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Shannon's entropy was characterized by many authors by asso_ming different 
sets of postulates. One other measure associated with Shannon's entropy is 
directed divergence or information gain. In this paper, a characterization 
theorem for the measure directed divergence is given by assuming intuitively 
reasonable postulates and with the help of functional equations. 

1. INTRODUCTION 

Consider  two finite discrete probabi l i ty  dis t r ibut ions 

P : ( P l , P 2  .... ,P~z), Q : (ql ,  q2 ,..., qn), 
with 

 p,=l with 
i=1 3~1 

where the correspondence be tween  the  e lements  of the two dis t r ibut ions are 
given by  their  suffices. T h e n  a measure  of directed divergence (Kullback,  
1959) or in format ion  gain (Renyi,  1961) is defined as 

q l ,  qz ,..., q #  Pi log (1.1) 
i = l  qi 

n 
T h r o u g h o u t  this paper,  ~ will s tand for the s u m ~i=1; the logari thm will 

be taken to the  base 2. I n  (1.1), whenever  qi = 0, the co r re spond ingp l  : 0; 
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and the convention 0.log 0 = 0 = 0.1og(0/q,) is followed. These conventions 
are not used in the proof of the characterization theorem in Section 3. 

One interpretation for (1.1) may be given as follows. The quantity --log Pi ,  
in communication theory is usually known as the "information content" in 
the event E, with probability p, or the amount of"self  information" associated 
with the event E i . Thus log(pdq,) = l o g p ~ -  log qi may be taken as the 
"information gain" in predicting the event El .  Therefore (1.1) is the average 
"information gain". The quantity defined in (1.1) is also interpreted as the 
mean information for discrimation in favor of hypothesis H 1 against hypothesis 
H~ in statistical inference problems (Kullback, 1959). Kerridge (1961) 
interprets (1.l) as a measure of the error made by the observer in estimating 
a discrete probability distribution as Q which is in fact P. For interpretations 
of (1.1) in econometric problems see Theil (1967). 

Characterizations of (1.1) in arbitrary probability spaces and continuous 
anologs are given earlier by Campell (1970, 1970A), Kullback and Khairat 
(1966), Hobson (1969), Rathie and Kannappan (1971) and Reyni (1961). 

The object of this paper is to give a characterization theorem for the 
measure of information defined in (1.1) by assuming reasonable postulates, 
parallel to that of Shannon's entropy. A method similar to that employed in 
Kendall (1964) is followed here in arriving at the characterization theorem. 

2. POSTULATES 

In this section we give a set of five postulates which will be used in 
establishing a characterization theorem for (1.1) in the next section. The 
postulates are: 

POSTULATE 2.1--Recursivity 

qa .... , q,~ ql + q2, q~ ..... q #  

[pd(p~ + p~), p;(p~ + p~)~, 
+ (P~ + P2) I~ \ qd(q~ + q2), q2/(q~ + q2) ] 

for Pl + P2 > O, ql + q~ > 0 and for all n ~ 3, 4 ..... 

POSTULATE 2 .2- -Symmet ry  

I 3 ( P l ' P 2 ' P s ] i s s y m m e t r i c i n p a i r s l P i t i - ~  1,2,3.  
ql , q2, q31 qi 
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POSTULATE 2.3--Derivat ive.  Let 

f(P' q) ---/2 (Pq; 1 for (p, q) ~ J, 

where J = ]0, 1[ × ]0, 1[ u {(0, y)) u {(1, y')} with y ~ [0, 1) and y' ~ ]0, 1]. 
Also the function f has continuous first partial derivatives with respect to both 
variables p, q ~ (0, 1). 

POSTULATE 2.4--Normalizat ion 

/2 x' =½. 

POSTULATE 2.5--Nul l i ty  

1 - - p  
I2(Pp',l__p) ~ 0  , for pE(O,  1). 

