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In this paper we give global characterisations of Gevrey–
Roumieu and Gevrey–Beurling spaces of ultradifferentiable
functions on compact Lie groups in terms of the representation
theory of the group and the spectrum of the Laplace–Beltrami
operator. Furthermore, we characterise their duals, the spaces
of corresponding ultradistributions. For the latter, the proof is
based on first obtaining the characterisation of their α-duals
in the sense of Köthe and the theory of sequence spaces.
We also give the corresponding characterisations on compact
homogeneous spaces.
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1. Introduction

The spaces of Gevrey ultradifferentiable functions are well-known on Rn and their
characterisations exist on both the space-side and the Fourier transform side, lead-
ing to numerous applications in different areas. The aim of this paper is to obtain
global characterisations of the spaces of Gevrey ultradifferentiable functions and of
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the spaces of ultradistributions using the eigenvalues of the Laplace–Beltrami opera-
tor LG (e.g. Casimir element) on the compact Lie group G. We treat both the cases
of Gevrey–Roumieu and Gevrey–Beurling functions, and the corresponding spaces of
ultradistributions, which are their topological duals with respect to their inductive and
projective limit topologies, respectively.

If M is a compact homogeneous space, let G be its motion group and H a stationary
subgroup at some point, so that M � G/H. Our results on the motion group G will
yield the corresponding characterisations for Gevrey functions and ultradistributions
on the homogeneous space M . Typical examples are the real spheres Sn = SO(n +
1)/SO(n), complex spheres (and complex projective spaces) CP

n = SU(n + 1)/SU(n),
or quaternionic projective spaces HP

n.
Working in local coordinates and treating G as a manifold the Gevrey–Roumieu class

γs(G), s � 1, is the space of functions φ ∈ C∞(G) such that in every local coordinate
chart its local representative, say ψ ∈ C∞(Rn), is such that there exist constants A > 0
and C > 0 such that for all multi-indices α, we have that

∣∣∂αψ(x)
∣∣ � CA|α|(α!)s

holds for all x ∈ Rn. By the chain rule one readily sees that this class is invariantly
defined on (the analytic manifold) G for s � 1. For s = 1 we obtain the class of analytic
functions. This behaviour can be characterised on the Fourier side by being equivalent
to the condition that there exist B > 0 and K > 0 such that

∣∣ψ̂(η)
∣∣ � Ke−B〈η〉1/s

holds for all η ∈ Rn. We refer to Komatsu [8] for the extensive analysis of these spaces
and their duals in Rn. However, such a local point of view does not tell us about the
global properties of φ such as its relation to the geometric or spectral properties of the
group G, and this is the aim of this paper. The characterisations that we give are global,
i.e. they do not refer to the localisation of the spaces, but are expressed in terms of
the behaviour of the global Fourier transform and the properties of the global Fourier
coefficients. Characterisation of this type for analytic functions on compact analytic
manifolds has been obtained by Seeley [15].

Such global characterisations will be useful for applications. For example, the Cauchy
problem for the wave equation

∂2
t u− a(t)LGu = 0 (1.1)

is well-posed, in general, only in Gevrey spaces, if a(t) becomes zero at some points. How-
ever, in local coordinates (1.1) becomes a second order equation with space-dependent
coefficients and lower order terms. In this case comprehensive well-posedness results are
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not available even on Rn, in general.1 At the same time, in terms of the group Fourier
transform Eq. (1.1) is basically with constant coefficients, and the global characterisation
of Gevrey spaces together with an energy inequality for (1.1) yield the well-posedness
result. We will address this and other applications elsewhere, but we note that in these
problems both types of Gevrey spaces appear naturally, see e.g. [5] for the Gevrey–
Roumieu ultradifferentiable and Gevrey–Beurling ultradistributional well-posedness of
weakly hyperbolic partial differential equations in the Euclidean space.

In Section 2 we will fix the notation and formulate our results. We will also recall
known (easy) characterisations for other spaces, such as spaces of smooth functions,
distributions, or Sobolev spaces over L2. Characterisation for Besov spaces, as well as for
a number of other function spaces (Triebel–Lizorkin, Wiener and Beurling) will appear
in [11]. The proof for the characterisation of Gevrey spaces will rely on the harmonic
analysis on the group, the family of spaces �p(Ĝ) on the unitary dual introduced in
[13], and to some extent on the analysis of globally defined matrix-valued symbols of
pseudo-differential operators developed in [13,14]. Our analysis of ultradistributions will
rely on the theory of sequence spaces (echelon and co-echelon spaces), see e.g. Köthe
[9], Ruckle [12]. Thus, we will first give characterisations of the so-called α-duals of the
Gevrey spaces and then show that α-duals and topological duals coincide. We also prove
that both types of Gevrey spaces are perfect spaces, i.e. the α-dual of its α-dual is
the original space. This is done in Section 4, and the ultradistributions are treated in
Section 5.

We note that the case of the periodic Gevrey spaces, which can be viewed as spaces
on the torus Tn, has been characterised by the Fourier coefficients in [17]. However,
that paper stopped short of characterising the topological duals (i.e. the corresponding
ultradistributions), so already in this case our characterisation in Theorem 2.5 appears
to be new.

On torus, such a characterisation of Gevrey spaces is important for the analysis of
dynamical systems, see e.g. [4]. We also mention characterisations of the Gelfand–Shilov
spaces and their duals on Rn in terms of the short-time Fourier transform, see Gröchenig
and Zimmerman [7] and Toft [18].

We note that compared to the proof of the corresponding results on Rn, here we are
in position to use the theory of sequence spaces, but then we still have to show that the
duals we obtain in this way coincide with the topological duals of the spaces.

In the estimates throughout the paper the constants will be denoted by letter C which
may change value even in the same formula. If we want to emphasise the change of the
constant, we may use letters like C ′, A1, etc.

1 The result of Bronshtein [1] holds but is, in general, not optimal for some types of equations or does not
hold for low regularity a(t). More results are obtained by Nishitani [10].
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2. Results

We first fix the notation and recall known characterisations of several spaces. We refer
to [13] for details on the following constructions.

Let G be a compact Lie group of dimension n. Let Ĝ denote the set of (equivalence
classes of) continuous irreducible unitary representations of G. Since G is compact, Ĝ
is discrete. For [ξ] ∈ Ĝ, by choosing a basis in the representation space of ξ, we can
view ξ as a matrix-valued function ξ : G → Cdξ×dξ , where dξ is the dimension of the
representation space of ξ. For f ∈ L1(G) we define its group Fourier transform at ξ by

f̂(ξ) :=
∫
G

f(x)ξ(x)∗ dx,

where dx is the normalised Haar measure on G. The Peter–Weyl theorem implies the
Fourier inversion formula

f(x) =
∑

[ξ]∈Ĝ

dξ Tr
(
ξ(x)f̂(ξ)

)
. (2.1)

For each [ξ] ∈ Ĝ, the matrix elements of ξ are the eigenfunctions for the Laplace–Beltrami
operator LG with the same eigenvalue which we denote by −λ2

[ξ], so that

−LGξij(x) = λ2
[ξ]ξij(x) for all 1 � i, j � dξ.

