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ARTICLE INFO ABSTRACT

Article history: microRNAs with their ability to regulate complex pathways that control cellular behavior and phenotype have
Rece?"“ ?1 ME{TCh 2013 been proposed as potential targets for cell engineering in the context of optimization of biopharmaceutical pro-
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lack of genomic sequence information on this industrially important cell line. With the publication of the genomic
sequence and other relevant data sets for CHO cells since 2011, the doors have been opened for an improved un-
derstanding of CHO cell physiology and for the development of the necessary tools for novel engineering strate-
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MicroRNA engineering gies. In the present review we discuss both knowledge on the regulatory mechanisms of microRNAs obtained
Chinese Hamster Ovary cells from other biological models and proof of concepts already performed on CHO cells, thus providing an outlook
Bioprocess relevant properties of potential applications of microRNA engineering in production cell lines.
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1. Introduction
1.1. MicroRNAs: from basics to applications

In the early 1990 small non-coding RNA molecules with the ability to
regulate translation of target mRNAs by an antisense mechanism were
discovered during developmental studies in the nematode worm (Lee
et al.,, 1993; Wharton and Struhl, 1991). The much broader implications
of these small RNAs were unacknowledged, until the identification
of hundreds of similar small RNAs in a range of higher eukaryotes
7 years later. These newly discovered classes of small RNA molecules
had striking similarities, such as lengths between 18 and 24 nucleotides
and one or more, completely or partially complementary binding
sites in 3’-UTR of mRNAs. These novel small RNAs were termed as
microRNAs.

MicroRNAs were found to be expressed in a wide range of higher
eukaryotes and to be highly conserved across species (Pasquinelli
et al,, 2000). With the availability of whole genome sequences, many
more of these structurally and functionally distinct non-coding RNAs
were discovered both experimentally and by bioinformatic prediction
(Ambros and Lee, 2004; Ambros et al., 2003; Kozomara and Griffiths-
Jones, 2011). The current version of miRBase (release 19.0) contains
more than 20,000 entries from a wide variety of organisms, including vi-
ruses, plants and animals from nematodes to mammals (Griffiths-Jones,
2010). It is clear that such abundant molecules must have important
functions and indeed, microRNAs have since been shown to be involved
in all major cellular processes, such as cell division, death, embryonic
development and timing, metabolism, host-virus interaction and tissue
differentiation (Ambros, 2004; Scaria and Jadhav, 2007). Their function
is based on antisense recognition of specific sequences in the target
mRNA. They are able to regulate complex networks, due to the fact
that a single microRNA can find targets in multiple mRNAs, while each
mRNA may in turn contain binding sites for multiple microRNAs
(Hobert, 2008).

The discovery and elucidation of the cellular machinery that controls
this regulation enabled the development of siRNAs, a new toolbox
whose discovery merited the Nobel Prize for Physiology in 2006 (Fire
et al, 1998). In a recent review, the mechanism of action of microRNAs
and their potential as biomarkers and novel drug targets was discussed
(Bratkovic et al., 2012). In this review, we provide a detailed discussion
of microRNAs with high relevance for optimizing cell lines used for
biotechnological production of therapeutic proteins, with a focus on
process-relevant properties such as growth, viability and apoptosis,
productivity, stability and product quality. In addition to findings on
microRNAs from other research areas that could be translated into cell
engineering approaches, a comprehensive summary of CHO specific
microRNA data will be given. The review concludes by discussing
other non-coding RNAs with biological roles that might be of interest
for cell culture technology.

2. CHO cell engineering — genome scale data is opening new doors

The most frequently used mammalian production cell line at
industrial scales is the Chinese Hamster Ovary (CHO) cell line, isolated
by Theodore Puck in the late 1950s (Puck et al., 1958). These lines
were applied as recombinant hosts in 1987 with the commercial
introduction of human tissue plasminogen activator (tPA) as the first re-
combinant therapeutic protein produced from mammalian cells (Finkle,
1988). Since then, the annual revenue of products from CHO cells has
increased to more than 100 billion US dollars and continues to grow
(Aggarwal, 2011). One of the major reasons for the success story of
CHO cells is their adaptability and plasticity with respect to the
phenotypic characteristics that are necessary for industrial production
of therapeutic proteins (Jayapal et al., 2007): growth in suspension,
adaptation to a number of steadily improving chemically defined

media with ease, and production of proteins of high quality suitable
for safe use in humans with low occurrence of immunologic reactions.

Silenced expression of specific surface proteins accounts for their
low susceptibility to viral infections (Xu et al., 2011) and a high number
of clones have been generated with distinct glycosylation patterns
(Borisov et al.,, 2009; Imai-Nishiya et al., 2007; Yamane-Ohnuki et al,
2004) that enhance the therapeutic efficacy of the product (Jefferis,
2012). Despite the success story of CHO cells, the above mentioned plas-
ticity also has drawbacks. First, a large number of clones need to be
screened for each new production of cell line to identify the few that
unite all the necessary phenotypic properties, such as high product
quality, fast growth, high productivity and prolonged viable culture
life in large scale bioprocesses. Second, once a suitable clone is identi-
fied, both phenotype and productivity can be subject to instability and
phenotypic drift, resulting in a limited number of doublings over
which a cell line can be used reliably.

These issues have been the focus of research over the last 25 years
with only limited solutions having been found (Hacker et al., 2009).
The most significant improvements to CHO culture so far have resulted
from the optimization of media, feeding strategies and processes. This
has resulted, at least for antibody products, in yields commonly ranging
between 2 and 6 g/l (Wurm, 2004), with titers of 20 g/l being reported
(Kim et al., 2012). Engineering of cell lines has resulted in improved
product quality (Huang et al., 2012a; North et al., 2010; Pouilly et al.,
2012; Raju et al, 2001) and some improvements in productivity
(Figueroa et al, 2007); however, no successes comparable to the
enhancements obtained by media optimization have been reported so
far, and the most prominent problems of mammalian cell culture,
such as the efficient energy utilization (Zeng et al., 1998) have not
been completely resolved by metabolic engineering strategies (Kim
and Lee, 2007a,b; Park et al., 2000). Most of these metabolic engineering
strategies were limited to expressing single genes expected to shift
metabolic pathways (Banmeyer et al,, 2004; Hou and Li, 1987a,b; Jeon
et al.,, 2011) or to making cells more resistant to apoptosis triggered
by nutrient depletion or hyperosmolarity (Figueroa et al, 2007;
Fussenegger et al., 2000; Lim et al., 2006; Park et al., 2000; Sauerwald
et al.,, 2006; Sung et al., 2007; Wong et al., 2006). However, cells have
redundant mechanisms to control cellular physiology, meaning that
cells have different options to reach the same goal (Charaniya et al.,
2009, 2010; Dinnis and James, 2005), which has been nicely demon-
strated in recent years in several multiparameter -omics studies
(Chong et al., 2010, 2011; Doolan et al.,, 2010; Meleady et al., 2012b;
Weuest et al., 2012; Zhao et al., 2012). This has resulted in a paradigm
shift from single gene engineering towards the control of signaling
pathways, which can be achieved either by targeting regulatory hubs
such as MAPK or mTOR (Dreesen and Fussenegger, 2011; Kim et al.,
2011) or gene networks that control biological processes, which can
be achieved by transcription factor or microRNA engineering (Barron
et al,, 2011b; Hackl et al., 2012a; Miiller et al., 2008). microRNAs have
the advantage that they do not add a translational burden onto produc-
tion cells while being able to orchestrate complex gene networks in
a coordinated fashion. However, as pointed out by Bratkovic et al.
(2012), any research on CHO microRNA biology (or any other biology
in CHO) has been severely restricted by the lack of genomic sequence
information, at least until recently.