Now we discuss the postulates one by one. T h e  Postulate 2.1 suggests the 
way in which the measures are added up when the union of two mutually 
exclusive events are considered. In  other words, if an event is split into two 
mutually exclusive events then the measure is a weighted sum with the weights 
being probabilities as given above. The  Postulate 2.2 says that the directed 
divergence does not depend on the order in which the possible outcomes are 
labeled. For mathematical purposes the assumption of symmetry for n = 3 
is enough to establish the theorem. The  Postulate 2.3 is a regularity postulate. 
The  Postulate 2.4 is a normalization postulate which fixes the unit for 
measurement  of the directed divergence. The  Postulate 2.5 says that if there is 
no divergence between the two distributions then the measure vanishes. 

3. CHARACTERIZATION THEOREM 

In  this section we prove the following theorem regarding directed divergence 
(1.1) given by the set of five postulates of the Section 2. 

THEOREM. The function 

P2 P~) for Pi >~ O, qi >~ O, 



166 KANNAPPAN AND RATHIE 

~ Pi = 1 = ~ qi , satisfying the postulates 2.1, 2.2, 2.3, 2.4, and 2.5 described 
in Section 2, is the directed divergence given by 

Z, (P~ 'p~ .... 'P" ]  = E p i l o g  Pi 0 .1)  
\[ql , q2 ,..., qn/ qi 

Proof. First we will show that I~ is symmetric. For n = 3, Postulate 2.1 
gives 

I [Pl ,P2,Pa]  = I 2 ( P l  +P2,P3)  
\ q l ,  qz ,  %/ ql @ q2 , qa 

' [P~/(P~ +Pu)'P~/(P~ +Pe)~ (3.1) ~- (pl + p~) 1~ \ qa/(q~ + q2), q2/(qx + q~) / 

fo rp l  + P 2  > 0, ql @ q2 > 0. Also from (3.1) for n = 3, we have 

Ia ( p~ ' pl ' p~] =12 ( p~ + pl ' pS) 
q2 , ql , q3 j q2 + ql , % 

+ (h  + pl) ~ (P;(P~ + p~)' P~/(P~ + h)~, 
\ q2/(q~ q- q2), ql/(q~ + q~) / 

f o r p 2 + p l > O , q ~ + q l  > 0 ,  
Hence (3.2), (3.1), and Postulate 2.2 give 

[P~/(P~ + P~), P; (P l  + P ~ ) ~  [P~/(P~ + P~), P~/(P~ + P~)~, 12 \ q~/(q~ + q2), q2/(q~ + q~) / = I~ \ q2/(ql + q.2), q~/(q~ + q2) / 

(3.2) 

(3.3) 

for Pl -1- P2 > 0, ql + q2 > 0, which shows that 12(~:~) is symmetric in 
pairs {~}, i = 1, 2. In particular (3.3) gives 

f (0 ,  0) = f(1,  1). (3.4) 

Next we will obtain an expression for f (x ,  y). The  Postulate 2.2 gives 

ql,  q2, qa q2, qa, ql q3, ql ,  qJ '  

which on using Postulate 2.1 for n ~ 3 and the representation in 
Postulate 2.3 yields the following functional equations, 

f (P~ + P2, ql -+- q2) + (J)l "~- o2 ) f [ P l / ( P l  -J- P2), ql/(ql -~ q2)] 

= f (p~ ,  q~) + (1 - -  pl)f[p2/(1 --  px), q2/(1 - -  ql)] 

= f ( p ~ ,  q~) + (1 - -  p~)f[p~/(1 - -  P2), q~/(1 --  q~)], 

for p~, p~, q~, q2 ~ [0, 1), p~ + P2, q~ + q2 ~ (0, 1]. (3.5) 
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Denoting the partial derivative o f f  with respect to the first variable by f l  
and differentiating partially with respect to Pl the equation comprised of the 
first and third lines of (3.5) we have 

f~(Pl + P2 , ql + q2) + f[Pl / (Pl  + P2), q~/(q~ @ q2)] 