Different spaces on the Lie group G can be characterised in terms of comparing the
Fourier coefficients of functions with powers of the eigenvalues of the Laplace–Beltrami
operator. We denote

〈ξ〉 :=
(
1 + λ2

[ξ]
)1/2

,

the eigenvalues of the elliptic first-order pseudo-differential operator (I − LG)1/2.
Then, it is easy to see that f ∈ C∞(G) if and only if for every M > 0 there exists

C > 0 such that ∥∥f̂(ξ)
∥∥
HS � C〈ξ〉−M

,

and u ∈ D′(G) if and only if there exist M > 0 and C > 0 such that∥∥û(ξ)
∥∥
HS � C〈ξ〉M ,

where we define

û(ξ)ij := u(ξji), 1 � i, j � dξ,

(see [3] for a slightly different description).
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For this and other occasions, we can write this as û(ξ) = u(ξ∗) in the matrix notation.
The appearance of the Hilbert–Schmidt norm is natural in view of the Plancherel identity

(f, g)L2(G) =
∑

[ξ]∈Ĝ

dξ Tr
(
f̂(ξ)ĝ(ξ)∗

)
,

so that

‖f‖L2(G) =
( ∑

[ξ]∈Ĝ

dξ
∥∥f̂(ξ)

∥∥2
HS

)1/2

=: ‖f̂‖�2(Ĝ)

can be taken as the definition of the Hilbert space �2(Ĝ). Here, of course, ‖A‖HS =√
Tr(AA∗). It is convenient to use the sequence space

Σ =
{
σ =
(
σ(ξ)
)
[ξ]∈Ĝ

: σ(ξ) ∈ Cdξ×dξ
}
.

In [13], the authors introduced a family of spaces �p(Ĝ), 1 � p < ∞, by saying that
σ ∈ Σ belongs to �p(Ĝ) if the norm

‖σ‖�p(Ĝ) :=
( ∑

[ξ]∈Ĝ

d
p( 2

p− 1
2 )

ξ

∥∥σ(ξ)
∥∥p
HS

)1/p

if finite. There is also the space �∞(Ĝ) for which the norm

‖σ‖�∞(Ĝ) := sup
[ξ]∈Ĝ

d
− 1

2
ξ

∥∥σ(ξ)
∥∥
HS (2.2)

is finite. These are interpolation spaces for which the Hausdorff–Young inequality holds,
in particular, we have

‖f̂‖�∞(Ĝ) � ‖f‖L1(G) and
∥∥F−1σ

∥∥
L∞(G) � ‖σ‖�1(Ĝ), (2.3)

with (
F−1σ

)
(x) =

∑
[ξ]∈Ĝ

dξ Tr
(
ξ(x)σ(ξ)

)
.

We refer to [13, Chapter 10] for further details on these spaces. Usual Sobolev spaces
on G as a manifold, defined by localisations, can be also characterised by the global
condition

f ∈ Ht(G) if and only if 〈ξ〉tf̂(ξ) ∈ �2(Ĝ). (2.4)
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For a multi-index α = (α1, . . . , αn), we define |α| = |α1|+ · · ·+ |αn| and α! = α1! · · ·αn!.
We will adopt the convention that 0! = 1 and 00 = 1.

Let X1, . . . , Xn be a basis of the Lie algebra of G, normalised in some way, e.g.
with respect to the Killing form. For a multi-index α = (α1, . . . , αn), we define the
left-invariant differential operator of order |α|, ∂α := Y1 · · ·Y|α|, with Yj ∈ {X1, . . . , Xn},
1 � j � |α|, and

∑
j:Yj=Xk

1 = αk for every 1 � k � n. It means that ∂α is a composition
of left-invariant derivatives with respect to vectors X1, . . . , Xn, such that each Xk enters
∂α exactly αk times. There is a small abuse of notation here since we do not specify
in the notation ∂α the order of vectors X1, . . . , Xn entering in ∂α, but this will not be
important for the arguments in the paper. The reason we define ∂α in this way is to
take care of the non-commutativity of left-invariant differential operators corresponding
to the vector fields Xk.

We will distinguish between two families of Sobolev spaces over L2. The first one is
defined by Ht(G) = {f ∈ L2(G): (I − LG)t/2f ∈ L2(G)} with the norm

‖f‖Ht(G) :=
∥∥(I − LG)t/2f

∥∥
L2(G) =

∥∥〈ξ〉tf̂(ξ)
∥∥
�2(Ĝ). (2.5)

The second one is defined for k ∈ N0 ≡ N ∪ {0} by

W k,2 =
{
f ∈ L2(G): ‖f‖Wk,2 :=

∑
|α|�k

∥∥∂αf
∥∥
L2(G) < ∞

}
.

Obviously, Hk � W k,2 for any k ∈ N0 but for us the relation between norms will be of
importance, especially as k will tend to infinity.

Let 0 < s < ∞. We first fix the notation for the Gevrey spaces and then formulate the
results. In the definitions below we allow any s > 0, and the characterisation of α-duals
in the sequel will still hold. However, when dealing with ultradistributions we will be
restricting to s � 1.

Definition 2.1. Gevrey–Roumieu(R) class γs(G) is the space of functions φ ∈ C∞(G) for
which there exist constants A > 0 and C > 0 such that for all multi-indices α, we have

∥∥∂αφ
∥∥
L∞ ≡ sup

x∈G

∣∣∂αφ(x)
∣∣ � CA|α|(α!)s. (2.6)

Functions φ ∈ γs(G) are called ultradifferentiable functions of Gevrey–Roumieu class of
order s.

For s = 1 we obtain the space of analytic functions, and for s > 1 the space of
Gevrey–Roumieu functions on G considered as a manifold, by saying that the function
is in the Gevrey–Roumieu class locally in every coordinate chart. The same is true for
the other Gevrey space:
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Definition 2.2. Gevrey–Beurling(B) class γ(s)(G) is the space of functions φ ∈ C∞(G)
such that for every A > 0 there exists CA > 0 so that for all multi-indices α, we have

∥∥∂αφ
∥∥
L∞ ≡ sup

x∈G

∣∣∂αf(x)
∣∣ � CAA

|α|(α!)s.

Functions φ ∈ γ(s)(G) are called ultradifferentiable functions of Gevrey–Beurling class of
order s.

The following theorem is our main result on Gevrey functions on compact Lie groups.

Theorem 2.3. Let 0 < s < ∞.

(R) We have φ ∈ γs(G) if and only if there exist B > 0 and K > 0 such that

∥∥φ̂(ξ)
∥∥
HS � Ke−B〈ξ〉1/s (2.7)

holds for all [ξ] ∈ Ĝ.
(B) We have φ ∈ γ(s)(G) if and only if for every B > 0 there exists KB > 0 such that

∥∥φ̂(ξ)
∥∥
HS � KBe

−B〈ξ〉1/s (2.8)

holds for all [ξ] ∈ Ĝ.

Expressions appearing in the definitions can be taken as seminorms, and the spaces
are equipped with the inductive and projective topologies, respectively.2 We now turn
to ultradistributions.

Definition 2.4. The space of continuous linear functionals on γs(G)(or γ(s)(G)) is called
the space of ultradistributions and is denoted by γ′

s(G)(or γ′
(s)(G)), respectively.

For any v ∈ γ′
s(G)(or γ′

(s)(G)), for [ξ] ∈ Ĝ, we define the Fourier coefficients

v̂(ξ) :=
〈
v, ξ∗
〉
≡ v
(
ξ∗
)
.

These are well-defined since G is compact and hence ξ(x) are actually analytic.
The following theorem is our main result on ultradistributions on compact Lie groups.

Theorem 2.5. Let 1 � s < ∞.

2 See also Definition 5.1 for an equivalent formulation.
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(R) We have v ∈ γ′
s(G) if and only if for every B > 0 there exists KB > 0 such that

∥∥v̂(ξ)∥∥HS � KBe
B〈ξ〉

1
s (2.9)

holds for all [ξ] ∈ Ĝ.
(B) We have v ∈ γ′

(s)(G) if and only if there exist B > 0 and KB > 0 such that (2.9)
holds for all [ξ] ∈ Ĝ.

The proof of Theorem 2.5 follows from the characterisation of α-duals of3 the Gevrey
spaces in Theorem 4.2 and the equivalence of the topological duals and α-duals in The-
orem 5.2.

The result on groups implies the corresponding characterisation on compact homo-
geneous spaces M . First we fix the notation. Let G be a compact motion group of M
and let H be the stationary subgroup of some point. Alternatively, we can start with
a compact Lie group G with a closed subgroup H. The homogeneous space M = G/H

is an analytic manifold in a canonical way (see, for example, Bruhat [2] or Stein [16]
as textbooks on this subject). We normalise measures so that the measure on H is a
probability one. Typical examples are the spheres Sn = SO(n + 1)/SO(n) or complex
spheres CSn = SU(n + 1)/SU(n).