Although a consortium has been working on sequencing a CHO EST
library since 2004 (Wlaschin et al., 2005), it was only during the last two
years that a flood of sequencing data on CHO cells has become publically
available, thus setting the stage for a new era of scientific exploration
and innovation in CHO biology and engineering. The milestones of
published genomic and transcriptomic sequence data are summarized
in Fig. 1 (Gammell, 2007; Birzele et al., 2010; Hammond et al., 2011;
Johnson et al,, 2011; Hackl et al., 2011; Xu et al,, 2011; Becker et al.,
2011; Hackl et al,, 2012b; Hammond et al.,, 2012b; Baycin-Hizal et al.,
2012; Gerstl et al., 2013; Lewis et al,, in press; Brinkrolf et al., 2013)
and the respective datasets including updates are now assembled and
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Fig. 1. Timeline showing recent boom in Chinese Hamster Ovary (CHO) cell genome science with increase in publications on sequence information and annotation. These developments
have significantly advanced the establishment of new and improved tools for cell engineering and bioprocess development.

available online at www.CHOgenome.org for easy access and reference
(Hammond et al., 2012b). With this information, several essential tools
can be developed that facilitate an improved understanding of CHO
cell physiology and provide the impetus for groundbreaking novel
engineering strategies: i) CHO-specific mRNA, cDNA or whole-
genome microarrays can be designed based on CHO sequence data,
and analysis of next-generation sequencing data and proteomics data
will be simplified by well-annotated references; ii) sequence alignment
and primer design tools will facilitate gene cloning as well as site-
specific gene knock-in and knock-out approaches during cell line devel-
opment; and iii) mature and stemloop microRNA sequences will enable
the design of anti-sense inhibitors (termed antagomirs or anti-miRs) or
mimics for overexpression (Kriitzfeldt et al., 2005). The importance of a
sequenced host genome can be deduced from the fact that
overexpression of mature microRNAs in CHO cells was higher when the
autologous CHO stemloops were used rather than an artificial stemloop
routinely used for expression of siRNAs (personal communication).

Even without such tools and CHO-specific sequence data, the potential
of using microRNAs to engineer the most important process-relevant
properties was recognized very early, and multiple groups began to
explore their use (Barron et al., 2011b; Miiller et al., 2008). In the
following chapter we discuss those cellular characteristics that are
relevant for recombinant protein production (Fig. 2), summarizing
both knowledge obtained from other biological models (Table 1) and
experiments and proof of concepts already performed on CHO cells
as production cell lines (Table 2), thus setting the stage for future
developments of microRNA engineered cell lines.

3. Process relevant properties as targets for microRNA based
cell engineering

3.1. Cell growth

Since their discovery, microRNAs were thought to play critical roles
in modulating cell cycle arrest, cell proliferation and cell death. A clear

link came from studies of microRNA expression profiling in human
cancer that lead to an understanding of the relationship between
microRNA function and cancer phenotype (Blenkiron et al, 2007;
Jiang et al,, 2005; Porkka et al., 2007; Solomides et al., 2012; Yang
et al,, 2008; Yao et al,, 2009). Differential expression studies revealed
that the majority of microRNAs are expressed at significantly lower
levels in a variety of tumors compared to normal tissues. Deregulation
of microRNA expression can be both tumor suppressive or oncogenic
(oncomirs), with differentially expressed microRNAs associated with
pathways such as cell cycle, cell growth and cell death (Lee and Dutta,
2006).

Tumor suppressor microRNAs function by down-regulating
oncogenes. The first identified tumor suppressor microRNAs shown to
regulate the expression of an oncogene were let-7 family members.
They regulate Ras genes, which are membrane-associated GTPases
involved in signaling of cellular growth and differentiation (Johnson
et al, 2005). In addition, miR-143 and miR-145 negatively regulate
mitogen-activated protein kinase 7 (MAPK7) at a posttranscriptional
level, thus reducing growth rate in human cell lines (Lin et al., 2009;
Noguchi et al., 2011).

Similarly, oncogenic microRNAs interact with tumor-suppressor
genes and have either pro-proliferative or anti-apoptotic function.
Recent studies revealed that miR-17-92 cluster overexpression drives
tumorigenesis under the intricate network of c-Myc and E2F, and was
also shown to have bi-functional effects, acting either as oncogene or as
tumor suppressor in a cell type dependent manner (Cho, 2007; Grillari
et al., 2010; Mendell, 2008). For example, the miR-17-5p and miR-20a
target E2F1 are transcription factors that promote cell proliferation in
normal human cells but induce apoptosis in cancer cell lines (Cloonan
et al,, 2008; Hackl et al., 2010; Li et al., 2011c; Olive et al., 2010).

Another oncogenic microRNA - miR-21 - was described as playing
a critical role in the development and progression of lung cancer
by regulating multiple genes controlling several pathways including
JAK/STAT, MAPK, PPAR signaling and cell cycle related pathways,
based on a systematic analysis of literature and gene network studies
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(Frezzetti et al.,, 2011; Guan et al., 2012; Hatley et al., 2010). It can also
promote migration and invasion of human hepatocellular carcinoma
by targeting PDCD4 in a negative feedback loop (Lu et al., 2008; Si
etal., 2007). Furthermore, several microRNAs were described to act sim-
ilarly in support of cell proliferation in different cell types (Esquela-
Kerscher and Slack, 2006).

