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We have studied the influence of particle shape and consequently loading configuration on the

breakage load of fluvial pebbles. Unfortunately, physical strength tests on pebbles, i.e., point-load tests,

can only be conducted under one specific stable loading configuration. Therefore, the physical uniaxial

strength tests performed in this study were extended by a two-dimensional finite-element stress

analysis, which is capable of investigating those scenarios that are not possible in physical tests.

Breakage load, equivalent to that measured in unidirectional physical tests, was determined from the

results of the stress analysis by a maximum tensile stress-based failure criterion. Using this

assumption, allows the determination of breakage load for a range of different kind of synthetic

loading configurations and its comparison with the natural breakage load distribution of the physical

strength tests. The results of numerical modelling indicated that the configuration that required the

least breakage load corresponded with the minor principal axis of the ellipsoidal pebbles. In addition,

most of the simulated gravel-hosted loading configurations exceeded the natural breakage load

distribution of fluvial pebbles obtained from the physical strength tests.

& 2012 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

The study of sediment deformation is of great interest for
disciplines concerned with near-surface geological processes such
as soil mechanics, engineering geology and hydrogeology. More-
over, sediments affected by natural deformation processes, such
as sand and gravel, are important commodities, extensively used
in the construction industry and a common geological feature.
Pebble breakage in gravel results in a change of pebble properties
and microstructure and may therefore lead to several phenomena
including (i) a decrease in permeability in both natural aquifers
and industrial drainage-and filter systems, (ii) an increase in
subsidence of buildings and constructions built on gravel founda-
tions and (iii) a change of the mechanical bulk properties of gravel
such as shear strength or stiffness [1].

Fluvial gravel deposits are mainly comprised of pebble sized
aggregates (4–64 mm). The predominantly fluvial sediment trans-
portation leads to a rounded ellipsoidal shape of the pebbles [2]
and may also lead to preferred orientation of the longest axis of
the pebbles. The specific shape of fluvial pebbles distinguishes
them from many other more spherical and/or angular sedimen-
tary particles in terms of their micro-mechanical response to
bulk load, which is distributed and transferred over its particle
t of Geodynamics and Sedi-
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contacts. The particle-shape may affect pebble rotation and
translation in deformation bands [3], the packing density [4] or
the contact force network and/or bulk strength [5,6]. The ellip-
soidal pebble shape and its control on the stress distribution of
potential loading configurations may also have a significant effect
on the breakage tendency of pebbles and the investigation of this
effect is the aim of this study.

Fractures are reported in imbricated pebbles of a natural
fluvial gravel deposit [7]. Fig. 1 shows a section of a gravel layer
from this outcrop that exhibits several pebbles with one or more
fractures sub-parallel to the minor principal axes of the ellipsoidal
pebbles. The fractures are Mode I, which indicates that the
maximum tensile stress must have been perpendicular to the
fracture plane and in this case also to the minor principal axis of
the ellipsoidal pebbles. Hence, a preferred load transmission sub-
parallel to the minor principal axes seems most likely.

This assumption is supported by two dimensional numerical
studies of ellipse-shaped particle assemblies in biaxial compres-
sion [5]. Fig. 2b shows results of those studies indicating that
force chains tend to be unidirectional and more localised in
comparison to assemblies of spherical particles (Fig. 2a). Addi-
tionally, force chains in the assembly of ellipse-shaped particles
are often oriented sub-parallel to the semi-minor axes of the
ellipses. The numerical results show a clear link between the
shape-controlled contact force network and the natural occur-
rence of fractures in imbricated fluvial pebbles. However, it is not
clear if and to which extent the applied load that is necessary for
breakage of an individual pebble varies with the position and
orientation of the loading axis between two opposing contacts.
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The breakage load varies because the stress distribution inside
irregular bodies is varying as a function of the loading geometry [8].
For the imbricated fluvial pebbles this could mean that they break
more or less easily in the preferred loading direction relative to any
other potential loading configuration. For example non-oriented
pebble deposits may have no specific or a different preferred pebble
loading orientation. This effect could influence the breakage rate of
single pebbles in conjunction with the partitioning effect of the
contact force network (Fig. 2) depending on the degree of pebble
imbrication, but detailed investigations of this effect on ellipsoidal
bodies, such as pebbles, have not yet been carried out.

The effect of shape on the internal stress distribution of bodies
under non-uniform load is well known and reflected by the
persistent standardisation of specimen shape for rock testing
standards [9]. Remarkably, there are only two rock strength tests
that allow testing of irregular shaped specimen, namely the point-
load test (PLT) [10] and the Protodyakonov Impact Test [11], but
Fig. 1. Gravel layer at the outcrop from where samples were taken. Note a series

of sub-parallel fractures in some pebbles, which are perpendicular to the longest

principal axis of the pebbles. The inset shows a pebble with a solution pit at one of

its former contacts.