We denote by Ĝ0 the subset of Ĝ of representations that are class I with respect to
the subgroup H. This means that [ξ] ∈ Ĝ0 if ξ has at least one non-zero invariant vector
a with respect to H, i.e. that

ξ(h)a = a for all h ∈ H.

Let Hξ denote the representation space of ξ, i.e. ξ(x) : Hξ → Hξ, and let Bξ be the space
of these invariant vectors. Let

kξ := dimBξ.

We fix an orthonormal basis of Hξ so that its first kξ vectors are the basis of Bξ. The
matrix elements ξij(x), 1 � j � kξ, are invariant under the right shifts by H. We refer
to Vilenkin and Klimyk [19] for the details of these constructions.

We can identify Gevrey functions on M = G/H with Gevrey functions on G which
are constant on left cosets with respect to H. Here we will restrict to s � 1 to see
the equivalence of spaces using their localisation. This identification gives rise to the
corresponding identification of ultradistributions. Thus, for a function f ∈ γs(M) we can
recover it by the Fourier series of its canonical lifting f̃(g) := f(gH) to G, f̃ ∈ γs(G),
and the Fourier coefficients satisfy ̂̃f(ξ) = 0 for all representations with [ξ] /∈ Ĝ0. Also,
for class I representations [ξ] ∈ Ĝ0 we have ̂̃f(ξ)ij = 0 for i > kξ.

3 The characterisation of α-duals is actually valid for all 0 < s < ∞.
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With this, we can write the Fourier series of f (or of f̃ , but as we said, from now on
we will identify these and denote both by f) in terms of the spherical functions ξij of the
representations ξ, [ξ] ∈ Ĝ0, with respect to the subgroup H. Namely, the Fourier series
(2.1) becomes

f(x) =
∑

[ξ]∈Ĝ0

dξ

dξ∑
i=1

kξ∑
j=1

f̂(ξ)jiξij(x). (2.10)

In view of this, we will say that the collection of Fourier coefficients {φ̂(ξ)ij : [ξ] ∈ Ĝ, 1 �
i, j � dξ} is of class I with respect to H if φ̂(ξ)ij = 0 whenever [ξ] /∈ Ĝ0 or i > kξ. By
the above discussion, if the collection of Fourier coefficients is of class I with respect
to H, then the expressions (2.1) and (2.10) coincide and yield a function f such that
f(xh) = f(h) for all h ∈ H, so that this function becomes a function on the homogeneous
space G/H. The same applies to (ultra)distributions with the standard distributional
interpretation. With these identifications, Theorem 2.3 immediately implies

Theorem 2.6. Let 1 � s < ∞.

(R) We have φ ∈ γs(G/H) if and only if its Fourier coefficients are of class I with
respect to H and, moreover, there exist B > 0 and K > 0 such that∥∥φ̂(ξ)

∥∥
HS � Ke−B〈ξ〉1/s (2.11)

holds for all [ξ] ∈ Ĝ0.
(B) We have φ ∈ γ(s)(G) if and only if its Fourier coefficients are of class I with respect

to H and, moreover, for every B > 0 there exists KB > 0 such that∥∥φ̂(ξ)
∥∥
HS � KBe

−B〈ξ〉1/s (2.12)

holds for all [ξ] ∈ Ĝ0.

It would be possible to extend Theorem 2.6 to the range 0 < s < ∞ by adopting
Definition 2.1 starting with a frame of vector fields on M , but instead of obtaining the
result immediately from Theorem 2.3 we would have to go again through arguments
similar to those used to prove Theorem 2.3. Since we are interested in characterising
the standard invariantly defined Gevrey spaces we decided not to lengthen the proof
in this way. On the other hand, it is also possible to prove the characterisations on
homogeneous spaces G/H first and then obtain those on the group G by taking H to be
trivial. However, some steps would become more technical since we would have to deal
with frames of vector fields instead of the basis of left-invariant vector fields on G, and
elements of the symbolic calculus used in the proof would become more complicated.

We also have the ultradistributional result following from Theorem 2.5.
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Theorem 2.7. Let 1 � s < ∞.

(R) We have v ∈ γ′
s(G/H) if and only if its Fourier coefficients are of class I with respect

to H and, moreover, for every B > 0 there exists KB > 0 such that

∥∥v̂(ξ)∥∥HS � KBe
B〈ξ〉

1
s (2.13)

holds for all [ξ] ∈ Ĝ0.
(B) We have v ∈ γ′

(s)(G/H) if and only if its Fourier coefficients are of class I with
respect to H and, moreover, there exist B > 0 and KB > 0 such that (2.13) holds
for all [ξ] ∈ Ĝ0.

Finally, we remark that in the harmonic analysis on compact Lie groups sometimes
another version of �p(Ĝ) spaces appears using Schatten p-norms. However, in the context
of Gevrey spaces and ultradistributions eventual results hold for all such norms. Indeed,
given our results with the Hilbert–Schmidt norm, by an argument similar to that of
Lemma 3.2 below, we can put any Schatten norm ‖ · ‖Sp

, 1 � p � ∞, instead of the
Hilbert–Schmidt norm ‖ · ‖HS in any of our characterisations and they still continue to
hold.

3. Gevrey classes on compact Lie groups

We will need two relations between dimensions of representations and the eigenvalues
of the Laplace–Beltrami operator. On one hand, it follows from the Weyl character
formula that

dξ � C〈ξ〉
n−rank G

2 � C〈ξ〉
n
2 (3.1)

(where n = dimG), with the latter4 also following directly from the Weyl asymptotic
formula for the eigenvalue counting function for LG, see e.g. [13, Prop. 10.3.19]. This
implies, in particular, that for any 0 � p < ∞ and any s > 0 and B > 0 we have

sup
[ξ]∈Ĝ

dpξe
−B〈ξ〉1/s < ∞. (3.2)

Also, see [20] for other relations. On the other hand, the following simple statement
about the convergence for the series relating eigenvalue and dimensions will be useful for
us:

Lemma 3.1. We have
∑

[ξ]∈Ĝ d2
ξ 〈ξ〉−2t

< ∞ if and only if t > n
2 .

4 Namely, the inequality dξ � C〈ξ〉
n

2 .
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Proof. We notice that for the δ-distribution at the unit element of the group, δ̂(ξ) = Idξ

is the identity matrix of size dξ × dξ. Hence, in view of (2.4) and (2.5), we can write∑
[ξ]∈Ĝ

d2
ξ〈ξ〉

−2t =
∑

[ξ]∈Ĝ

dξ〈ξ〉−2t∥∥δ̂(ξ)∥∥2HS =
∥∥(I − LG)−t/2δ

∥∥2
L2(G) = ‖δ‖2

H−t(G).

By using the localisation of H−t(G), we see that this is finite if and only if t > n/2. �
We denote by Ĝ∗ the set of representations from Ĝ excluding the trivial represen-

tation. For [ξ] ∈ Ĝ, we denote |ξ| := λξ � 0, the eigenvalue of the operator (−LG)1/2
corresponding to the representation ξ. For [ξ] ∈ Ĝ∗ we have |ξ| > 0 (see e.g. [6]), and for
[ξ] ∈ Ĝ\Ĝ∗, ξ is trivial and we have |ξ| = 0. From the definition, we have |ξ| � 〈ξ〉. On
the other hand, let λ2

1 > 0 be the smallest positive eigenvalue of −LG. Then, for [ξ] ∈ Ĝ∗
we have λξ � λ1, implying

1 + λ2
ξ �
(

1
λ2

1
+ 1
)
λ2
ξ ,

so that altogether we record the inequalities

|ξ| � 〈ξ〉 �
(

1 + 1
λ2

1

)1/2

|ξ|, for all [ξ] ∈ Ĝ∗. (3.3)

We will need the following simple lemma which we prove for completeness. Let a ∈
Cd×d be a matrix, and for 1 � p < ∞ we denote by �p(C) the space of such matrices
with the norm

‖a‖�p(C) :=
(

d∑
i,j=1

|aij |p
)1/p

,

and for p = ∞,

‖a‖�∞(C) := sup
1�i,j�d

|aij |.