Identification and application of oncomirs or tumor suppressor
microRNAs in CHO cell engineering are interesting challenges (Miiller
et al.,, 2008). Here two different aims are of relevance: the ideal bio-
process consists of an initial extremely fast growth phase to reach full
biomass quickly, followed by a non-growing, high-productivity state in
which cells accumulate high yields of product. Thus microRNAs could
potentially be used both for their growth-enhancing and -repressing
function. In a detailed transcriptomic analysis in CHO cells aimed at un-
derstanding the microRNA-mRNA network dynamics during the course
of a batch culture a set of 10 microRNAs were identified as down-
regulated during stationary phase, with their target mRNA levels up-
regulated (Bort et al, 2012). The functions of these mRNAs were
enriched for cell cycle and programmed cell death, suggesting them
as good engineering targets to control cell death and proliferation during
the late stages of bioprocess. In a similar approach, Barron et al. (2011a)
identified miR-7 as significantly down-regulated during a temperature
shift from 37 °C to 31 °C. Interestingly, contrary to expectations, the
transient overexpression of miR-7 led to growth arrest, resulting in
increased recombinant protein production, generally observed during
temperature shift culture conditions. In a follow-up study, the effect of

miR-7 overexpression on the proteome was analyzed, revealing proteins
involved in protein folding and secretion to be up-regulated, while targets
that control protein translation and nucleic acid processing were down-
regulated (Meleady et al., 2012a). The productivity enhancement was
thus affected by an improvement in protein processing, while two
mRNAs, Stathmin and catalase, were identified as potential direct targets
of miR-7, which caused the growth arrest. More recent work, in which
miR-7 levels were stably depleted in CHO cells using a ‘sponge’, showed
a marked increase in cell proliferation and improved longevity later in
batch-fed culture (personal communication).

In the microRNA sequencing experiments, Hackl et al. (2011) found a
significant difference in the overall expression of microRNAs in CHO cells
when comparing cells grown in serum-containing medium or adapted
to protein free media. In a follow-up study on this global microRNA
regulation, the relevance of Dicer, one of the key enzymes during
microRNA biogenesis, for maintenance of growth in CHO cells was stud-
ied (Hackl et al., under review). Dicer mRNA and protein levels quickly
decrease in response to nutrient depletion or serum removal. Conversely,
Dicer expression during the exponential growth phase is 3 fold higher
in fast growing, protein-free and suspension-adapted CHO cells
(L~ 1.0 d™ 1) compared to slow growing cells (u~ 0.5 d~!), and siRNA
mediated down-regulation of Dicer expression reduces the proliferation
rate of CHO cell lines. Growth of such slow-growing cells could be in-
creased by 20% following recombinant expression of human Dicer,
suggesting a link between the overall microRNA load in CHO cells and
growth behavior.
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miRNAs controlling cellular processes and their identified targets.
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Biological process Manuscript MicroRNA identifier Effect Selection of confirmed targets Annotated in CHO
section (miRBase v20)
Cell growth 3.1. let-7 Tumor-suppressive Ras, BCL-XL Yes
miR-143-145 Tumor-suppressive MAPK7 Yes
miR-17-92 Oncogenic c-Myc, E2F1, PTEN, Bim, HIF-1a Yes
miR-21 Oncogenic PDCD4, Caspases 3 and 7 Yes
miR-7a Growth arrest Stathmin Yes
Apoptosis & cell death 3.2, miR-1 Pro-apoptotic HSP60, HSP70 Yes
miR-133 Pro-apoptotic Caspase 9 No
miR-144/155 Pro-apoptotic Caspase 3 Yes
miR-15a-16 Pro-apoptotic BCL-2, BCL-XL Yes
miR-218 Pro-apoptotic ECOP Yes
miR-297-669 Pro-apoptotic BCL2L2, DAD1, BIRC6, STAT5a, SMO No
miR-34 Pro-apoptotic BCL-2, SIRT1 Deacetylase Yes
Hypoxia & oxidative stress 3.2. miR-107/210/26 Hypoxia inducible, prevent apoptosis Multiple pro-apoptotic genes Yes
miR-31 Supports HIF-1a induction FIH Yes
miR-144/451 Oxidative stress protective NRF2, 14-3-3¢ Yes/no
Shear & osmotic stress 3.2 miR-200b/717 Osmolarity responsive OREBP Yes/no
miR-7b Osmolarity responsive FOS Yes
Energy metabolism 3.3. let-7 Glucose metabolism INSR, IGF1R, IRS2, HMGA2 Yes
miR-122 Liver metabolism Multiple cholesterol related genes Yes
miR-124/137/340 Glycolysis rate Pyruvate Kinase Isozymes (PKM1/2) Yes
miR-23a Glutamine metabolism Suppressed by C-Myc, targets GLS Yes
miR-33a/33b Fatty acid and insulin metabolism Multiple enzymes in cholesterol synthesis Yes
Productivity protein expression 3.4. miR-122/30/181d/199a-5p UPR GRP78/BiP Yes
miR-204 ER-stress SERP1/RAMP4, M6PR Yes
miR-221/222 Induce ER-stress p27Kip1, MEK/ERK Yes
miR-30c* UPR XBP-1 Yes
miR-7 Shift from growth to translation Multiple ribosomal genes Yes
miR-708 ER-stress inducible Rhodopsin Yes
Protein quality 34. miR-148b N-glycosylation CIGALT1 Yes
miR-30b/d 0-glycosylation GALNT7 Yes
Epigenetic 3.5. miR-29 DNA methylation DNMT3A/3B Yes
miR-148/152 DNA methylation DNMT1 Yes

However, since the underlying limit is likely to be found in
microRNA transcription as opposed to post-transcriptional processing
by Dicer, the preferential approach is to titrate the expression of specific
microRNAs with high impact on specific growth to an optimal expres-
sion level that will facilitate fast proliferation. Such an approach was re-
cently taken by Clarke et al., who performed integrated analysis of
microRNA, mRNA and protein expression in a set of clones with variable
growth rate (Clarke et al., 2012). In total, 35 miRNAs were identified to
be up-regulated with increased growth, and 16 miRNAs that were
down-regulated. By combining this information with mRNA and pro-
tein expression data, certain biological processes such as mRNA pro-
cessing and protein synthesis were found to be relevant for enhanced

Table 2
Summary of miRNA analysis and engineering in CHO cells.

proliferation. In silico analysis of microRNA-mediated regulation of
these pathways resulted in a high-priority list of microRNAs for use as
cell engineering targets or biomarkers, such as microRNA-17-92.