Fig. 2. Sphere- and ellipse-based discrete element method simulations of biaxial compr

2:1. Lines joining particle centres are normal forces; their thickness is proportional to
both tests are greatly affected by scattering of the test results [12].
However, the point-load test is widely applied in science and
industry, due to the small, simple and portable test equipment and
rapid testing. The test yields the uncorrected point-load strength
index (Is), which must be corrected to account for the specimen
size to obtain the point-load strength index (e.g., Is50) [13]. This
index can then be used to estimate other rock strength parameters
such as the unconfined compressive strength (UCS) or uniaxial
tensile strength (UTS).

In this study, fluvial pebble samples from a Miocene fluvial
gravel deposit [14] were tested in the point-load test configura-
tion for irregular specimens [12]. The resulting uncorrected point-
load strength index, which is the force applied on the point load
cones at catastrophic failure, of a large number of pebbles was
statistically analysed. The non-standardized data was chosen for
two principal reasons: First, the size of the pebbles was below the
minimum size value recommended by the standard method for
point-load testing [10,15]. On small samples, the contacts
between the sample and the cones cannot be considered as
theoretical points as in the case of standard point-load tests.
Second, the point-load test configuration in this study is intended
to mimic the contact geometry and loading configuration
between pebbles in gravel, under central loading parallel to the
minor principal pebble axis, and not to estimate rock strength
properties such as UCS or UTS. The resulting distribution of
breakage force values of the point-load tests, termed breakage
load in this study, can be seen as a loading configuration specific
test value that incorporates material and size variations of
pebbles from a specific gravel sample.

Unfortunately, the ellipsoidal pebbles can only be tested in a
centred position sub-parallel to the minor principal pebble axes,
since this is the only stable test configuration. This problem was
already recognised and described by Moss [16] for non-spherical
quartz grains from fluvial sediments. In order to address this
problem, finite element stress analyses were carried out in this
study that allowed the investigation of different kinds of synthetic
loading configurations, which are present in natural gravel
deposits but difficult to achieve with standard point-load test
devices. The numerically investigated loading configurations are:
(i) translation of the loading axis parallel to the minor principal
pebble axis, (ii) rotation of the loading axis around the centre and
ession (after 10% shortening). The ellipsoidal particles in (b) have an aspect ratio of

force magnitude. (modified after [5]).
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(iii) a combination of both. Additionally, the effect of pebble
indentation (Fig. 1) and the effect of pebble ellipticity on the
contact geometry were investigated. The stress analysis permits
to study different loading configurations that are deviating from
the stable point-load test configuration. However, the resulting
stress variations cannot be directly related to breakage, unless
some sort of failure law is assumed, i.e., failure occurs when the
maximum tensile stress inside the pebble reaches the tensile
strength of the pebble [17]. The variations of the resulting load
necessary for breakage under different loading configurations can
then be compared with each other and with the natural breakage
load distribution of the pebbles. The results provide a better
understanding of the impact of different shape-controlled loading
configurations on single pebble breakage in fluvial gravel.
2. Sample material and point-load test statistics

2.1. Geological setting, sampling and material description

For this study a sampling site was found in a gravel pit south of
St. Margarethen (Burgenland, Austria). The outcrop is located at
the eastern margin of the Neogene Eisenstadt-Sopron Basin
[18,19], a satellite basin of the Vienna Basin [20], and exposes
deltaic gravel of Miocene age (11.9–11.6 Ma) [14]. The gravel is
mainly composed of limestone pebbles (85%), but dolomite (5%),
sandstone (5%) and quartz (5%) pebbles, also occur. At the sample
site, some pebbles were fractured and a noticeable number of
pebbles showed solution pitting at their contacts with neighbour-
ing pebbles (Fig. 1).

The sampled sediment was portioned using a sediment splitter
into a testable size of �500 pebbles without altering the grain
size distribution or the composition. The individual pebbles are
well rounded, but exhibit a clear ellipsoidal shape (Fig. 1). The
three principal axes of each pebble (i.e., DS¼shortest; DI¼

intermediate, and DL¼ longest axis) were measured with an
accuracy of 70.1 mm. For the statistical analysis, the pebbles
were grouped into classes according to their shortest axis (DS

ranges from 4 to 13 mm). Fig. 3 shows the distribution of pebble
shape, for all sampled pebbles. The trend of the mean values of
each size class reveals that the flatness ratio increases seriously,
Fig. 3. Shape-plot of the sampled pebbles, illustrating the effect of pebble shape

on breakage load (dots) in laboratory PLTs. Diamonds show the relation between

shape and size of the tested pebbles. DS is the smallest principal axis of the pebble.
whereas the elongation ratio decreases only slightly with increas-
ing grain size.
2.2. Strength testing

In the gravel deposit, the contact geometry of opposing
pebbles is convex (sometimes with distinct solution pits; Fig. 1)
and neighbouring pebbles exert a compressive contact load due to
overburden. Therefore, the point-load configuration was an ideal
laboratory configuration to reproduce the natural contact geo-
metry and loading configuration and to determine the strength of
pebbles, although only centred diametrical loading parallel to the
shortest principal axis of the pebble is feasible.

