 preserve collinearities.

TheGrassmann spaceof a planar space(S,L,P) is the partial line spaceG(S) = (S0,R0),
whosepointsare the lines of(S,L,P) and whoselinesare the pencils of lines of(S,L,P).
The lines of a starTx with centerx of (S,L,P) are the points of a maximal subspaceT of
(S0,R0), again called astar.

Let T be the family of the stars of(S0,R0). Then it is easy to see that the following prop-
erties hold.
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I. Through any point of(S0,R0) there areat least two distinct stars. Moreover, letT be a
star andp be a point not onT . Then, each starT ′ throughp meetsT in a single point
p′, the set{p′ = T ∩T ′}T ′3p = `p(T) is contained in a lineL p(T), and`p(T) consists
of all the points ofT collinear with p.

II. Let T andT ′ be twodifferent stars, withT ∩ T ′ = {p}. If x ∈ T, x 6= p, then for any
y ∈ Lx(T ′), y 6= p, we haveL y(T) = [p, x].

If (S,L,P) is a projective space, thenG(S) is called aprojectiveGrassmann space. In such
a case, for every starT and for every pointp /∈ T , we havè p(T) = L p(T).

If `p(T) = L p(T), then Property I implies Property II, and Melone and Olanda [2], have
shownthat this characterizes the Grassmann spaceG(S) of a projective spaceP= (S,L,P).
Their theorem can be rephrased as follows.

THEOREM 1.1 (MELONE AND OLANDA [2]). Let (S,R) be aproper partial line space
whose lines are not maximal subspaces. If(S,R) has a coveringT of maximal subspaces
with the property

for each T ∈ T and each p ∈ S− T , every element ofT through p intersects T in
a unique point, and these points trace out a line Lp(T) formed by all the points of T
collinear with p.

Then(S,R) is isomorphic to the Grassmann space of a projective space.

In their proof, Melone and Olanda constructed another family5 of maximal subspaces in
(S,R) and showed that both the familiesT and5 fullfil the following properties.

(a) Three pairwise collinear points ofS, not on a common line, are contained in a unique
element ofT ∪5;

(b) T, T ′ ∈ T , T 6= T ′ H⇒ |T ∩ T ′| = 1;

(c) T ∈ T , π ∈ 5 H⇒ T ∩ π = ∅ or T ∩ π ∈ R;

(d) ∀` ∈ R H⇒ ∃!T ∈ T , ∃!π ∈ 5 : T ∩ π = `.

These properties, as shown by Tallini in the celebrated paper [3], allow us to construct a
projective spaceP whose Grassmann space is isomorphic to(S,R). Hence, using this result,
Melone and Olanda obtained their result.

In this paper we show that Properties I and II characterize the Grassmann spaceG(S) of a
planar space(S,L,P). Our main result is the following.

THEOREM 1.2. Let (S,R) be apartial line space whose lines are not maximal subspaces.
If (S,R) has a familyT of maximal subspaces, whose elements are called stars, with Proper-
ties I and II, then there exists a planar spaceP0 = (S0,L0,P0) such thatG(P0) is isomorphic
to (S,R).

In the proof of the theorem we show that the familyT enables us to construct the planar
spaceP0. Moreover, we show that, if in Property I`p(T) = L p(T) holds, then Property I
implies Property II, and furthermore the planar spaceP0 is a projective space (possibly re-
ducible).

Hence, the theorem of Melone and Olanda follows from Theorem1.2as a corollary. On the
other hand,we obtain a new direct proof of Theorem1.1without using the result of Tallini.
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2. CONSTRUCTION OF THEPLANAR SPACE P0

Let us first show some properties of a partial line space, whose lines are not maximal sub-
spaces, and with a familyT of maximal subspaces, calledstars, satisfying Properties I and II.

From Property I it easily follows:

PROPOSITION2.1. Two distinct stars intersect at a single point.

Moreover, the following holds.

PROPOSITION2.2. Every line r is contained in a unique star T(r ).

PROOF. From Proposition2.1 it follows that there is at most one star containingr . Let p
bea point onr and letT be a star throughp. We may assume thatT does not containr . Put
y ∈ r − {p}. Sincep ∈ T and p is collinear withy, there exists a starTy throughy which
intersectsT in p. Hencer ⊂ Ty. 2

We now construct a planar space(S0,L0,P0) by using the familyT .
The setS0 of pointsis defined to beT . A line is a subset ofS0 consisting of all members of
T through a fixed pointp ∈ S, which we denote byL p. Denote byL0 the family {L p}p∈S .
Since two stars intersect in a single point, then(S0,L0) is a linear space. For every liner ∈ R,
aplanegenerated byr is the following subsetπr of S0

πr = {T ∈ T : T ∩ r 6= ∅}.