3.2. Apoptosis, cell viability and culture stress

Apoptosis, or programmed cell death, is a necessary physiological
function which helps eliminate unhealthy cells, however, the cascade
presents difficulties in maintaining high viable cell densities in mamma-
lian bioprocess applications (Miiller et al., 2008). Stress conditions in
bioreactors, including nutrient limitation, byproduct accumulation,
shear and oxidative stress, osmolality and hypoxia, can trigger apoptosis

Experimental setting Type of analysis Outcome

Reference

16 miRNAs with de-regulation in recombinant DG44 cell lines

Gammell (2007)
Lin et al. (2010)
Barron et al. (2011a)

miR-7 reduces growth and enhances qP

118 miRNAs regulated during batch cultivation between lag, exponential

70 miRNAs with regulation upon nutrient limitation

Hackl et al. (2011)

Johnson et al. (2011)
Bort et al. (2012)

Druz et al. (2012)
Jadhav et al. (2012)

Hammond et al. (2012a)

93 microRNA regulated in two distinct recombinant cell lines

Genomic annotation of 350 miRNAs
35 miRNAs with positive correlation to growth rate

Hackl et al. (2012b)
Clarke et al. (2012)

16 miRNAs with negative correlation to growth rate

Temperature shift Microarray & qPCR 26 regulated miRNAs
Transcription in recombinant cell lines qPCR
Temperature shift qPCR 10 regulated miRNAs (miR-7)
MicroRNA repertoire in various cell lines NGS 380 conserved
22 novel miRNAs
MicroRNA repertoire in various cell lines NGS 350 conserved miRNAs
Batch cultivation Microarray & qPCR
and stationary growth phase
Nutrient depletion & apoptosis Microarray
MicroRNA overexpression screen Engineering miR-17 improves growth
miR-21 reduces qP
Transcription in recombinant cell lines NGS 190 conserved microRNAs
Genomic context of microRNAs In silico
Correlation to growth rate Microarray
Specific microRNA knockdown Engineering

miR-466h-5p knockdown improves batch performance of CHO cells

Druz et al. (2013)
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during CHO cell cultures. Apoptosis onset in bioreactors lowers the
Integral Viable Cell Density (IVCD) and affects product yield and quality
(Druz et al., 2011; Gammell, 2007; Miiller et al., 2008). As a result,
apoptosis prevention is one of the most widely implemented
approaches in CHO cell engineering (Hacker et al., 2009; Majors et al.,
2007; Zanghi et al., 1999).

The involvement of microRNAs in apoptosis regulation was initially
described in peripheral blood cells of people diagnosed with chronic
lymphocytic leukemia (CLL) where a deletion of miR-15a/16 cluster
was reported in the majority of patients (Calin et al., 2002). Later studies
revealed that the members of this cluster, miR-15a-5p and miR-16,
promote apoptosis in malignant B cells by targeting Bcl-2 expression
at the post-transcriptional level (Cimmino et al., 2005). Another mem-
ber of miR-15a/16 cluster, miR-15a-3p, was shown to induce apoptosis
by targeting Bcl-XL, thus activating Caspase-3/7 and reducing viability in
several cancers (Druz et al, 2013). Another microRNA, miR-21 was
found to be up-regulated in several human cancers and characterized
as an oncogenic microRNA. Its silencing in glioblastoma cells led to in-
creased apoptosis by activation of Caspases 3 and 7 (Chan et al., 2005;
Meng et al., 2006; Si et al., 2007). Cheng and colleagues identified sever-
al microRNAs involved in apoptosis regulation using large-scale anti-
sense microRNA inhibition in HelLa cells. The inhibition of miR-1d, 7,
148, 204, 210, 216 and 296 increased apoptosis by activation of Caspase
3, while the inhibition of miR-214 had the opposite effect (Cheng et al.,
2005).

Other examples include miR-218 which was found to be involved in
NF-kappaB response and apoptosis induction by targeting expression of
ECOP gene (Gao et al, 2010). miR-34 family members function as
potent mediators of the p53-induced apoptotic pathway by targeting
anti-apoptotic genes including Bcl-2, and also participate in a positive
feedback loop of p53 activation via increased acetylation by targeting
SIRT1 deacetylase (Hermeking, 2010). miR-30 affects the levels of the
Ubc9 and ITGB3 genes in breast tumor-initiating cells, thus restricting
their self-renewing capacity and targeting them for apoptosis (Yu
et al., 2010). miR-10a was shown to participate in the TRAIL-induced
apoptosis pathway leading to Caspase 3 activation in human lung
carcinomas (Ovcharenko et al., 2007). The members of let-7 microRNA
family, let-7c and let-7g, target Bcl-xL directly and Mcl-1 indirectly
which leads to Caspase-3/7 activation and apoptosis induction in
hepatocytes (Shimizu et al., 2010).

Two of the stresses that cells are exposed to under bioreactor condi-
tions are hypoxia and oxidative stress. Here, involvement of microRNAs
has been demonstrated in several instances, however, not yet in CHO
cells. miR-15a-5p, miR-16, and miR-20a are down-regulated during
hypoxic conditions in human carcinomas (Hua et al., 2006), while miR-
26, miR-107, and miR-210 are up-regulated in neoplastic cells. These
microRNAs are likely to decrease the pro-apoptotic signaling in a hypoxic
environment (Kulshreshtha et al,, 2007). miR-210 is progressively up-
regulated in endothelial cells in hypoxic conditions and inhibits the
receptor tyrosine-kinase ligand Ephrin-A3 which is critical for vascular
development (Fasanaro et al., 2008). The up-regulation of the miR-34
family, as part of the p53 network, can be implicated in stress responses
to DNA damage, hyperactive cytokine signaling, and hypoxia (He et al,
2007). The miR-17-92 cluster was shown to target hypoxia-inducible fac-
tor alpha (Hif-1a), a transcriptional factor known to regulate cellular
response to hypoxia and to play an important role in various biological
processes such as glucose metabolism, pH regulation and angiogenesis
(Taguchi et al., 2008). miR-31 was also shown to activate Hif-1ct via the
inhibition of factor-inhibiting hypoxia-inducible factor (FIH) (Liu et al.,
2010).

With respect to oxidative stress, the bicistronic transcript miR-144/
451 was shown to modulate oxidative stress in erythroid cells. miR-144
directly affects NRF2 gene expression in K562 and primary erythroid
progenitor cells, which induces the expression of several antioxidant
enzymes (Sangokoya et al., 2010), while miR-451 protects erythrocytes
against oxidative stress and rescues erythroid cells' differentiation defect

by inhibiting the intracellular regulator of cytokine signaling, 14-3-3§
gene (Patrick et al.,, 2010). miR-34a and miR-93 are involved in the loss
of oxidative stress defense and repress expression of genes associated
with oxidative stress regulation and defense mechanism such as Sp1,
Sirt1, Mgst1, and Nrf2 (Li et al, 2011b). miR-1 and miR-133 produce
opposing effects on apoptosis induced by oxidative stress in rat cells
(Xu et al.,, 2007). miR-1 has a pro-apoptotic function in response to
oxidative stress by targeting heat shock proteins HSP60 and HSP70
and miR-133 seems to have an anti-apoptotic role by repressing Caspase
9 gene expression.