We note that ‖a‖�2(C) = ‖a‖HS. We adopt the usual convention c
∞ = 0 for any c ∈ R.

Lemma 3.2. Let 1 � p < q � ∞ and let a ∈ Cd×d. Then we have

‖a‖�p(C) � d2( 1
p− 1

q )‖a‖�q(C) and ‖a‖�q(C) � d
2
q ‖a‖�p(C). (3.4)

Proof. For q < ∞, we apply Hölder’s inequality with r = q
p and r′ = q

q−p to get

‖a‖p�p(C) =
d∑

|aij |p �
(

d∑
|aij |pr

)1/r( d∑
1
)1/r′

= ‖a‖p�q(C)d
2 q−p

q ,

i,j=1 i,j=1 i,j=1
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implying (3.4) for this range. Conversely, we have

‖a‖q�q(C) =
d∑

i,j=1
|aij |q �

d∑
i,j=1

‖a‖q�p(C) = d2‖a‖q�p(C),

proving the other part of (3.4) for this range. For q = ∞, we have ‖a‖�p(C) �
(
∑d

i,j=1 ‖a‖
p
�∞(C))

1/p
� ‖a‖�∞(C)d

2/p. Conversely, we have trivially ‖a‖�∞(C) � ‖a‖�p(C),
completing the proof. �

We observe that the Gevrey spaces can be described in terms of L2-norms, and this
will be useful to us in the sequel.

Lemma 3.3. We have φ ∈ γs(G) if and only if there exist constants A > 0 and C > 0
such that for all multi-indices α we have∥∥∂αφ

∥∥
L2 � CA|α|(α!)s. (3.5)

We also have φ ∈ γ(s)(G) if and only if for every A > 0 there exists CA > 0 such that
for all multi-indices α we have∥∥∂αφ

∥∥
L2 � CAA

|α|(α!)s.

Proof. We prove the Gevrey–Roumieu case (R) as the Gevrey–Beurling case (B) is sim-
ilar. For φ ∈ γs(G), (3.5) follows in view of the continuous embedding L∞(G) ⊂ L2(G)
with ‖f‖L2 � ‖f‖L∞ since the measure is normalised.

Now suppose that for φ ∈ C∞(G) we have (3.5). In view of (2.3), and using Lemma 3.1
with an integer k > n/2, we obtain5

‖φ‖L∞ �
∑

[ξ]∈Ĝ

d
3/2
ξ

∥∥φ̂(ξ)
∥∥
HS

�
( ∑

[ξ]∈Ĝ

dξ
∥∥φ̂(ξ)

∥∥2
HS〈ξ〉

2k
)1/2( ∑

[ξ]∈Ĝ

d2
ξ〈ξ〉

−2k
)1/2

� C
∥∥(I − LG)k/2φ

∥∥
L2

� Ck

∑
|β|�k

∥∥∂βφ
∥∥
L2 ,

with constant Ck depending only on G. Consequently we also have∥∥∂αφ
∥∥
L∞ � Ck

∑
|β|�k

∥∥∂α+βφ
∥∥
L2 . (3.6)

5 Note that this can be adopted to give a simple proof of the Sobolev embedding theorem.
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Using the inequalities

α! � |α|!, |α|! � n|α|α! and
(
|α| + k

)
! � 2|α|+kk!|α|!, (3.7)

in view of (3.6) and (3.5) we get

∥∥∂αφ
∥∥
L∞ � CkA

|α|+k
∑
|β|�k

(
(α + β)!

)s
� CkA

|α|+k
∑
|β|�k

((
|α| + k

)
!
)s

� C ′
kA

|α|+k
(
2|α|+kk!

)s(|α|!)s
� C ′′

kA
|α|
1
(
n|α|α!

)s
� C ′′

kA
|α|
2 (α!)s,

with constants C ′′
k and A2 independent of α, implying that φ ∈ γs(G) and completing

the proof. �
The following proposition prepares the possibility to passing to the conditions formu-

lated on the Fourier transform side.

Proposition 3.4. We have φ ∈ γs(G) if and only if there exist constants A > 0 and C > 0
such that

∥∥(−LG)kφ
∥∥
L∞ � CA2k((2k)!

)s (3.8)

holds for all k ∈ N0. Also, φ ∈ γ(s)(G) if and only if for every A > 0 there exists CA > 0
such that for all k ∈ N0 we have

∥∥(−LG)kφ
∥∥
L∞ � CAA

2k((2k)!
)s
.

Proof. We prove the Gevrey–Roumieu case (3.8) and indicate small additions to the
argument for γ(s)(G). Thus, let φ ∈ γs(G). Recall that by the definition there exist some
A > 0, C > 0 such that for all multi-indices α we have

∥∥∂αφ
∥∥
L∞ = sup

x∈G

∣∣∂αφ(x)
∣∣ � CA|α|(α!)s.

We will use the fact that for the compact Lie group G the Laplace–Beltrami operator LG

is given by LG = X2
1 +X2

2 + · · ·+X2
n, where Xi, i = 1, 2, . . . , n, is a set of left-invariant

vector fields corresponding to a normalised basis of the Lie algebra of G. Then by the
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multinomial theorem6 and using (3.7), with Yj ∈ {X1, . . . , Xn}, 1 � j � |α|, we can
estimate

∣∣(−LG)kφ(x)
∣∣ � C

∑
|α|=k

k!
α!
∣∣Y 2

1 . . . Y 2
|α|φ(x)

∣∣
� C

∑
|α|=k

k!
α!
[(

2|α|
)
!
]s
A2|α|

� CA2k[(2k)!
]s ∑

|α|=k

k!n|α|

|α|!

� C1A
2k[(2k)!

]s
nkkn−1

� C2A
2k
1
[
(2k)!
]s
, (3.9)

with A1 = 2nA, implying (3.8). For the Gevrey–Beurling case γ(s)(G), we observe that we
can obtain any A1 > 0 in (3.9) by using A = A1

2n in the Gevrey estimates for φ ∈ γ(s)(G).
Conversely, suppose φ ∈ C∞(G) is such that the inequalities (3.8) hold. First we note

that for |α| = 0 the estimate (2.7) follows from (3.8) with k = 0, so that we can assume
|α| > 0.

Following [14], we define the symbol of ∂α to be σ∂α(ξ) = ξ(x)∗∂αξ(x), and we have
σ∂α(ξ) ∈ Cdξ×dξ is independent of x since ∂α is left-invariant. For the in-depth analysis
of symbols and symbolic calculus for general operators on G we refer to [13,14] but we
will use only basic things here. In particular, we have

∂αφ(x) =
∑

[ξ]∈Ĝ

dξ Tr
(
ξ(x)σ∂α(ξ)φ̂(ξ)

)
.

First we calculate the operator norm ‖σ∂α(ξ)‖op of the matrix multiplication by σ∂α(ξ).
Since ∂α = Y1 · · ·Y|α| and Yj ∈ {X1, . . . , Xn} are all left-invariant, we have σ∂α =
σY1 · · ·σY|α| , so that we get

∥∥σ∂α(ξ)
∥∥
op �

∥∥σX1(ξ)
∥∥α1

op · · ·
∥∥σXn

(ξ)
∥∥αn

op .