The following propositions describe the subsetsπr .

PROPOSITION2.3. Every planeπr is a subspace of(S0,L0) and it contains at least three
non-collinear points.

PROOF. We first show thatπr is asubspace. LetT = T(r ) be the unique star containing
the liner , and letT ′ andT ′′ be two points ofπr . Let p be the pointT ′ ∩ T ′′. If p ∈ r , then
the line L p through the pointsT ′ andT ′′ is contained inπr . If p /∈ r , thenT ′ andT ′′ are
different fromT and, sincer = L p(T), it follows that the lineL p through the pointsT ′ and
T ′′ is contained inπr . Hence,πr is a subspace.

Let a andb be two points ofr and letTa andTb be two stars througha andb resp., both
different fromT . The three pointsTa, Tb, T of πr are not collinear. 2

PROPOSITION2.4. Let r, r ′ ∈ R. If r and r′ are contained in a star T , then eitherπr ∩

πr ′ = {T} or πr ∩ πr ′ is a line.

PROOF. Let r andr ′ be twolines of(S,R) and letT be the star containing bothr andr ′.
If r ∩ r ′ = ∅ then, since two stars intersect at a single point, it follows that ifT0 ∈ πr − {T},
thenT0 /∈ πr ′ . Henceπr ∩ πr ′ = {T}.

If r ∩ r ′ = {p}, then clearlyπr ∩ πr ′ = L p. 2

PROPOSITION2.5. Let r, r ′ ∈ R. If r ∩ r ′ = {p} and there is no star containing both r and
r ′, then

πr = πr ′ ⇔ ∃a ∈ r − {p} and∃a′ ∈ r ′ − {p} such thata ∼ a′.
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PROOF. ⇐. Let a ∈ r − {p} and leta′ be a point ofr ′ − {p} such thata ∼ a′. Let T
andT ′ be two stars containingr andr ′, respectively, and letT0 be the star containing the line
[a,a′]. The starsT, T ′ andT0 are pairwise different. MoreoverLa(T ′) = [p,a′] = r ′ and
La′(T) = [p,a] = r . It follows that, if y ∈ r = La′(T), thena′ ∈ L y(T ′) = r ′.

Thus, ifT ′′ is a star throughy, thenT ′′ ∩ T ′ is a point ofr ′. Henceπr ⊆ πr ′ . Similarly one
can showπr ′ ⊆ πr . Thenπr = πr ′ .
⇒. Let T be the star containingr . If a ∈ r , thenLa ⊆ πr . Since|La| ≥ 2, there exists

T0 ∈ La, T0 6= T andT0 ∈ πr ′(= πr ). Hence,T0 meetsr ′ in a pointa′ 6= p and soa′ ∼ a. 2

PROPOSITION2.6. Let r, r ′ ∈ R. If r ∩ r ′ = ∅ and there is no star containing both r and
r ′, thenπr 6= πr ′ .

PROOF. Let T and T ′ be thetwo stars containingr and r ′, respectively, and let{p} =
T ∩ T ′. If πr = πr ′ , then fromT ∈ πr it follows that T ∩ r ′ 6= ∅, hencep ∈ r ′; similarly,
sinceT ′ ∈ πr ′ , thenT ′ ∩ r 6= ∅ and p ∈ r . It follows r ∩ r ′ = {p}, a contradiction. 2

Denote byP0 the family of distinct planesπr , r ∈ R. The following holds.

PROPOSITION2.7. Letπr andπr ′ be twodistinct elements ofP0. Thenπr andπr ′ have at
most one line in common.

PROOF. Let πr andπr ′ be twodistinct planes generated byr andr ′, respectively. Ifr and
r ′ lie in a common starT , then from Proposition2.4 it follows that eitherπr ∩ πr ′ = {T} or
πr ∩ πr ′ is a line.

We may therefore assume thatr and r ′ lie in different starsT and T ′, respectively. Let
{p} = T ∩ T ′. If r ∩ r ′ 6= ∅, thenr ∩ r ′ = {p} andL p ⊆ πr ∩ πr ′ . Sincer andr ′ generate
two distinct planes, from Proposition2.5 it follows that for everya ∈ r − {p} andfor every
a′ ∈ r ′ − {p}, it is a 6∼ a′. Henceπr ∩ πr ′ = L p.