In the applied strength tests, the pebbles were uniaxially
compressed between two cone-shaped indenters [10] under dry
conditions. The cone-shaped indenters were taken from a stan-
dard hand pump driven point-load test device and mounted on a
computer-integrated uniaxial compression testing device (MCE
QTS 100/100, Quicktest Prüfpartner GmbH, Langenfeld, Germany).
This modification eliminates velocity variations by the hand drive
and allows testing with a constant loading velocity. For each test a
pebble was placed between two steel cones and shortened
(loading velocity¼0.5 mm/min) until pebble failure. All pebbles
were tested parallel to the shortest axis, DS, which is the only
stable testing configuration. The breakage load is defined as the
maximum load measured just before catastrophic failure.

It appears in Fig. 3 that no significant relationship between
shape and breakage load exists. This is also illustrated by a plot of
the elongation ratio (Fig. 4a) and flatness ratio (Fig. 4b) versus the
binned breakage load. Both the mean values and the standard
deviations of the shape ratios are nearly independent of breakage
load, except for the last bin (5000–6000 N), which exhibit lower
standard deviation. This observation, however, can be explained
by a smaller sample size within this bin. Fig. 5 shows the
relationship between the measured breakage load and the pebble
size. A linear regression provides a good fit to the mean and the
median values of the breakage load. The amount of data for
pebble sizes 410 mm is decreasing and therefore the median
values, which are more sensitive to this effect, deviate from the
linear fit. The mean values are more robust and their deviation
from the regression line is rather small. Furthermore, the
Fig. 4. Mean value and standard deviation of the elongation ratio (a) and the

flatness ratio (b), for different classes of breakage load.



Fig. 5. Breakage load vs. pebble size from laboratory tests. The solid line is the

linear regression of the class mean values with the given linear function. The

dashed lines are the linear fits to the minimum and maximum values of each class.
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minimum and maximum values of the breakage load data in each
size class show a linear trend for pebble sizes 45 mm.

2.3. Mode of failure

In general, the pebbles fractured parallel to the applied load
from one point-load cone to the other. The few tests in which the
fracture plane did not pass both point-load cones were rejected.
Samples of low breakage load often remained pinched between
the cones or dropped next to the cones. Explosive fracturing was
observed only for samples with high breakage load. Three pebble
splitting types were observed: (i) 58% of the pebbles fractured
along a median crack, with the majority approximately on the
plane perpendicular to the longest axis, (ii) 22% of the pebbles
fractured by the creation of a triple crack radiating from one of
the point contacts and (iii) 20% of the pebbles fractured along
numerous cracks producing more than three fragments. These
three failure modes have also been observed in the studied gravel
deposit.

2.4. Failure statistic

Since it is not clear from Fig. 5 how the breakage load values in
each class are distributed, a statistical failure analysis for each
class was performed separately. Pebble sizeso5 mm and
412 mm were not considered because few data exists. A two-
parameter Weibull distribution [21] was fitted to the PLT results.
The cumulative distribution function F of the two-parameter
Weibull distribution has the form

FðFBÞ ¼ 1�exp ½�ðFB=lÞa�, ð1Þ

where l and a are the scale and the shape parameter of the
distribution, respectively. The former corresponds to the value
of the breakage load FB at which the failure probability is 63.2%.
So-called probability plots are used to determine the optimal
parameters of the two-parameter Weibull distribution that fit the
breakage load data of each size class best. A probability plot
uses special axes that are scaled by a linearisation of the
cumulative distribution function and the failure points are plotted
by using median ranking. In this study Bernard’s approximation
[22], given by

MR¼
j�0:3

Nþ0:4
, ð2Þ

was used to estimate the median ranks. The variable j is the
failure order number and N is the total number of failures. Data
are consistent with a two-parameter Weibull distribution if they
plot on a straight line in the probability plot. The x-intercept and
the slope of the fitted line indicate the scale and the shape
parameter of the distribution, respectively.