Some microRNAs have been associated with other stress types that
might be encountered within a bioreactor such as osmotic pressure,
shear stresses, and nutrient depletion/gradients. miR-200b and miR-717
are down-regulated by isotonic and hypertonic treatments in renal
medullary epithelial cells. However, when up-regulated, these
microRNAs inhibit the activity of a transcriptional factor called osmotic
response binding protein, OREBP, a major cellular osmoregulator in
kidney cells and T-lymphocytes (Huang et al., 2010). miR-7b is over-
expressed in hyperosmolar conditions to down-regulate the protein
levels of Fos, which reduces the activity of transcription factor activator
protein 1 (AP1), a regulator of cellular processes, which is formed by
dimerization of Fos and Jun proteins (Lee et al., 2006). miR-21 and
miR-19a are induced by shear stress in endothelial cells (Qin et al.,
2010; Weber et al., 2010).

Druz and colleagues recently showed the up-regulation of the large
miR-297-669 cluster during apoptotic conditions induced by nutrient
depletion in CHO cells. One member of this cluster, miR-466h-5p
was shown to alter the expression of five anti-apoptotic genes from
different apoptosis-initiating pathways (bcl212, dad1, birc6, stat5a, and
smo). This microRNA was shown to be activated in response to glucose
depletion (Druz et al, 2012). Antisense knockdown of miR-466h-5p
delayed apoptosis onset in nutrient-depleted conditions by decreasing
Caspase-3/7 activation and increasing cell viability (Druz et al,, 2011).
Stable inhibition of miR-466h-5p in CHO cells enhanced apoptosis
resistance and increased protein production (Druz et al, 2013). One
other member of miR-297-669 cluster, miR-669¢c-5p, has been previous-
ly associated with impairments in glutathione metabolism which acti-
vates the apoptosis cascade (Lanceta et al.,, 2010; Maes et al., 2008).

The utilization of microRNAs with roles in apoptosis regulation and
stress response should provide researchers with an additional tool to
minimize or eliminate apoptotic effects that result from different stress
conditions that reduce recombinant protein production. The recent
sequencing of the CHO cell genome and microRNA transcriptome
revealed conserved sequences of the apoptosis and stress-regulating
microRNAs such as miR-1, let-7 family, miR-7b, miR-10a, miR-15/16
cluster, miR-93, miR-107, miR-144, miR-200b, miR-210, miR-214, miR-
218, and mi-R708. These microRNAs and the miR-297-669 cluster are
promising targets for apoptosis pathway engineering. Due to the com-
plexity of apoptosis and the diversity of apoptotic stimuli, it may be use-
ful to investigate the combined effects of several microRNAs affecting
genes from different stages of the apoptosis cascade as well as those
that seem to be involved in global regulation of the pathway. It might
be also worthwhile to consider the engineering of whole clusters of
apoptosis-relevant microRNAs since clustered microRNAs are known
to be transcribed together as polycistronic transcripts to regulate
mRNA of genes with similar functions (Druz et al., 2011), thus enabling
a more global approach to modification of cellular phenotypes. An im-
portant aspect here is the need to test CHO cell-specific microRNAs,
their biological role and their effects on CHO cell-specific gene targets
not only in small scale, but also in an industrial-scale bioprocess environ-
ment to finally identify the most suitable candidates and combinations.

3.3. Energy metabolism

Metabolic homeostasis is crucial for maintenance of cellular physiolo-
gy for optimal growth and adaptation to culture conditions. Culture



V. Jadhav et al. / Biotechnology Advances 31 (2013) 1501-1513 1507

adaptations are controlled by complex regulatory networks and have to
continuously evolve to monitor and respond to such changes during a
bioprocess to keep it efficient. In a recent review the role of microRNAs
and their integration into multilayered cellular networks functioning to
maintain physiological conditions was discussed (Rottiers and Naar,
2012). The regulation of microRNA expression in response to genetic,
epigenetic or environmental cues, to metabolic wastes or stress may
contribute to our understanding of cellular physiology and metabolism
(Lynn, 2009; Tomankova et al, 2010). The first link connecting
microRNAs to metabolic control is miR-122, which is involved in lipid
metabolism and regulates genes involved in cholesterol biosynthesis,
such as 7-dehydrocholesterol reductase, 3-hydroxy-3-methylglutaryl-
CoA synthase-1 and 3-hydroxy-3-methylglutaryl-CoA reductase
(Jopling, 2012; Sacco and Adeli, 2012). Application of an LNA antagomir
of miR-122 leads to 25-30% reduction of plasma cholesterol levels
(Elmen et al.,, 2008; Esau et al., 2006). Similarly, miR-33a and miR-33b
were shown to co-express from an intron of the transcription factor of
sterol-regulatory element-binding proteins, a family of proteins that
controls the expression of genes central to fatty acid homeostasis. They
thus coordinate the regulation of fatty acid, triglyceride and cholesterol
biosynthesis and uptake (Davalos et al., 2011; Rayner et al, 2010).
Recent interesting findings suggested functions for let-7 in regulation
of mammalian glucose metabolism by targeting IGF1R, INSR, and IRS2
components of the insulin-PI3K-mTOR pathway (Zhu et al, 2011).
The ratio of Pyruvate Kinase Isozymes M1/M2 (PKM) is involved in con-
trol of glycolysis rate and it was suggested that miR-124, miR-137 and
miR-340 are involved in the regulation of PKM1/2 ratios in colorectal
cancer cells (Sun et al,, 2012). In human leukemic Jurkat cells, it was
shown that the expression of miR-23a was controlled by NF-xB and
could play a critical role in glutamine metabolism (Rathore et al.,
2012). Mitochondria are central to all energy, related functions of the
cell, and recently it was proposed that several microRNAs are associated
with them and could control their function (Carrer et al.,, 2012; Sripada
et al,, 2012a,b). Over several decades, studies have suggested that cellu-
lar and physiological responses to nutrients such as glucose, lipids,
growth factors and metabolic wastes and their respective levels, induce
drastic changes in gene expression patterns and altering metabolic
homeostasis. The link between nutrient levels and microRNAs could be
exploited by using them as metabolic sensors and/or modulators, both
to fine tune and to monitor biologically controlled bioprocesses
(Carrer et al., 2012; Druz et al,, 2012; Kochanowski et al,, 2012; Zanghi
et al., 1999).