Now, since Xj are operators of the first order, one can show (see e.g. [14, Lemma 8.6], or
[13, Section 10.9.1] for general arguments) that ‖σXj

(ξ)‖op � Cj〈ξ〉 for some constants
Cj , j = 1, . . . , n. Let C0 := supj Cj + 1, then we have

∥∥σ∂α(ξ)
∥∥
op � C

|α|
0 〈ξ〉|α|. (3.10)

6 The form in which we use it is adapted to non-commutativity of vector fields. Namely, although the
coefficients are all equal to one in the non-commutative form, the multinomial coefficient appears once we
make a choice for α = (α1, . . . , αn).



770 A. Dasgupta, M. Ruzhansky / Bull. Sci. math. 138 (2014) 756–782
Let us define σPα
∈ Σ by setting σPα

(ξ) := |ξ|−2kσ∂α(ξ) for [ξ] ∈ Ĝ∗, and by σPα
(ξ) := 0

for [ξ] ∈ Ĝ\Ĝ∗. This gives the corresponding operator

(Pαφ)(x) =
∑

[ξ]∈Ĝ

dξ Tr
(
ξ(x)σPα

(ξ)φ̂(ξ)
)
. (3.11)

From (3.10) we obtain

∥∥σPα
(ξ)
∥∥
op � C

|α|
0 〈ξ〉|α||ξ|−2k for all [ξ] ∈ Ĝ∗. (3.12)

Now, for [ξ] ∈ Ĝ∗, from (3.3) we have

|ξ|−2k � C2k
1 〈ξ〉−2k

, C1 =
(

1 + 1
λ2

1

)1/2

.

Together with (3.12), and the trivial estimate for [ξ] ∈ Ĝ\Ĝ∗, we obtain

∥∥σPα
(ξ)
∥∥
op � C

|α|
0 C2k

1 〈ξ〉|α|−2k for all [ξ] ∈ Ĝ. (3.13)

Using (3.11) and the Plancherel identity, we estimate

∣∣Pαφ(x)
∣∣ � ∑

[ξ]∈Ĝ

dξ
∥∥ξ(x)σPα

(ξ)
∥∥
HS

∥∥φ̂(ξ)
∥∥
HS

�
( ∑

[ξ]∈Ĝ

dξ
∥∥φ̂(ξ)

∥∥2
HS

)1/2( ∑
[ξ]∈Ĝ

dξ
∥∥σPα

(ξ)
∥∥2
op

∥∥ξ(x)
∥∥2
HS

)1/2

= ‖φ‖L2

( ∑
[ξ]∈Ĝ

d2
ξ

∥∥σPα
(ξ)
∥∥2
op

)1/2

.

From this and (3.13) we conclude that

∣∣Pαφ(x)
∣∣ � ‖φ‖L2C

|α|
0 C2k

1

( ∑
[ξ]∈Ĝ

d2
ξ〈ξ〉

−2(2k−|α|)
)1/2

.

Now, in view of Lemma 3.1 the series on the right hand side converges provided that
2k − |α| > n/2. Therefore, for 2k − |α| > n/2 we obtain

‖Pαφ‖L2 � CC2k
2 ‖φ‖L2 , (3.14)

with some C and C2 = C0C1 independent of k and α. We note that here we used that
|α| � 2k and that we can always have C0 � 1.
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We now observe that from the definition of σPα
we have

σ∂α(ξ) = σPα
(ξ)|ξ|2k (3.15)

for all [ξ] ∈ Ĝ∗. On the other hand, since we assumed |α| �= 0, for [ξ] ∈ Ĝ\Ĝ∗ we have
σ∂α(ξ) = ξ(x)∗∂αξ(x) = 0, so that (3.15) holds true for all [ξ] ∈ Ĝ. This implies that in
the operator sense, we have ∂α = Pα ◦ (−LG)k. Therefore, from this relation and (3.14),
for |α| < 2k − n/2, we get∥∥∂αφ

∥∥2
L2 =

∥∥Pα ◦ (−LG)kφ
∥∥2
L2

� CC4k
2

∫
G

∣∣(−LG)kφ(x)
∣∣2 dx

� C ′C4k
2 A4k((2k)!

)2s
� C ′A4k

1
(
(2k)!
)2s

,

where we have used the assumption (3.8), and with C ′ and A1 = C2A independent of k
and α. Hence we have ‖∂αφ‖L2 � CA2k

1 ((2k)!)s for all |α| < 2k−n/2. Then, for every β,
by the above argument, taking an integer k such that |β| + 4n � 2k > |β| + n/2, if
A1 � 1, we obtain∥∥∂βφ

∥∥
L2 � CA

|β|+4n
1

((
|β| + 4n

)
!
)s � C ′A

|β|
1
(
2|β|+4n(4n)!|β|!

)s � C ′′A
|β|
2 (β!)s,

in view of inequalities (3.7). By Lemma 3.3 it follows that φ ∈ γs(G).
If A1 < 1 (in the case of γ(s)(G)), we estimate∥∥∂βφ

∥∥
L2 � CA

|β|+n/2
1

((
|β| + 4n

)
!
)s � C ′′A

|β|
3 (β!)s

by a similar argument. The relation between constants, namely A1 = C2A and A3 =
2nA1, implies that the case of γ(s)(G) also holds true. �

We can now pass to the Fourier transform side.

Lemma 3.5. For φ ∈ γs(G), there exist constants C > 0 and A > 0 such that∥∥φ̂(ξ)
∥∥
HS � Cd

1/2
ξ |ξ|−2mA2m((2m)!

)s (3.16)

holds for all m ∈ N0 and [ξ] ∈ Ĝ∗. Also, for φ ∈ γ(s)(G), for every A > 0 there exists
CA > 0 such that ∥∥φ̂(ξ)

∥∥
HS � CAd

1/2
ξ |ξ|−2mA2m((2m)!

)s
holds for all m ∈ N0 and [ξ] ∈ Ĝ∗.
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Proof. We will treat the case γs since γ(s) is analogous. Using the fact that the Fourier
transform is a bounded linear operator from L1(G) to l∞(Ĝ), see (2.3), and using Propo-
sition 3.4, we obtain

∥∥|ξ|2mφ̂(ξ)
∥∥
l∞(Ĝ) �

∫
G

∣∣(−LG)mφ(x)
∣∣ dx

� CA2m((2m)!
)s

for all [ξ] ∈ Ĝ and m ∈ N0. Recalling the definition of �∞(Ĝ) in (2.2) we obtain (3.16). �
We can now prove Theorem 2.3.

Proof of Theorem 2.3. (R) “Only if” part.
Let φ ∈ γs(G). Using k! � kk and Lemma 3.5 we get

∥∥φ̂(ξ)
∥∥
HS � Cd

1/2
ξ inf

2m�0
|ξ|−2mA2m(2m)2ms (3.17)

for all [ξ] ∈ Ĝ∗. We will show that this implies the (sub-)exponential decay in (2.7). It
is known that for r > 0, we have the identity

inf
x>0

xsxr−x = e−(s/e)r1/s
. (3.18)

So for a given r > 0 there exists some x0 = x0(r) > 0 such that

inf
x>0

xsx

(
r

8s

)−x

= xsx0
0

(
r

8s

)−x0

. (3.19)

We will be interested in large r, in fact we will later set r = |ξ|
A , so we can assume that r

is large. Suppose, we can take an even positive integer m0 such that m0 � x0 < m0 + 2.
We also note that since in what follows we will be interested in estimating the infima
from above, this assumption is not restrictive. Using the trivial inequalities

(m0)sm0r−(m0+2) � xsx0
0 r−x0 , r � 1,

and

(k + 2)k+2 � 8kkk

for any k � 2, we obtain

(m0 + 2)s(m0+2)r−(m0+2) � 8sm0msm0
0 r−(m0+2) � xsx0

0

(
r
s

)−x0

.
8
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It follows from this, (3.18) and (3.19), that

inf
2m�0

(2m)2smr−2m � xsx0
0

(
r

8s

)−x0

= e−(s/e)( r
8s )1/s . (3.20)

Let now r = |ξ|
A . From (3.17) and (3.20) we obtain

∥∥φ̂(ξ)
∥∥
HS � Cd

1/2
ξ inf

2m�0

A2m

|ξ|2m (2m)2ms

= Cd
1/2
ξ inf

2m�0
r−2m(2m)2ms

� Cd
1/2
ξ e−(s/e)( r

8s )1/s

= Cd
1/2
ξ e

−(s/e) |ξ|1/s

8A1/s

� Cd
1/2
ξ e−2B|ξ|1/s , (3.21)

with 2B = s
8e

1
A1/s . From (3.2) it follows that d

1/2
ξ e−B|ξ|1/s � C. Using (3.3), we obtain

(2.7) for all [ξ] ∈ Ĝ∗. On the other hand, for trivial [ξ] ∈ Ĝ\Ĝ∗ the estimate (2.7) is just
the condition of the boundedness. This completes the proof of the “only if” part.