+ P2/(Pl + P.2)fI[Pl/(P~ + P~.), q~/(q~ + q2)] 

= f~[p~/(1 -- P2), q~/(1 --  q2)~, 
for px, ql ~ (0, 1), P2, q2 ~ [0, 1) with Pl + Pz, ql + q2 ~ (0, 1]. (3.6) 

Also differentiating partially with respect to p o the equation comprised of 
the first and second lines of (3.5), we have 

f~(Pl + P2 , qa @ q2) + f[Pa/(Pl + P2), q~/(q~ @ q2)] 

--  P~/(P~ + P.~) f~[Pl/(P~ + P2), q~/(q~ + q2)] 

= fl[P2/(1 - -Pi) ,  q~/(1 --  qi)], 
for P2, q2 ~ (0, 1), P l ,  qa c [0, 1) with pl + P2, qx + q2 ~ (0, 1]. (3.7) 

Hence subtracting (3.7) from (3.6) gives 

f~[Pa/(P~ + P2), ql/(q~ + q2)] 

= f ~ [ p ~ / ( 1  - -  p ~ ) ,  q l / ( 1  - -  q e ) ]  - -  f ~ [ p e / ( 1  - -  p a ) ,  q 2 / ( 1  - -  q ~ ) ] ,  

forpa ,  P2, q~, q: ~ (0, 1), pa + pc,  ql -1- q~ s (0, 1]. (3.8) 

Takingpa = xy/(1 + y + xy),p2 = y / ( 1  + y + xy), q~ = uv/(1 + v + uv) 
and q~ = v/(1 + v + uv) in (3.8) we get 

fx[x/(1 + x), u/(1 4- u)] 

= fx[xy/(i + xy), uv/(1 + uv)] --f~[y/(1 + y), v/(1 -k v)] 

for x, y, u, v ~ (0, oe). (3.9) 

Let 

F(x, u) = A[x/(1 + x), u/(1 + .)], 

Then, since f l  is continuous, so is F. 
Then (3.9) with the help of (3.10) gives 

F(x, u) + F(y ,  v) = F(xy, uv), 

Taking u = v = 1 in (3.11), we have 

F(x, 1) + F(y,  1) = F(xy, 1), 

for x, u ~ (0, or). (3.10) 

for x , y , u , v ~ ( O ,  or). (3.11) 

for x,y~(O, oo). (3.12) 
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Equat ion  (3.12) is the  well known Cauchy  equat ion with the  cont inuous  
solution given by  Aczel  (1966), 

F(x,  1) = a log x, x ~ (0, or), (3.13) 

where  a is an arbi t rary  real constant.  
Similarly, taking x = y = 1 in (3.11), we have 

F(1,  u) ---- b log u, u ~ (0, or) (3.14) 

where  b is an arbi t rary  real constant.  
Again, taking u ---- 1 , y  = 1 in (3.11), we have 

F(x,  v) = F(x ,  1) + F(1,  v). (3.15) 

Hence  (3.13), (3.14), and (3.15) give 

F ( x , v ) = a l o g x + b l o g v ,  for x, v ~ (0, or), (3.16) 

where  a and b are arbi t rary  real constants.  
T h u s  (3.16) and (3.10) give 

f l (x ,  y)  = a log[x/(1 - -  x)] + b log[y/(1 - -  y)], for x, y e (0, 1), (3.17) 

which  on integrat ion gives 

f ( x ,  y)  = a{x log(x/2) + (1 - -  x) log[(1 - -  x)/2]} + bx log[y/(1 - -  y)] + g(y) ,  
(3.18) 

for x, y ~ (0, 1), where  g is a funct ion o f y  alone. 
Hence  (3.18) and (2.5) give 

g(x) = - -a{x  log(x/2) + (1 - -  x) log[(1 - -  x)/2)]} 

- -  bx log[x/(1 - -  x)], for x ~ (0, 1). (3.19) 

The re fo re  (3.18) and (3.19) yield 

f ( x ,  y)  = a[x log x + (1 - -  x) log(1 - -  x) - -  y l o g y  - -  (1 - -  y)  log(1 - -  y)] 

+ b(x - -  y )  log[y/(1 - -  y)], for x, y e (0, 1). 