Fig. 6a–h show the probability plots for the different size
classes of the tested pebbles. For each class, a good linear fit to the
data indicates that the distribution of the breakage load can be
well described by a two-parameter Weibull distribution. This is
supported by the high coefficients of determination for the
different classes (Fig. 6i). The size classes from 6 mm to 11 mm
(Fig. 6b–g) show a slight overestimation of the probability for low
FB-values. This was also observed by Lim [23], who attributed it
to the existence of a minimum strength of the pebbles. It was
proposed that pebbles that survive the grinding process at the
quarry are the statistically stronger ones. In fact, this is also the
case for fluvial pebbles, because disaggregation due to stream
transportation leads to a statistical strength increase [16].

The two parameters of the Weibull distribution for the
different size classes are summarised in Fig. 7. The scale para-
meter, l, increases linearly with increasing pebble diameter. The
shape parameter a with a mean value of 2.9 is approximately
constant, except for the smallest two classes (4 mm and 5 mm).
The higher a values in these two classes indicate a change from
positively skewed symmetrical distributions, since the two-para-
meter Weibull distribution becomes symmetrical at a shape
parameter of 4. However, the shape parameter of 5.4 for the
4 mm-class is probably an overestimate due to undersampling in
this class.
3. Finite element stress analysis of different loading
configurations

A finite element (FE) stress analysis was carried out to
simulate different loading configurations, which allows full con-
trol over the boundary conditions and the geometrical setup and
the calculation of the stress-tensor components at each desired
point within a finite element of the numerical domain. As most
pebble geometries are close to axisymmetric, a two-dimensional
formulation was chosen.

3.1. Numerical method

The numerical code used in this study is a MATLAB imple-
mented FE algorithm that was originally developed to simulate
deformation of linear elastic media in two dimensions. In Frehner
et al. [24] and Frehner and Schmalholz [25] the algorithm was
applied to and successfully benchmarked for elastic wave-propa-
gation in rocks. For the purposes of this study, the code was
adapted and further developed. Calculations were performed on
an unstructured numerical mesh consisting of 7-node isopara-
metric triangular elements with biquadratic continuous interpo-
lation functions [26]. The unstructured triangular mesh was
generated by the software Triangle [27], which produces high-
quality Delaunay-type meshes. Numerical implementation of the
FE method comprises the Galerkin weighted-residual method
[26] and numerical integration on seven Gauss–Legendre quad-
rature points [28]. For solving the linear system of equations the
standard direct solver provided by MATLAB was used. The output
of the FE simulations is the displacement vector field, the



Fig. 7. Scale and shape parameters of the Weibull distribution vs. size class.

The solid line is a linear regression to the class mean values of the scale parameter.

The fitted dashed line indicates a fairly constant shape parameter for the classes

above 5 mm.

Fig. 8. Sketch (not to scale) of the numerical domain.

Fig. 6. Cumulative probability for eight grain size classes (a)–(h), calculated from median ranking for breakage load using the linearised two-parameter Weibull

distribution [ln(ln(1/(1�F)))]. The solid lines represent the best linear fit for the data of each class. (i) Summary of the coefficients of determination of all classes.
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displacement gradient tensor field and the stress tensor field for
the entire modelling domain.

The FE method is particularly well suited for analysing stresses
in various diametrical loading configurations that are intended to
extend and complement physical strength tests. On one hand, the
unstructured mesh allows a very accurate approximation of the
model geometry with strong spatial resolution variations over
short distances in areas where higher resolution is required, e.g.,
towards the contact of the pebble with the loading cones. On the
other hand, the FE formulation of the governing equations gives
rise to the so-called natural boundary conditions. This special
feature of the FE method allows a straightforward implementa-
tion of a shear stress-free surface, which is necessary when
simulating strength tests of pebbles.
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3.2. Model setups and boundary conditions

The elastic properties for all simulations were chosen accord-
ing to the average properties of limestone (Young’s modu-
lus¼45 GPa, Poisson ratio¼0.25). The computational FE domain
used in this study is shown in Fig. 8. It was defined as an ellipse
with major and minor semi-axes a and b, respectively, whose
dimension was except for the ellipticity analysis equivalent to the
mean pebble dimension of the samples (a¼8.6 mm, b¼3.6 mm)
for all simulations. The tips of the two point-load cones compres-
sing the pebble in the physical strength tests were numerically
represented by two small circular indenters with a radius of
ri¼5 mm (same geometry as in standard point-load tests) [10].
The load in the physical strength tests is transmitted over a small
area (relative to the particle size), rather than a mathematically
defined point. Accordingly, the two contacts on the numerical
pebble were defined as pits on the pebble surface geometry with
an indentation depth of hi (Fig. 8). Except for the indentation
analysis, hi was kept constant at 1% of the mean diameter of the
pebble for all simulations. The locations of the lower and upper
indenters are defined by the x- and y-distances from the centre to
the contacts (xiL, yiL and xiU, yiU).