Now we prove the “if” part. Suppose φ ∈ C∞(G) is such that (2.7) holds, i.e. we have

∥∥φ̂(ξ)
∥∥
HS � Ke−B〈ξ〉1/s .

The �1(Ĝ) → L∞(G) boundedness of the inverse Fourier transform in (2.3) implies

∥∥(−LG)kφ
∥∥
L∞(G) �

∥∥|ξ|2kφ̂∥∥
�1(Ĝ)

=
∑

[ξ]∈Ĝ

d
3/2
ξ |ξ|2k

∥∥φ̂(ξ)
∥∥
HS

� K
∑

[ξ]∈Ĝ

d
3/2
ξ 〈ξ〉2ke−B〈ξ〉1/s

� K
∑

[ξ]∈Ĝ

d
3/2
ξ e

−B〈ξ〉1/s
2
(
〈ξ〉2ke

−B〈ξ〉1/s
2
)
. (3.22)

Now we will use the following simple inequality, tN

N ! � et for t > 0. Setting later m = 2k
and a = B

2 , we estimate

(m!)−s〈ξ〉m =
(

(a〈ξ〉1/s)m
)s

a−sm � a−smea〈ξ〉
1/s

,

m!
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which implies e−B
2 〈ξ〉1/s〈ξ〉2k � A2k((2k)!)s, with A = a−s = (2/B)s. Using this inequal-

ity and (3.22) we obtain

∥∥(−LG)kφ
∥∥
L∞ � K

∑
[ξ]∈Ĝ

d
3/2
ξ e

−B〈ξ〉1/s
2 A2k((2k)!

)s � CA2k((2k)!
)s (3.23)

with A = 2s

Bs , where the convergence of the series in [ξ] follows from Lemma 3.1. There-
fore, φ ∈ γs(G) by Proposition 3.4.

(B) “Only if” part. Suppose φ ∈ γ(s)(G). For any given B > 0 define A by solving
2B = ( s

8e )
1

A1/s . By Lemma 3.5 there exists KB > 0 such that∥∥φ̂(ξ)
∥∥
HS � KBd

1/2
ξ inf

2m�0
|ξ|−2mA2m(2m)2ms.

Consequently, arguing as in case (R) we get (3.21), i.e.∥∥φ̂(ξ)
∥∥
HS � KBd

1/2
ξ e−2B|ξ|1/s

for all [ξ] ∈ Ĝ. The same argument as in the case (R) now completes the proof.
“If” part. For a given A > 0 define B > 0 by solving A = 2s

Bs and take CA big enough
as in the case of (R), so that we get∥∥(−LG)kφ

∥∥
L∞ � CAA

2k((2k)!
)s
.

Therefore, φ ∈ γ(s)(G) by Proposition 3.4. �
4. α-duals γs(G)∧ and γ(s)(G)∧, for any s, 0 < s < ∞

First we analyse α-duals of Gevrey spaces regarded as sequence spaces through their
Fourier coefficients.

We can embed γs(G)(or γ(s)(G)) in the sequence space Σ using the Fourier coefficients
and Theorem 2.3. We denote the α-dual of such the sequence space γs(G) (or γ(s)(G))
as

[
γs(G)

]∧ :=
{
v = (vξ)[ξ]∈Ĝ ∈ Σ:

∑
[ξ]∈Ĝ

dξ∑
i,j=1

∣∣(vξ)ij∣∣∣∣φ̂(ξ)ij
∣∣ < ∞ for all φ ∈ γs(G)

}
,

with a similar definition for γ(s)(G).

Lemma 4.1.

(R) We have v ∈ [γs(G)]∧ if and only if for every B > 0 we have the inequality∑
̂ e

−B〈ξ〉
1
s ‖vξ‖HS < ∞. (4.1)
[ξ]∈G
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(B) Also, we have v ∈ [γ(s)(G)]∧ if and only if there exists B > 0 such that the inequality
(4.1) holds.

The proof of this lemma in (R) and (B) cases will be different. For (R) we can show
this directly, and for (B) we employ the theory of echelon spaces by Köthe [9].

Proof. (R) “Only if” part. Let v ∈ [γs(G)]∧. For any B > 0, define φ by setting its
Fourier coefficients to be φ̂(ξ)ij := dξe

−B〈ξ〉
1
s , so that ‖φ̂(ξ)‖HS = d2

ξe
−B〈ξ〉

1
s � Ce−

B
2 〈ξ〉

1
s

by (3.2), which implies that φ ∈ γs(G) by Theorem 2.3. Using Lemma 3.2, we obtain

∑
[ξ]∈Ĝ

e−B〈ξ〉
1
s ‖vξ‖HS �

∑
[ξ]∈Ĝ

dξe
−B〈ξ〉

1
s ‖vξ‖�1(C) =

∑
[ξ]∈Ĝ

dξ∑
i,j=1

∣∣(vξ)ij∣∣∣∣φ̂(ξ)ij
∣∣ < ∞

by the assumption v ∈ [γs(G)]∧, proving the “only if” part.
“If” part. Let φ ∈ γs(G). Then by Theorem 2.3 there exist some B > 0 and C > 0

such that

∥∥φ̂(ξ)
∥∥
HS � Ce−B〈ξ〉

1
s ,

which implies that

∑
[ξ]∈Ĝ

dξ∑
i,j=1

∣∣(vξ)ij∣∣∣∣φ̂(ξ)ij
∣∣ � ∑

[ξ]∈Ĝ

‖vξ‖HS
∥∥φ̂(ξ)

∥∥
HS � C

∑
[ξ]∈Ĝ

e−B〈ξ〉
1
s ‖vξ‖HS < ∞

is finite by the assumption (4.1). But this means that v ∈ [γs(G)]∧.
(B) For any B > 0 we consider the so-called echelon space,

EB :=
{
v = (vξ) ∈ Σ:

∑
[ξ]∈Ĝ

dξ∑
i,j=1

e−B〈ξ〉
1
s
∣∣(vξ)ij∣∣ < ∞

}
.

Now, by diagonal transform we have EB
∼= l1 and hence ÊB

∼= l∞, and it is easy to
check that ÊB is given by

ÊB =
{
w = (wξ) ∈ Σ | ∃K > 0:

∣∣(wξ)ij
∣∣ � Ke−B〈ξ〉1/s for all 1 � i, j � dξ

}
.

By Theorem 2.3 we know that φ ∈ γ(s)(G) if and only if (φ̂(ξ))[ξ]∈Ĝ ∈
⋂

B>0 ÊB . Using
Köthe’s theory relating echelon and co-echelon spaces [9, Ch. 30.8], we have, consequently,
that v ∈ γ(s)(G)∧ if and only if (vξ) ̂ ∈ ⋃B>0 EB . But this means that for some B > 0
[ξ]∈G
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we have

∑
[ξ]∈Ĝ

dξ∑
i,j=1

e−B〈ξ〉
1
s
∣∣(vξ)ij∣∣ < ∞.

Finally, we observe that this is equivalent to (4.1) if we use Lemma 3.2 and (3.2). �
We now give the characterisation for α-duals.