3.4. Productivity and product quality

The ability of a CHO clone to synthesize and secrete correctly modified
recombinant proteins in abundance is a key attribute. Clearly, there are
numerous steps, enzymes, co-factors, quality control points and internal
structures involved in ensuring this process operates efficiently. All of
them are subject to regulation within the cell and depend on both extra-
cellular and intracellular stimuli, with microRNAs playing an important
role in several of these processes. As mentioned above, increasing the
levels of miR-7 in CHO cells has been reported to increase cellular
productivity - at the expense of cell growth - which is reflected in a
shift in the abundance of particular ribosomal proteins in the cell
and other proteins involved in translation elongation (Meleady et al.,
2012a). Lin and colleagues screened microRNAs in recombinant human
IgG producing CHO cells and found miR-221 and miR-222 to be signifi-
cantly down-regulated in all cell lines when compared with the parental
DG44 cell line, indicating good targets for engineering high producer cell
lines (Lin et al,, 2010). The miR-221/222 cluster was also found down-
regulated during ER stress in human hepatocellular carcinoma cells.
The ectopic introduction of miR-221/222 mimics increased ER-stress
and induced apoptosis which was associated with p27Kip1 and MEK/
ERK-directed cell cycle regulation (Dai et al., 2010).

In other model systems, microRNAs have been implicated in regulat-
ing proteins involved in the unfolded protein response — a key cellular
stress response that impacts on recombinant protein production.
miR-30c-2* can down-regulate the expression of XBP-1, a critical medi-
ator of cellular adaptation to increased protein processing load (Byrd
et al,, 2012). This gene has been successfully engineered in CHO cells
to improve productivity in the past (Tigges and Fussenegger, 2006).

Several microRNAs including miR-122 (Yang et al., 2011), miR-30,
181d and 199a-5p have been shown to suppress GRP78/BiP, another
cellular chaperone involved in UPR and one that has been given some
attention in the context of recombinant protein production in CHO
cells (Morris et al., 1997; Van Dyk et al.,, 2003). miR-708 was shown
to be induced during ER stress by the transcription factor CCAAT
enhancer-binding homologous protein (CHOP) and may facilitate the
enhancement of ER protein-folding capacity under the stress of acceler-
ated protein synthesis (Behrman et al., 2011). miR-204 supported ER
and oxidative stress induction in human trabecular meshwork cells by
inhibition of two genes involved in the elimination of damaged and
misfolded proteins (SERP1/RAMP4 and MG6PR), thus enhancing the
expression of carbonylated proteins (Li et al., 2011a). microRNAs are
also known to be key regulators of pancreatic beta cell function. In
particular, miR-375 can influence glucose-induced insulin secretion by
modulating the expression of myotrophin, a protein potentially in-
volved in cytoskeleton dynamics (Poy et al, 2004). In addition, a
number of microRNAs are involved in various aspects of exocytosis
that have implications in other human diseases (Lovis et al, 2008;
Sullivan et al., 2012; Zhang et al., 2011). Finally, mTOR overexpression
has recently been shown to confer benefit to both CHO cell productiv-
ity and growth (Dreesen and Fussenegger, 2011) and mTOR has also
been identified as a protein whose expression can be regulated by
microRNA binding (Liu and Wilson, 2012). These observations dem-
onstrate the potential that manipulation of particular microRNAs
may have in engineering aspects of the secretory and high productiv-
ity function of CHO cells. This is also supported by consistent patterns
of microRNA expression observed between different host cell lines
and their recombinant, high producing subclones (Hackl et al., 2011;
Lin et al., 2010).

A major aspect of recombinant protein production is product quality,
specifically the pattern of glycosylation on the therapeutic product.
Several instances indicate that microRNAs may also play a role in
the control of this important property. It was recently found that a
specific microRNA, miR-148b, modulates the expression of 31,3-
galactosyltransferase-1 (C1GALT1), an important enzyme in the synthe-
sis of O-glycosylation (Coppo and Amore, 2004; Novak et al., 2001).

In another study focused on the regulation of glycosylation and its
impact on cancer metastasis, it was shown that the up-regulation of
microRNA clusters suppresses N-acetylgalactosamine transferases
(GALNTs) which initiate O-linked glycosylation (Gaziel-Sovran and
Hernando, 2012). Specifically, miR-30b/30d expression was shown to
silence GALNT7, resulting in defective glycosylation and changes in
protein exocytosis. To this end, no study has looked in detail on
microRNA target sites in enzymes mediating the formation of N- and
O-glycosylation in animal cells. However, the above examples provide
evidence that microRNAs are involved in these processes. Therefore,
this justifies a systematic analysis of microRNA target site enrichment
in CHO glycosylation genes, which will unveil the potential value of
microRNAs as diagnostic and engineering tools to control the precise
pattern of glycosylation required for production of biosimilars.

3.5. Clonal stability and epigenetics

At an early stage of the biopharmaceutical product development
pipeline, a major R&D challenge is to accelerate progress from the
point of having cloned an appropriate gene for a biopharmaceutical
product into a CHO cell, to having established the best CHO cell clone -
in terms of growth rate, productivity, product quality and stability -
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to place in the bioreactor for manufacture of clinical trial batches (and
with a reasonable level of confidence that the same clone can be used
for subsequent large-scale production, in order to avoid expensive and
time-consuming new cell line development and re-validation of the
process for regulatory approval).

Clone to clone variation is hugely important with respect to
many bioprocess-relevant cellular phenotypes, including productivity
(O'Callaghan et al., 2010; Pichler et al., 2011; Pilbrough et al., 2009;
Porter et al., 2010; Prieto et al,, 2011; Sigal et al., 2006; Sunley et al.,
2008). Currently, clone selection is done on a trial-and-error basis, and
many initially promising clones prove, at a later stage in the process,
to be unstable, thus making the process unpredictable. Methylation of
the viral promoters commonly used in mammalian expression vectors
is believed to play a role (especially in slow loss of productivity over
time) (Osterlehner et al, 2011; Yang et al., 2010). Loss of transgene
amplification when certain selection systems (e.g., DHFR) have been
used and DNA rearrangements in and around the transgene can occur;
these mechanisms are probably most important in rapid loss of produc-
tivity (Kim et al., 2011).