The boundary condition around the pebble is a traction-free
boundary, except for the nodes at the contact locations of the
two indenters. On these nodes a small displacement (i.e., 5hi)
perpendicular to the tangent of the ellipse was prescribed. The
indenter displacement u in the x- and the y-direction was
defined as uxiL and uyiL for the lower and uxiU and uyiU for the
upper indenter, respectively. The angle between this displace-
ment vector and the y-axis is yi and the angle between the
loading axis (axis connecting the two indenters) and the y-axis
is yp (Fig. 8). The term standard loading configuration refers to
the only stable loading configuration of the pebbles in the
physical strength tests, i.e. the loading axis coinciding with the
y-axis (yiU¼b�hi, yiL¼hi�b; xiU¼xiL¼yp¼yi¼uxi¼0).
Fig. 9. Maximum tensile stress inside the numerical domain for different loading

configurations and for constant displacement u(xi, yi). All results are normalised to

the standard loading configuration, which is indicated by a black ellipse.
3.3. Results of the stress analysis

Five different loading simulations that deviate from the stan-
dard loading configuration were analysed numerically. These are:
(i) horizontal translation of the loading axis (Fig. 9a), (ii) rotation
of the loading axis around the pebble centre (Fig. 9b, label A), (iii)
combined translation and rotation of the loading axis (Fig. 9b,
label B), (iv) changing initial indentation of the two indenters
(Fig. 9c) and (v) changing ellipticity of the modelled pebble
(Fig. 9d). For each configuration several stages within a realistic
range of parameters were analysed. For all computations the
magnitude of the displacement u was kept constant and the
resulting maximum tensile stress in the model was calculated,
which was in general located in the centre of the loading axis. In
the graphs shown in Fig. 9 the variable parameter for each
configuration is on the x-axis and the maximum tensile stress
on the y-axis. Stresses are normalised by the standard loading
configuration. In the following, the results for the different
configurations are discussed separately.

In the case of a translation of the loading axis (i.e., xiL¼xiU¼

variable; yiL¼ f(xiL, R), yiU¼ f(xiU, R), ypL¼ f(xiL, yiL), ypU¼ f(xiU, yiU),
yiL¼ f(ypL, R), yiU¼ f(ypU, R), uxiL¼ f(u, yiL), uyiL¼ f(u, yiL), uxiU¼ f(u,
yiU), uyiU¼ f(u, yiU)) the maximum tensile stress generally
increased with horizontal translation (Fig. 9a). This increase was
minor up to a translation of xiU¼xiL¼0.5a. After that the increase
of the maximum tensile stress was more significant and reached a
maximum value of 1.18 times the maximum tensile stress in
the standard loading configuration at a translation of 0.83a.
The loading axis was only translated up to this point, since after
this point the intenders cannot be considered as diametrically
arranged.

In contrast to all other configurations, rotation of the loading
axis (i.e., ypL¼ypU¼variable; yiL¼ f(ypL, R), yiU¼ f(ypU, R), uxiL¼

f(u, yiL), uyiL¼ f(u, yiL), uxiU¼ f(u, yiU), uyiU¼ f(u, yiU)) indicated that
for larger rotation angles the maximum tensile stress is not
necessarily located in the middle of the loading axis, but adjacent
to the indenter-contacts (Fig. 9b). Therefore, the tensile stress was
measured at both locations, in the centre (solid line) and next to
the indenter-contacts (dashed line). For small rotation angles the
maximum tensile stress in the centre decreased slightly com-
pared to the standard loading configuration. This decrease
became more significant for rotation angles 4351. One of the
principal stresses next to the indenter-contacts became tensile at
a loading axis rotation angle of �351 and quickly increased with
increasing rotation angle. At rotation angles 4421 it exceeded the
tensile stress in the middle of the loading axis and reached a
maximum value at a rotation angle of 681. For rotation angles
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4801 the maximum tensile stress adjacent to the indenter-
contacts became less than the maximum tensile stress in the
centre.

Combined translation and rotation of the loading axis (i.e.,
xiU¼variable, xiL¼ f(xiU), ypL¼ypU¼ f(xiL, xiU), yiL¼ f(xiL, R), yiU¼

f(xiU, R), yiL¼ f(ypL, R), yiU¼ f(ypU, R), uxiL¼ f(u, yiL), uyiL¼ f(u, yiL),
uxiU¼ f(u, yiU), uyiU¼ f(u, yiU)) showed that the maximum tensile
stress in the ellipse increased due to the translation of the loading
axis (Fig. 9a), but decreased due to the rotation of the loading axis
(Fig. 9b, label A). However, the increase of the maximum tensile
stress as a function of the rotation around point B (Fig. 9b, label B)
was much more significant than the increase due to the transla-
tion of the indenters to point B. Already after a rotation of 121
around point B, the decrease of the maximum tensile stress
compensated for the increase due to the translation of the
loading axis.