2 Tak ing  x = ~, y = ½ in (3.20) and utilizing (2.4) we get 

b = - - l .  

(3.20) 

(3.21) 
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Again taking Pl ql = ~-, P~ 2 = = ~ ,  q 2 = ½  in the second and third 
equation pair of (3.5) for f,  that is, 

f (Pa  , ql) + (1 - -p l ) f [p2/ (1  - -p~) ,  q2/(1 - -  ql)] 

= f ( P z ,  qe) -}- (1 --pz)f[pa/(1 - -P2) ,  qa/(1 - -  q2)],  (3.22) 

forpa,  P2, ql ,  qz ff [0, 1), Pl + P2, ql + qe ~ (0, 1], we have 

3 8 3 J \ ~ ,  81" f(k,  ~) + ~f(~, {) = f(~, ½) + xct3 ax (3.23) 

Thus (3.23), (3.21), Postulate 2.5, Postulate 2.4 and (3.20) give 

a ----- 1. (3.24) 

Hence (3.20), (3.21) and (3.24) yield 

f ( x ,  y)  = x log(x/y)  + (1 -- x) log[(1 -- x)/(1 -- y)], for x, y e (0, 1). 
(3.25) 

Next we have to determine f(0, y) and f (1 ,  y),  where y ~ (0, 1), 
Taking p~ = 0 in (3.22), we have 

f(O, ql) + f [Pz  , q~/(1 - -  qa)] = f ( P z  , q2) + (1 --  P2)f[0, qa/(1 - -  q~)], 
(3.26) 

for p~, q2 E (0, 1), ql e [0, 1), q~ + q~ E (0, 1]. 
For ql = ½, q2 = k, (3.26) reduces to 

f(O, ½) + f ( P 2 , ½ )  = f ( P 2 ,  ~) + (1 --  p~)f(O, ~), for P2 e (0, 1). (3.27) 

The equation (3.27) forp2 = ½, with the help of (2.5) gives 

f(0,  ½) = y(½, ¼) + ½f(0, ~). (3.28) 

Thus (3.28), (3.27) and (3.25)imply 

f(0, ½) = 1. (3.29) 

Taking q2 = 1 -- 2q, in (3.26) and utilizing (3.29) and (3.25), (3.26) gives 

f(O, qa) = --log(1 --  q~), for q~ E (0, ½). (3.30) 

Again putting q2 = ½ in (3.26) and using (3.25) and (3.30), we get 

f(O, 2qa) ~--- --log(1 -- 2ql), for 2ql ~ (0, 1). (3.31) 

64312212-5 



170 KANNAPPAN AND RATHIE 

Hence (3.30) and (3.31) yield 

f(O, 4) = -l%(l - 4, for 4 E (0, 1). (3.32) 

The symmetry of Ia wilI imply 

f(p, 4) = f(l -P, 1 - d, for P, 4 E J, with f(0, 0) = f(L 1) = 0, 
(3.33) 

[obtained by putting p, = 0 = qI , in the last two equations of (3.5)] from 
which on using (3.32) we get 

f(L 4) = --log 4, for q E (0, 1). (3.34) 

Hence (3.25), (3.32), (3.24) and f(O,O) = 0 = f(1, l), imply 

f(x, y> = x lo&/y) + (1 - 4 log!P - 4/U - 391, for (x, 24 E J (3.35) 

Now repeated application of Postulate 2.1 gives 

(3.36) 

where ri = p, + 1-e + pi and si = q1 + +.* + qi; which on using (3.35) 
proves the theorem. This completes the proof of this theorem. 

RECEIVED: May 15, 1972 
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