A considerable literature exists in relation to stability/instability of
cells in culture (e.g., Bailey et al,, 2012). Substantial recent research
has been done on the effects of including features in the expression vec-
tor that discourage epigenetic silencing. These include insulators such
as the chicken p-globin HS4 element; (S) MARs — ((Scaffold) Matrix
Attachment Factors); STARs (stabilizing anti-repression elements);
and UCOEs (ubiquitous chromosome opening elements) (Allen and
Antoniou, 2007; Galbete et al., 2009; Harraghy et al., 2012). While
the proximate biochemical mechanisms of silencing (e.g. DNA methyl-
ation, histone deacetylation, reduction of copy number, and DNA
rearrangement) and the identity of corresponding enzymes are reason-
ably well understood, there is no in-depth understanding of the molec-
ular regulatory events that lead to these modifications in some clones,
but not in their sister clones, which are being cultured at the same
time under the same conditions. Of course, the impact of epigenetic
changes in CHO cells goes beyond transgene stability; it may also influ-
ence the stability of other characteristics including growth and product
quality.

Since microRNAs are believed to regulate expression of over 50% of
proteins, it is likely that they have a role in regulation of expression of
the enzymes involved in DNA and chromatin modification (Lorio et al.,
2010). However, limited information exists in this regard, and no infor-
mation at all is available for CHO. One of the few microRNAs with a rec-
ognized role in epigenetic modifications in cancer is the miR-29 family,
which was shown to target DNA Methyltransferases (DNMT) 3A and 3B
(Fabbri et al., 2007). In doing so, these microRNAs prevent inappropriate
methylation at the promoters of tumor-suppressor genes and their ex-
pression has been shown to be down-regulated in tumor cells. On the
other hand there are several reports of epigenetic changes impacting
on microRNA expression.

A recent publication by Druz et al. (2012) demonstrated how the
biogenesis of microRNAs can be influenced by epigenetic events. In
this case, glucose depletion in the culture medium led to histone
deacetylase inhibition, increased promoter acetylation and subsequent-
ly increased transcription of miR-466h-5p. Although this work was
performed in mouse cells, this microRNA had previously been shown
by the same group to increase resistance to apoptosis in CHO cells
(Druz et al., 2011). As with most genetic regulatory networks, there is
evidence of feedback loops between microRNAs and their target genes
or proteins. A good example of this feedback is the link between
miR-148 and miR-152 and DNMTT1. The promoters of these microRNAs
are silenced by DNMT1-dependent methylation, and DNMT1 itself is,
in turn, a target for repression by these miRs (Xu et al., 2012). It is
becoming more apparent, as an increasing number of reports appear,
that there is a strong inter-relationship between microRNA activity
and the epigenetic status of cells, and it will be interesting to see how
this relationship might be exploited in the bioprocessing area.

3.6. Tools for probing and engineering microRNA function in CHO cells

Sections 3.1 to 3.5. give clear evidence of microRNA-mediated
regulation of gene expression in a range of biological processes that
are of high relevance for a robust and excellent performing CHO cell
line (Table 1). But should one directly translate these valuable insights
into experimental engineering approaches in CHO? The answer unfor-
tunately has to be no, since microRNA function strongly depends on
the cellular mRNA transcriptome, and can therefore be extremely
diverse between different cell types or even different states of the
same cell type (Shu et al., 2012) (which likely includes different CHO
host cell lines as well). Hence, two roads can be taken in order to
prioritize microRNAs for stable engineering: i) promising microRNA
candidates from expanded literature searches can be probed for their
applicability as engineering targets in CHO cells using classical reverse
genetic approaches (Jadhav et al., 2012; Miiller et al., 2008) and
ii) transcriptomic experiments can be helpful in reducing the list of
engineering candidates to a few microRNAs that can be directly taken
to transient and stable functional analyses, as in the case of miR-7
(Barron et al, 2011a) and miR-466h-5p (Druz et al., 2013). In the
following an overview of currently available methods for transient and
stable overexpression and knockdown of microRNA is given.

3.6.1. miRNA loss of function by antagomirs

Antagomirs are antisense miRNA oligonucleotides, which are
currently the most widely used molecules for targeted miRNA inhibition
(Kaur et al., 2007; Kriitzfeldt et al., 2005). They have been applied suc-
cessfully to test miRNA function in cell culture systems and as well as
animal models (Pasquinelli, 2012). Some antagomirs contain chemical
modifications to increase their binding to a target miRNA and/or serve
as protection from nucleases. One of the most common chemical
modifications are 2-O-methyl or 2-O-methoxyethyl and locked nucleic
acid (LNA) (Fabani and Gait, 2008). A prominent example for using
antagomirs is the blocking of miR-122 in the liver in order to reduce rep-
lication of hepatitis-C virus, which is dependent on high miR-122 levels
in the liver (Gottwein, 2013). Besides microRNA sequestration through
antagomirs, targeted microRNA cleavage was established by introduc-
ing a catalytic domain from DNAzymes to the antagomir. These
molecules are called “antagomirzymes” and function by binding and
cleaving complementary microRNA sequences (Jadhav et al., 2009).

Antagomirs are well suited as transient tools for testing microRNA
function in animal cell models if they can be efficiently delivered into
the cytoplasm of a cell. For long-term effect (i.e. during a fed-batch or
continuous bioprocess), antagomirs would need to be repeatedly
delivered to the cell via a media feed, thus, requiring highly effective
and cheap delivery methods (Stein et al., 2010) for suspension cells.
While there have been reports of transfection reagent free uptake of
small RNAs into cells (“naked” or “gymniotic” uptake) (Lingor et al.,
2004; Moschos et al., 2011), these are challenging protocols and still
would require large amounts of synthetic RNA to be delivered to the
culture media. Therefore, methods have been developed that employ
synthetic antagomir molecules produced by transcription from simple
expression vectors and are termed “decoys” or “sponges” (Yang et al.,
2012).

3.6.2. miRNA loss-of-function by miRNA sponges

miRNA sponges are synthetic RNA molecules that act as pseudo
target by presenting a dominant amount of miRNA binding sites to a
cell, thus acting as scavenger for miRNA function. Fittingly, these
synthetic RNA molecules are termed “sponges” or “decoys”. Ebert and
colleagues described for the first time the application of miRNA sponges
for knockdown of miRNA function. They designed and engineered
tandem repeats of specific miRNA binding sites into the 3’-UTR of
green fluorescent protein reporter genes and demonstrated more
effective inhibition of miRNA function compared to other methods
such as antagomirs. Furthermore sponges can be designed in such a
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way, that an entire family of miRNAs can be inhibited. Thereafter,
several studies have successfully applied miRNA sponges in both
in vitro cell culture systems and in vivo for inhibiting miRNA function
(Brown and Naldini, 2009). Druz and colleagues have already applied
this tool to generate engineered CHO cells (Druz et al., 2013), which
overexpress miR-466h-5p sponge and thereby exhibit a modulated
growth behavior. The future directions in CHO cell engineering include
the design and development of microRNA-sponge expression systems
that are based on an inducible system for culture-stage specific fine
tuning of microRNA activity.