As the initial indentation of the two indenters increased (i.e.,
yiL¼yiU¼ variable; xiL¼xiU¼ypL¼ypU¼yiL¼yiU¼uxiL¼uxiU¼0;
uyiL¼u, uyiU¼�u) the maximum tensile stress in the ellipse
strongly decreased (Fig. 9c), but the rate of decrease became
lower with increasing initial indentation. For the greatest tested
initial indentation of 0.3b the maximum tensile stress in the
ellipse only reached a value of 0.25 times the value for the
standard loading configuration.

A change of ellipticity (i.e., a¼variable; b¼const., yiU¼b�hi,
yiL¼hi�b, xiL¼xiU¼ypL¼ypU¼yiL¼yiU¼uxiL¼uxiU¼0), from a cir-
cle to an ellipse lead to a decrease of the maximum tensile stress
with increasing ellipticity (Fig. 9d). For small aspect ratios the rate
of decrease was higher and became almost negligible at an aspect
ratio of �3.5.
4. Loading configuration dependent variations
of breakage load

In order to study the impact of different loading configurations
deviating from central loading parallel to the minor principal axis
on breakage load, the following assumptions were made: First,
breakage is initiated when the maximum tensile stress inside the
pebble reaches the tensile strength of the material, which is a
criterion known as maximum tensile stress, or Rankine, criterion.
Second, the carbonatic pebbles are isotropic in strength and
behave like a linear elastic material. These assumptions allow
Fig. 10. Graphical evaluation of the impact of different loading configurations deviatin

natural breakage load distribution from physical PLTs. Subfigure (a) is a simplified versi

now plotted as the breakage load necessary to reach a given critical tensile stress. Th

combined case.
determining the impact of any possible loading configuration on
breakage load because the tensile strength of a specific pebble is
independent of the loading configuration and the stress inside
the pebble is linearly related to the contact load. In this case
the breakage load that corresponds to a predefined constant
stress (i.e., the tensile strength) of any loading configuration
can be calculated from the linear relation between contact load
and stress, as computed with the finite element method at
different magnitudes of opposing displacements of the indenters
uðxi ,yiÞ

.
The statistical analysis of the strength test results on natural

pebbles revealed a linear relation between the mean breakage
load and pebble size DS but similar distribution shapes in each
size class. It is therefore possible to study both the deviation of
the mean breakage load, and the deviation of the material
dependent breakage load distribution for each size class. The
results of the physical strength tests and the numerically deter-
mined breakage load are plotted in Fig. 10a–e, normalised by the
breakage load for the standard loading configuration. In addition
to the comparison of the numerical breakage load results among
the different loading configurations, the plot enables the compar-
ison of these results with the material dependent spread of the
breakage load obtained by physical strength tests of fluvial
pebbles.

In the case of translation of the loading axis (Fig. 9b) the mean
breakage load decreases slightly to a breakage load of 0.85 times
the breakage load in the standard loading configuration. The
variation of the breakage load is much lower than the maxima
and minima of the natural variation observed in physical strength
tests and can therefore be regarded as insignificant. In the case of
rotation (Fig. 9c), the change in breakage load is stronger but still
insignificant compared to the natural variation for a rotation
angle o301. For the case of combined translation and rotation
(Fig. 9d) the breakage load increases significantly, and exceeds the
natural variations of breakage load even at low rotation angles. An
increase of initial indentation (Fig. 9e) has also a significant effect
on the breakage load, showing an almost linear steep increase of
the breakage load with increasing initial indentation. The change
of breakage load with increasing ellipticity of the numerical
domain (Fig. 9f) is relatively small. The breakage load only
reaches a minimum normalised value of 0.8 and a maximum of
1.0, which is much smaller than the natural variation of
breakage load.
g from the standard loading configuration on the mean breakage load and on the

on of Fig. 5. Subfigures (b)–(f) correspond to the configurations in Fig. 9(a)–(d), but

e line in subfigure (b) denoted by B indicates the translational component of the
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5. Discussion

5.1. Influence of geometric loading configuration on breakage load

The influence of the loading configuration on breakage pre-
sented in this study can be categorised into two main effects:
(1) length change of the loading axis, and (2) change of the
contact geometry between indenters and pebble (i.e., area and
orientation).

In the physical strength tests on natural pebbles a linear
relation between pebble size and the breakage load is observed
(Fig. 5). In other words, the larger the pebble and therefore the
longer the loading axis in the experiment is, the higher the
pebble’s resistance to breakage becomes. This linear relation
supports the findings of Hiramatsu and Oka [29] that the stress
fields along the loading axes are very similar for different speci-
men shapes.