Theorem 4.2. Let 0 < s < ∞.

(R) We have v ∈ [γs(G)]∧ if and only if for every B > 0 there exists KB > 0 such that

‖vξ‖HS � KBe
B〈ξ〉

1
s (4.2)

holds for all [ξ] ∈ Ĝ.
(B) We have v ∈ [γ(s)(G)]∧ if and only if there exist B > 0 and KB > 0 such that (4.2)

holds for all [ξ] ∈ Ĝ.

Proof. We prove the case (R) only since the proof of (B) is similar. First we deal with
“If” part. Let v ∈ Σ be such that (4.2) holds for every B > 0. Let ϕ ∈ γs(G). Then
by Theorem 2.3 there exist some constants A > 0 and C > 0 such that ‖φ̂(ξ)‖HS �
Ce−A〈ξ〉1/s . Taking B = A/2 in (4.2) we get that

∑
[ξ]∈Ĝ

dξ∑
i,j=1

∣∣(vξ)ij∣∣∣∣φ̂(ξ)ij
∣∣ � ∑

[ξ]∈Ĝ

‖vξ‖HS
∥∥φ̂(ξ)

∥∥
HS � CKB

∑
[ξ]∈Ĝ

e−
A
2 〈ξ〉1/s < ∞,

so that v ∈ [γs(G)]∧.
“Only if” part. Let v ∈ [γs(G)]∧ and let B > 0. Then by Lemma 4.1 we have that∑

[ξ]∈Ĝ

e−B〈ξ〉1/s‖vξ‖HS < ∞.

This implies that the exists a constant KB > 0 such that e−B〈ξ〉1/s‖v(ξ)‖HS � KB ,
yielding (4.2). �

We now want to show that the Gevrey spaces are perfect in the sense of Köthe. We
define the α-dual of [γs(G)]∧ as

[
γ̂s(G)

]∧ =
{
w = (wξ)[ξ]∈Ĝ ∈ Σ :

∑
[ξ]∈Ĝ

dξ∑
i,j=1

∣∣(wξ)ij
∣∣∣∣(vξ)ij∣∣ < ∞ for all v ∈

[
γs(G)

]∧}
,

and similarly for [γ(s)(G)]∧. First, we prove the following lemma.
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Lemma 4.3.

(R) We have w ∈ [γ̂s(G)]∧ if and only if there exists B > 0 such that

∑
[ξ]∈Ĝ

eB〈ξ〉
1
s ‖wξ‖HS < ∞. (4.3)

(B) We have w ∈ [γ̂(s)(G)]∧ if and only if for every B > 0 the series (4.3) converges.

Proof. We first show the Beurling case as it is more straightforward.
(B) “Only if” part. We assume that w ∈ [γ̂(s)(G)]∧. Let B > 0, and define (vξ)ij :=

dξe
B〈ξ〉

1
s . Then ‖vξ‖HS = d2

ξe
B〈ξ〉

1
s � Ce2B〈ξ〉

1
s by (3.2), which implies v ∈ [γ(s)(G)]∧ by

Theorem 4.2. Consequently, using Lemma 3.2 we can estimate

∑
[ξ]∈Ĝ

eB〈ξ〉
1
s ‖wξ‖HS �

∑
[ξ]∈Ĝ

dξe
B〈ξ〉

1
s

dξ∑
i,j=1

∣∣(wξ)ij
∣∣ = ∑

[ξ]∈Ĝ

dξ∑
i,j=1

∣∣(vξ)ij∣∣∣∣(wξ)ij
∣∣ < ∞,

implying (4.3).
“If” part. Here we are given w ∈ Σ such that for every B > 0 the series (4.3) converges.

Let us take any v ∈ [γ(s)(G)]∧. By Theorem 4.2 there exist B > 0 and K > 0 such that
‖vξ‖HS � KeB〈ξ〉

1
s . Consequently, we can estimate

∑
[ξ]∈Ĝ

dξ∑
i,j=1

∣∣(vξ)ij∣∣∣∣(wξ)ij
∣∣ � ∑

[ξ]∈Ĝ

‖vξ‖HS‖wξ‖HS � K
∑

[ξ]∈Ĝ

eB〈ξ〉
1
s ‖wξ‖HS < ∞

by the assumption (4.3), which shows that w ∈ [γ̂(s)(G)]∧.
(R) For B > 0 we consider the echelon space

DB :=
{
v = (vξ) ∈ Σ

∣∣ ∃K > 0:
∣∣(vξ)ij∣∣ � KeB〈ξ〉1/s for all 1 � i, j � dξ

}
.

By diagonal transform we have DB
∼= l∞, and since l∞ is a perfect sequence space, we

have D̂B
∼= l1, and it is given by

D̂B =
{
w = (wξ) ∈ Σ:

∑
[ξ]∈Ĝ

dξ∑
i,j=1

eB〈ξ〉
1
s
∣∣(wξ)ij

∣∣ < ∞
}
.

By Theorem 4.2 we know that γs(G)∧ =
⋂

B>0 DB , and hence [γ̂s(G)]∧ =
⋃

B>0 D̂B .
This means that w ∈ [γ̂s(G)]∧ if and only if there exists B > 0 such that we have∑ ̂ ∑dξ

i,j=1 e
2B〈ξ〉

1
s |(wξ)ij | < ∞. Consequently, by Lemma 3.2 we get
[ξ]∈G
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∑
[ξ]∈Ĝ

eB〈ξ〉
1
s ‖wξ‖HS �

∑
[ξ]∈Ĝ

dξe
B〈ξ〉

1
s ‖wξ‖�1(C) � C

∑
[ξ]∈Ĝ

dξ∑
i,j=1

e2B〈ξ〉
1
s
∣∣(wξ)ij

∣∣ < ∞,

completing the proof of the “only if” part. Conversely, given (4.3) for some 2B > 0, we
have

∑
[ξ]∈Ĝ

dξ∑
i,j=1

eB〈ξ〉
1
s
∣∣(wξ)ij

∣∣ � ∑
[ξ]∈Ĝ

dξe
B〈ξ〉

1
s ‖wξ‖HS � C

∑
[ξ]∈Ĝ

e2B〈ξ〉
1
s ‖wξ‖HS < ∞,

implying w ∈ [γ̂s(G)]∧. �
Now we can show that the Gevrey spaces are perfect spaces (sometimes called Köthe

spaces).

Theorem 4.4. γs(G) and γ(s)(G) are perfect spaces, that is, γs(G) = [γ̂s(G)]∧ and
γ(s)(G) = [γ̂(s)(G)]∧.

Proof. We will show this for γs(G) since the proof for γ(s)(G) is analogous. From the
definition of [γ̂s(G)]∧ we have γs(G) ⊆ [γ̂s(G)]∧. We will prove the other direction, i.e.,
[γ̂s(G)]∧ ⊆ γs(G). Let w = (wξ)[ξ]∈Ĝ ∈ [γ̂s(G)]∧ and define

φ(x) :=
∑

[ξ]∈Ĝ

dξ Tr
(
wξξ(x)

)
.

The series makes sense due to Lemma 4.3, and we have ‖φ̂(ξ)‖HS = ‖wξ‖HS. Now since
w ∈ [γ̂s(G)]∧ by Lemma 4.3 there exists B > 0 such that

∑
[ξ]∈Ĝ eB〈ξ〉

1
s ‖wξ‖HS < ∞,

which implies that for some C > 0 we have

eB〈ξ〉1/s‖wξ‖HS < C ⇒
∥∥φ̂(ξ)

∥∥
HS � Ce−B〈ξ〉1/s .