If r ∩r ′ = ∅ and one of them, sayr ′, containsp, then the two planesπr andπr ′ have at most
one line in common. In fact, ifπr ∩πr ′ contains three non-collinear pointsT1, T2 andT3, then
at least two of them, sayT1 andT2, are different fromT . Then p /∈ T1. Let a = T1 ∩ r and
a′ = T1 ∩ r ′. SinceT1, T2 andT3 are three non-collinear points, at least one ofT2 andT3, say
T2, does not containa. Let c = T2 ∩ r andc′ = T2 ∩ r ′. Sincec′ ∈ La(T ′), thena ∈ Lc′(T).
But c ∈ Lc′(T), soLc′(T) = r and sincep ∈ Lc′(T), we havep ∈ r , contradictingr ∩r ′ = ∅.

If r ∩ r ′ = ∅ and no one of them containsp, let T1 andT2 be two points ofπr ∩ πr ′ and
let {y} = T1 ∩ T2. Sinceπr ∩ πr ′ is a subspace, it contains the lineL y, so y /∈ T ∪ T ′. Put
a = T1 ∩ r , a′ = T1 ∩ r ′, b = T2 ∩ r , andb′ = T2 ∩ r ′. If s = [y,a] 6= [y,a′] = s′, then
from Proposition2.5it follows thatπs = πr andπs′ = πr ′ . Hence,L y = πs∩πs′ = πr ∩πr ′ .
We may therefore assume thats = s′ and[y, b] = [y, b′]. From Proposition2.5 it follows
πs = πr andπs = πr ′ , henceπr = πr ′ , contradicting Proposition2.6. 2

Now we prove that:

PROPOSITION2.8. The triple(S0,L0,P0) is aplanar space.

PROOF. We only have to show that every three non-collinear points lie in a plane, which
is uniqueby Proposition2.7. LetT , T ′, T ′′ bethree non-collinear points. Putp = T ′ ∩ T ′′,
p′ = T ∩ T ′′, p′′ = T ∩ T ′′ and r = [p′, p′′], r ′ = [p, p′′], r ′′ = [p, p′]. The plane
πr (= πr ′ = πr ′′) contains the three pointsT , T ′, T ′′ and this completes the proof. 2
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If T ∈ T andr is a line contained inT , then all linesL p, with p ∈ r , form the pencil of
lines,FT with centerT , in the planeπr .

Conversely it is not difficult to show, by using Propositions2.2 and2.5 and II, that every
pencil oflines of the planar space can be obtained in this way.

To complete the proof of Theorem1.2, we only have to show that the Grassmann space of
(S0,L0,P0) is isomorphicto (S,R).

Let (S′,R′) = G(S0) be the Grassmann space of(S0,L0,P0). We recall that the points
of (S′,R′) are the lines of(S0,L0,P0) and the lines of(S′,R′) are the pencils of lines of
(S0,L0,P0).

The map f : L p ∈ S′ 7→ p ∈ S is a bijection. It remains to show thatf maps lines to
lines. LetL ′ ∈ R′. ThenL ′ is a pencil of lines of(S0,L0,P0), so are all the lines contained
in a planeπL and containing the common pointT = T(L). Hence, every line of the pencilL ′

determines a point ofL, then f maps the lineL ′ to the lineL ∈ R.
Conversely, ifp ∈ L, L ∈ R, the lineL p containsT = T(L) and it is contained inπL . So,

it is a line of the pencilL ′. It follows that both f and its inverse map lines to lines and sof is
an isomorphisms between(S′,R′) and(S,R). Theorem1.2 is completely proved.

Weconclude with the following:

PROPOSITION2.9. If `p(T) = L p(T), p ∈ S and T ∈ T , then the planar space(S0,L0,
P0) is a projective space (possibly reducible). Moreover,(S0,L0,P0) is irreducible if and
only if (S,R) is irreducible.

PROOF. It is enough to show that the planes ofP0 are projective planes (possibly reducible).
Let πr be a plane ofP0 and letL y, L y′ be two of its lines. Denote byT the starT(r ). We
show thatL y ∩ L y′ 6= ∅. If y, y′ ∈ r , thenL y ∩ L y′ = {T}. If y ∈ r, y′ /∈ r , thenL y′(T) = r
so y ∼ y′. HenceL y ∩ L y′ = {T ′}, whereT ′ is the unique star containing the line[y, y′].
Finally, if y, y′ /∈ r , then letT1 be a star throughy and letT2 be a star throughy′. Put
a = T1 ∩ T,a′ = T2 ∩ T andz = T2 ∩ T1. ThenLa′(T1) = [a, y], soT2 meetsT1 in a point
of [a, y]. It follows thatL y′(T1) = [a, y], soy ∼ y′. Then, the unique starT ′ containing the
line [y, y′] is the point of intersection ofL y andL y′ .

Since it is easy to see that(S0,L0,P0) is irreducible if and only if(S,R) is so, the proof is
complete. 2
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