This relationship can also be observed in the numerical FE
simulations of different geometrical configurations. For example,
if the loading axis is translated relative to the centre and sub-
parallel to the minor principal pebble axis (Fig. 10b) then the
loading axis becomes shorter and the breakage load decreases
accordingly. However, this effect is minor, especially along the
first half of the semi-axis a, because the length decrease of the
loading axis is relatively small. This effect is supported by the fact
that the fractures at the investigated outcrop (Fig. 1) are widely
distributed around the centre and sometimes even develop a set
of two or more parallel fractures. In contrast, in the case of
rotation of the loading axis around the pebble centre (Fig. 10c),
the loading axis lengthens rapidly with increasing rotation angle
and hence, the breakage load increases rapidly. This effect is more
pronounced for rotation around a point translated from the centre
along the longest principal axes (Fig. 10d). However, because all
these transformations (translation, rotation and the combination
of the two) involve a slight change of the contact area and of the
contact orientation, the resulting variations in the maximum
tensile stress is a result of both the length change of the loading
axis and the change of the contact geometry. Both pure transla-
tion of the loading axis and pure rotation around the centre of the
ellipse are obviously theoretical configurations. In natural gravel
it is much more likely that the loading configuration of a pebble
leads to loading axes that are both translated from the centre and
rotated relative to the principal axes of the pebble. Therefore, the
results of the combined case (Fig. 10d) are considered more
relevant for natural pebble breakage than the two theoretical
end-members. They show a significant increase of the load
necessary for breakage, even for small rotation angles of the
loading axis.

The observed breakage load increase is much stronger for an
increase of the initial indentation of the two numerical point load
cones (Fig. 10c) as it is for pure translation and rotation. In this
case slight shortening of the loading axis with increasing initial
indentation is negligible, but the increase of the contact area
between the indenters and the pebble gives rise to a major
increase of the load necessary for breakage with increasing initial
indentation. This contact area effect makes it difficult to relate the
size of a pebble with its breakage load, because the contact
geometry between the point load cones and the pebble plays
such a significant role. Also, converting breakage load to tensile
strength, which is often done via a simple particle size dependent
function [9], may be strongly influenced by this effect. In addition
to microstructural differences, this geometrical effect could also
contribute to the relatively wide natural breakage load distribu-
tion, observed in physical strength tests (Fig. 5). The investigated
indentation effect has a natural analogue in gravel deposits, since
compressive contact loading may lead to solution pitting (Fig. 1).
During this process, one of two neighbouring pebbles indents into
the other by pressure and fluid induced mineral solution [30,31]
and increases thereby the contact area between them. The results
showed that at the same load the maximum tensile stress in
pebbles with such contact geometries is lower than in pebbles
with point-like contacts. In other words, pebbles that are pre-
ferentially loaded over contacts indicating significant solution
pitting are harder to fracture than those ones with point-like
contacts.

In the case of changing ellipticity (Fig. 10f) the length of the
loading axis does not change, but the change of breakage load is
due to the second effect, namely, an increase of the contact area
between the indenters and the pebble with increasing ellipticity.
The results in Fig. 9d show that the maximum tensile stress is
decreasing with increasing ellipticity and therefore, a larger
breakage load is necessary (Fig. 10f) to reach the critical tensile
stress (i.e., tensile strength). In the case of ellipsoidal particles,
this implies that the maximum tensile stress is larger perpendi-
cular to the longest principal axis than perpendicular to the
intermediate axis, which theoretically results in fractures that
are preferably oriented perpendicular to the longest principal
axis. This is in agreement with observation of fractured pebbles at
the investigated outcrop where fractures are oriented preferably
parallel to the surface defined by the shortest and intermediate
axes within a deviation of 7151 (Fig. 1).

5.2. Failure criterion

To compare the breakage load of the different loading config-
urations with the standard loading configuration, a criterion was
implemented that assumes failure to occur if the maximum
tensile stress at the centre of the loading axis is reached. This
assumption is justified by the fact that the fracture patterns of
most of the broken pebbles at the outcrop do not exhibit near
surface shear failure. Nevertheless, a study of near-surface shear
stress development at the contacts for different loading config-
urations would be necessary for the general applications of the
results to ellipsoidal bodies.