By Theorem 2.3 this implies φ ∈ γs(G). Hence γs(G) = [γ̂s(G)]∧, i.e. γs(G) is a perfect
space. �
5. Ultradistributions γ′

s(G) and γ′
(s)(G)

Here we investigate the Fourier coefficients criteria for spaces of ultradistributions.
The space γ′

s(G) (resp. γ′
(s)(G)) of the ultradistributions of order s is defined as the dual

of γs(G) (resp. γ(s)(G)) endowed with the standard inductive limit topology of γs(G)
(resp. the projective limit topology of γ(s)(G)).
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Definition 5.1. The space γ′
s(G)(resp. γ′

(s)(G)) is the set of the linear forms u on
γs(G)(resp. γ(s)(G)) such that for every ε > 0 there exists Cε such that (resp. for some
ε > 0 and C > 0) we have∣∣u(φ)

∣∣ � Cε sup
α

ε|α|(α!)−s sup
x∈G

∣∣(−LG)|α|/2φ(x)
∣∣

holds for all φ ∈ γs(G) (resp. φ ∈ γ(s)(G)).

We can take the Laplace–Beltrami operator in Definition 5.1 because of the equiva-
lence of norms given by Proposition 3.4.

We recall that for any v ∈ γ′
s(G), for [ξ] ∈ Ĝ, we define the Fourier coefficients

v̂(ξ) := 〈v, ξ∗〉 ≡ v(ξ∗).
We have the following theorem showing that topological and α-duals of Gevrey spaces

coincide.

Theorem 5.2. Let 1 � s < ∞. Then v ∈ γ′
s(G)(resp. γ′

(s)(G)) if and only if v ∈
γs(G)∧(resp. γ(s)(G)∧).

Proof. (R) “If” part. Let v ∈ γs(G)∧. For any φ ∈ γs(G) define

v(φ) :=
∑

[ξ]∈Ĝ

dξ Tr
(
φ̂(ξ)vξ

)
. (5.1)

Since by Theorem 2.3 there exists some B > 0 such that ‖φ̂(ξ)‖HS � Ce−B〈ξ〉1/s , we can
estimate∣∣v(φ)

∣∣ � ∑
[ξ]∈Ĝ

dξ
∣∣Tr
(
φ̂(ξ)vξ

)∣∣ � ∑
[ξ]∈Ĝ

dξ
∥∥φ̂(ξ)

∥∥
HS‖vξ‖HS � C

∑
[ξ]∈Ĝ

dξe
−B〈ξ〉1/s‖vξ‖HS < ∞

by Lemma 4.1 and (3.2). Therefore, v(φ) in (5.1) is a well-defined linear functional on
γs(G). It remains to check that v is continuous. Suppose φj → φ in γs(G) as j → ∞,
that is, in view of Proposition 3.4, there is a constant A > 0 such that

sup
α

A−|α|(α!)−s sup
x∈G

∣∣(−LG)|α|/2
(
φj(x) − φ(x)

)∣∣→ 0

as j → ∞. It follows that∥∥(−LG)|α|/2(φj − φ)
∥∥
∞ � CjA

|α|((|α|)!)s,
for a sequence Cj → 0 as j → ∞. From the proof of Theorem 2.3 it follows that we then
have ∥∥φ̂j(ξ) − φ̂(ξ)

∥∥ � Kje
−B〈ξ〉1/s ,
HS
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where B > 0 and Kj → 0 as j → ∞. Hence we can estimate

∣∣v(φj − φ)
∣∣ � ∑

[ξ]∈Ĝ

dξ
∥∥φ̂j(ξ) − φ̂(ξ)

∥∥
HS

∥∥v(ξ)∥∥HS
� Kj

∑
[ξ]∈Ĝ

dξe
−B〈ξ〉1/s‖vξ‖HS → 0

as j → ∞ since Kj → 0 as j → ∞ and
∑

[ξ]∈Ĝ dξe
−B〈ξ〉1/s‖vξ‖HS < ∞ by Lemma 4.1

and (3.2). Therefore, we have v ∈ γ′
s(G).

“Only if” part. Let us now take v ∈ γ′
s(G). This means that for every ε > 0 there exist

Cε such that ∣∣v(φ)
∣∣ � Cε sup

α
ε|α|(α!)−s sup

x∈G

∣∣(−LG)|α|/2φ(x)
∣∣

holds for all φ ∈ γs(G). So then, in particular, we have∣∣v(ξ∗ij)∣∣ � Cε sup
α

ε|α|(α!)−s sup
x∈G

∣∣(−LG)|α|/2ξ∗ij(x)
∣∣

= Cε sup
α

ε|α|(α!)−s|ξ||α| sup
x∈G

∣∣ξ∗ij(x)
∣∣

� Cε sup
α

ε|α|(α!)−s〈ξ〉|α| sup
x∈G

∥∥ξ∗(x)
∥∥
HS

= Cε sup
α

ε|α|(α!)−s〈ξ〉|α|d1/2
ξ .

This implies

∥∥v(ξ∗)∥∥HS =

√√√√ dξ∑
i,j=1

∣∣v(ξ∗ij)∣∣2 � Cεd
3/2
ξ sup

α
ε|α|(α!)−s〈ξ〉|α|.

Setting r = ε〈ξ〉 and using inequalities

α! � |α|!n−|α| and
(

(r1/sn)|α|

|α|!

)s

�
(
er

1/sn
)s

= ensr
1/s

,

we obtain ∥∥v(ξ∗)∥∥HS � Cεd
3/2
ξ sup

α

(
rns
)|α|(|α|!)−s

� Cεd
3/2
ξ sup

α
ensr

1/s

= Cεd
3/2
ξ ensε

1/s〈ξ〉1/s (5.2)
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for all ε > 0. We now recall that v(ξ∗) = v̂(ξ) and, therefore, with vξ := v̂(ξ), we get
v ∈ γs(G)∧ by Theorem 4.2 and (3.2).

(B) This case is similar but we give the proof for completeness.
“If” part. Let v ∈ γ(s)(G)∧ and for any φ ∈ γ(s)(G) define v(φ) by (5.1). By a similar

argument to the case (R), it is a well-defined linear functional on γ(s)(G). To check the
continuity, suppose φj → φ in γ(s)(G), that is, for every A > 0 we have

sup
α

A−|α|(α!)−s sup
x∈G

∣∣(−LG)|α|/2
(
φj(x) − φ(x)

)∣∣→ 0

as j → ∞. It follows that∥∥(−LG)|α|/2(φj − φ)
∥∥
∞ � CjA

|α|((|α|)!)s,
for a sequence Cj → 0 as j → ∞, for every A > 0. From the proof of Theorem 2.3 it
follows that for every B > 0 we have∥∥φ̂j(ξ) − φ̂(ξ)

∥∥
HS � Kje

−B〈ξ〉1/s ,

where Kj → 0 as j → ∞. Hence we can estimate∣∣v(φj − φ)
∣∣ � ∑

[ξ]∈Ĝ

dξ
∥∥φ̂j(ξ) − φ̂(ξ)

∥∥
HS‖vξ‖HS

� Kj

∑
[ξ]∈Ĝ

dξe
−B〈ξ〉1/s‖vξ‖HS → 0

as j → ∞ since Kj → 0 as j → ∞, and where we now take B > 0 to be such that∑
[ξ]∈Ĝ dξe

−B〈ξ〉1/s‖vξ‖HS < ∞ by Lemma 4.1 and (3.2). Therefore, we have v ∈ γ′
(s)(G).

“Only if” part. Let v ∈ γ′
(s)(G). This means that there exists ε > 0 and C > 0 such

that ∣∣v(φ)
∣∣ � C sup

α
ε|α|(α!)−s sup

x∈G

∣∣(−LG)|α|/2φ(x)
∣∣

holds for all φ ∈ γ(s)(G). Then, proceeding as in the case (R), we obtain

∥∥v(ξ∗)∥∥HS � Cd
3/2
ξ ensε

1/s〈ξ〉1/s , (5.3)

i.e. ‖v̂(ξ)‖HS � Ceδ〈ξ〉
1/s , for some δ > 0. Hence v ∈ γ(s)(G)∧ by Theorem 4.2. �
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