3.6.3. miRNA gain-of-function by miRNA mimics and vector
based expression

Modulating miRNA function by overexpression is a prominent alter-
native for cell engineering and commonly termed “miRNA-targeting” or
“miRNA-gain-of-function” strategy. Two main approaches have been
developed for ectopic expression, which depend on delivery of a
synthetic microRNA (termed “microRNA mimic”) (Wang, 2011) or
vector-based transcription of microRNA precursors, which are further
processed to yield the mature microRNA of interest.

The miRNA mimic technology results in silenced target gene transla-
tion by introducing synthetic double-stranded RNA molecules with
sequences equivalent to an endogenous miRNA, thus reinforcing the
biological effect. Compared to vector-based screening of microRNA
function, mimics have the advantage of being readily available without
the need for cloning. Hence, high-throughput screenings of microRNA
function usually employ large synthetic libraries that cover the entire
miRNome available for a specific organism. The shortcomings of this
strategy are i) the limitation to transient overexpression with short-
term effects, especially in cell lines exhibiting rapid proliferation and
therefore dilution of synthetic RNA sequences, ii) the synthetic nature
of these molecules and their chemical modifications, which could have
cytotoxic effects, and iii) the usually high initial increase in microRNA
copies per cell (usually several hundred-folds) might result in off-
target effects. Therefore, the alternative strategy uses the endogenous
miRNA maturation pathway of a cell to ectopically produce mature
miRNAs from plasmids containing a primary microRNA transcript.
Such constructs can be used for both transient and stable expression
of miRNAs to study long term effect in gain-of-function. Furthermore,
the choice of specific promoters allows to time microRNA expression
with the entry of specific culture stages and provides a further opportu-
nity to control miRNA function. Jadhav and colleagues have developed
vector based expression system for screening microRNA function in
CHO cells. The reported protocol uses in silico designed stem-loop
sequences that are synthesized and readily cloned into a commercial
expression vector. Thus, albeit the need for cloning, a medium-
throughput protocol for gain-of-function screen of selected microRNAs
could be established, which identified positive effects for miR-17 on
CHO growth performance (Jadhav et al.,, 2012).

3.7. The need for better computational tools to predict microRNA function

Theoretically, the labor- and time-intensive phase of functional
screening could be replaced by computational tools that reliably predict
the biological function of a microRNA in a certain transcriptomic envi-
ronment. However, the improvement of tools for the identification of
interactions between microRNAs and their respective targets remains
a key challenge of microRNA research. When microRNAs were first
identified, sequence analysis tools were developed for the prediction
of such interactions, exploiting conserved seeds and sequence comple-
mentarity (Lewis et al,, 2005). Limitations of early seed-motif matching
approaches led to the integration of thermodynamic models for binding
strength. The challenges of reliable de novo prediction are, however,
reflected in the lack of agreement between different tools (Rajewsky,
2006; Sethupathy et al., 2006). While focusing on predictions common
to several tools has been a popular strategy to try and reduce false

positives, this comes at a considerable cost in terms of false negatives.
High false positive/negative rates therefore motivate more elaborate
attempts at integration of multiple tools (Zhang and Verbeek, 2010).

In a complementary trend, individual tools now consider and com-
bine additional data sources. Algorithms may (1) incorporate other rel-
evant computational predictions, like target site accessibility (Kertesz
et al,, 2007), (2) take advantage of multi-track measurements, such as
matched microRNA and mRNA expression profiles (Bonnet et al.,
2010), or (3) use expression profiles to refine sequence based predic-
tions (Stingo et al., 2010; Wang and Li, 2009). Increased enrichment of
targets in known pathways suggests that the incorporation of additional
information as filters for sequence based predictions may be a promis-
ing strategy for reducing false positive rates (Muniategui et al., 2012).

Lack of agreement across methods has nevertheless remained an
issue and concordance with experimentally validated or refuted inter-
actions was found to be poor in an evaluation of a large independent
data set (Shridhar and Kreil, in press). Prediction performance as well
as true interactions may be specific to certain experimental settings. In-
deed, some approaches have been tailored for particular experimental
designs like time-course data (Jayaswal et al., 2009) or try to exploit
data from different tissues or heterogeneous cell mixtures to identify
additive interactions between microRNAs and multiple targets (Wang
and Li, 2009). The unavailability of an experimentally validated compre-
hensive ‘gold standard’ list of interactions and absence of interactions,
on the other hand, has been a major limitation for the development
of improved analysis tools. Recent collection of data from high-
throughput techniques like HITS-CLIP and TAP-tar for probing physical
interactions (Yang et al., 2011) may over time, fill this need. Collections
of evidence covering a variety of experimental scenarios will provide
more powerful data to train and validate new analysis methods.

4. Conclusions and future perspectives

With respect to microRNA engineering of CHO cells for enhanced
phenotypes, an important aspect is that many of the phenotypes
discussed in the previous sections overlap (Fig. 2). Therefore, it is likely
that a cell line with optimal properties needs to express a variety of
microRNAs in a coordinated and balanced way. Apart from new engi-
neering strategies, a better understanding of the microRNAs' roles in de-
termining phenotypes could also lead to the development of novel
screening tools that allow better prediction of cell behavior at industrial
scale, by analyzing the precise expression pattern of those microRNAs
that were previously identified to control these properties. With im-
provements in analysis methods, these could be assessed during an
early stage in cell line development, from small scale cultures, as a
novel screening tool for the identification of suitable clones and as
tools for monitoring cell behavior and state in production processes.
Emerging technologies, such as flow cytometry assisted RNA quantifica-
tion (Chapin et al., 2011) that could be directly applied to a cell homog-
enate without prior RNA isolation, might become valuable tools for
integration of biomarkers in the process of cell line development.

Finally, even with the research on microRNAs and their application
for CHO cell engineering in full swing, we would like to point out that
microRNAs are by no means the only interesting non-coding RNAs
that could be used for cell line optimization, specifically in the field of
genomic and phenotypic stability. A recent manuscript identifies
piRNAs expressed in CHO cells (Fig. 1) (Gerstl et al., 2013), another
group of small non-coding RNAs that have been linked to epigenetic
and post-transcriptional gene silencing, specifically of retrotransposons,
by their interaction with PIWI proteins (Sienski et al., 2012). In addition,
long non-coding RNAs are considered to be involved in the regulation of
gene transcription, both by controlling the basal transcriptional machin-
ery and by gene-specific regulation via recruitment of epigenetic modi-
fying factors to genomic loci, and modulation of mRNA splicing, as well
as translation (Huang et al., 2012b). Both of these classes of RNA
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promise to enable exciting new approaches to cell line optimization for
industrial purposes in the near future.
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