In this study failure is predicted if the maximum tensile stress
in the numerical domain in any of the different loading config-
uration exceeds the maximum tensile stress measured in the
standard loading configuration. Since this approach is based on
the stress state at a point inside the domain, it does not take the
size of the volume under tensile stress into account, which is
known to have an effect on the strength of a specimen [32,33].
This phenomenon can be explained by the fact that larger volumes
under tensile stress have a higher probability to enclose larger and
therefore, failure-prone micro cracks (or in general defects).
However, the carbonate pebbles in this study are composed of
fine-grained calcite or dolomite (average, and maximum grain size
of 0.1 mm and 0.5 mm, respectively) and exhibit a homogeneous
microstructure with very few defects. The absence of large defects
is not surprising, when fluvial transport is considered, which sorts
weak pebbles (with defects) by fracturing and attrition, and leaves
a residue of stronger components [16]. Therefore, the influence of
volume size under tensile stress was neglected and crack initiation
was assumed to be located close to the point of maximum tensile
stress.

5.3. Multiple loading configurations

Natural pebbles are subjected to multiple contact loads
(Fig. 1) and not only to two opposing contact loads, as in this
study. Several studies [34–36] showed that in comparison to
diametrically loaded spheres the stress distribution of circular
discs and irregular shaped particles under multiple loads from
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neighbouring particles changes significantly. Due to their con-
fining effect the additional contact loads on spherical particles
reduce the tensile stresses. However, the influence of multiple
contact loads on the stress distribution and the breakage load
of ellipsoidal shaped particles was not considered in this work.
It is argued that the confining effect by multiple particle
contacts for circular discs [34] has the same impact on the
stress distribution of ellipsoidal pebbles in gravel, which have
an aspect ratio 42:1. One potential argument is that the
contact force networks in granular assemblies comprised of non-
spherical particles show a stronger partitioning effect, into a
strong and a weak force network, in comparison to spherical
particle assemblies. Hence force chains are preferably oriented
sub-parallel to the main loading direction [5,35]. Consequently,
particles are loaded anisotropically and bear most of the load on a
single loading axis or two sub-parallel loading axes with little load
acting perpendicular to this main loading axis (Fig. 2b). In fact, the
preferred orientation of fractures sub-parallel to the shortest
principal axis and the occurrence of multiple sub-parallel fractures
in single pebbles, especially for larger aspect ratios (Fig. 1),
indicate that little confining load must have been present in the
directions perpendicular to the main loading direction. However,
even in the case that multiple contact loads would have a
significantly strong confining effect on pebbles in gravel, the
resultant relative change of breakage load for the different pebble
loading configurations would be still valid, but their impact would
be minor.
6. Conclusions

The aim of this study was to assess the breakage load of fluvial
pebbles in gravel and to investigate its variability due to the
different shape-controlled loading configurations. Physical
strength tests on a pebble population from a suitable outcrop
were conducted and statistically analysed. The physical test
results were extended by means of numerical stress analysis, in
which the influence of other loading configurations on breakage
load that may occur in gravel, but are not practicable in physical
strength tests, were investigated. The findings of the numerical
analysis indicate that the load necessary for breakage has to
increase if (i) the loading axes is rotated relative to the minor
principal axes of the pebble, (ii) the loading axis is translated and
rotated relative to minor principal axis of the pebble, (iii) the
indentation of the pebbles increases (e.g., solution pitting) or (iv)
the ellipticity of the pebble increases. Only pure translation of the
contact loads parallel to the longest principal axis causes a minor
decrease of breakage load. However, the impact differs depending
on configuration type. The first two cases, translation parallel to
the longest principal axis and rotation around the centre, show
less effect on breakage load than the case in which these two
components are combined. Since pure translation and pure
rotation of the loading axis around the centre are rather theore-
tical configurations, the combined case is much more likely to
occur in gravel and is therefore considered to be more relevant.

Furthermore, solution pitting, simulated by systematic varia-
tion of indentation, leads to a maximum tensile stress decrease
and therefore to a higher breakage load compared to point-load
like contacts. The effect of ellipticity indicates that the observed
preferred fracture orientation perpendicular to the longest prin-
cipal pebble axis is a result of the ellipsoidal shape. All studied
configurations with a loading axis parallel to the smallest princi-
pal pebble axis lead to an increase of breakage load. In other
words, the weakest configuration occurs when the loading axis
coincides with the shortest principal axis and any deviation from
this configuration except pure translation leads to an apparent
strengthening of the pebble. These results are in accordance with
fracture orientations measured at the outcrop. However, it is
unlikely that loading axes generated in pebbles through neigh-
bouring opposite pebbles in gravel coincide perfectly with the
shortest principal pebble axis. In physical uniaxial strength tests
the shortest principal pebble axis is also chosen to accomplish a
stable loading configuration. Therefore, failure criteria based only
on the results from simple uniaxial compression tests on particles
with a pronounced ellipsoidal shape, as in the case of fluvial
pebbles, are insufficient to determine particle breakage.
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