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Abstract Operating an Atomic Force Microscopy (AFM) with the cantilever and sample immersed in
a liquid has many advantages, including the elimination of capillary forces and reduction of van der
Waals forces in the study of liquid–solid interactions. Accurately identifying the maximum of the
amplitude–frequency curves at which resonances occur is a challenging issue. The frequency response
of a cantilever beam in a viscous liquid near a surface depends on the hydrodynamic loadings. First, in
this paper, there is a comparison of predicted resonant frequencies from five different theoretical models,
with measurements for the case of an ambient liquid of infinite extent. The precision of each method is
indicated. Then, the motion of microcantilevers of variable widths close to a solid surface is simulated.
When the cantilever tip approaches the sample surface gradually, the effect of squeezed film damping
causes the resonance frequencies to shift toward lower values at lower amplitudes, and subsequently as
the tip-sample separation becomes smaller, the resonance peaks seem to vanish completely. The results
demonstrate that any changes in the geometrical dimensions of the cantilever and in the fluid properties
may influence the accuracy of the model. Furthermore, due to the considerable effect of tip-sample
separation on the resonance, some models are restricted to be applicable only in the circumstances of
free liquid.

© 2011 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

Dynamic responses ofmicrocantilever beams havemany ap-
plications, ranging from ultrasensitive mass measurements [1]
to nanoscale imaging by atomic force microscopy. Atomic force
microscopy, a member of the scanning probe microscopy fam-
ily, is a vigorous tool for acquiring high resolution nanoscale
surface images [2]. It generates real-space images by ‘‘feeling’’
the sample surface rather than ‘‘looking at’’ it. Both mechanical
and morphological properties of sample surfaces are obtained
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by a sharp tip at the end of the cantilever [3]. There are many
advantages to operating an atomic force microscopy with the
cantilever and sample immersed in liquid. These advantages in-
volve the elimination of capillary forces, the reduction of van
der Waal’s forces and the ability to study biologically and tech-
nologically significant processes at liquid–solid interfaces [4–6].
However, there have been certain disadvantages to imaging in
contact mode in a liquid environment, where damage to bio-
logical samples would be the most common defect occurring
in such experiments [7,8]. By using tapping mode AFM, such
damages are greatly reduced. As the operation of AFM in vis-
cous fluids (liquids or gases) considerably affects the micro-
cantilever frequency response, some theoretical models have
been described for vibration of the cantilever in a liquid envi-
ronment. These studies demonstrate that liquid viscosity plays
a key role in the frequency response of microcantilevers in AFM
or microelectromechanical systems (MEMS), whereas for can-
tilevers of macro scale, the effects of viscosity could be neg-
ligible [9]. In a new type of noncontact AFM identified as the
magnetic AC mode (MAC), which was introduced by Han et al.,
the signal-to-noise ratio (SNR) was improved. With a higher
signal-to-noise ratio, cantilevers with lower force-constant and
smallermotion amplitude can be used and so, probable damage
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to the sample is reduced, probe stiffness is maintained and con-
sequently higher resolution in liquid environment imaging can
be gained [10]. In principle, using the MAC mode develops the
utility of AFM for the imaging of awider range of living samples,
such as weak cells or even multilayer tissues [11].

The motion of the cantilever in air near a surface with
an intermediate substrate contact has been described with
simple and well-known models, such as those in [12–16]. For
considering higher mode effects [17] or effects of a liquid
environment [18], a continuousmodel describing the full shape
of the cantilever is required. Having extended this model, the
hydrodynamic forces on the magnetically oscillated cantilever
could be determined for a range of tip-sample separations.
One pertinent issue concerning a vibrating cantilever above
a surface, when the whole system is dipped into a liquid,
is squeezed film damping, which is an effect of the liquid
or gas squeezing into the structures. In each oscillation, the
fluid is squeezed onto the surface and thus an extra drag
force (damping) is generated. Such an event has substantial
influence on resonance frequency, the quality factor and the
vibration amplitude of the cantilever. Accelerometers, pressure
sensors and actuators usually take advantage of these effects for
optimization of their designs [19].

In this paper, approximate models for calculating the
resonance frequency of amicrocantilever immersed in a viscous
liquid are reviewed and by regarding preliminary assumptions
and approximations, the accuracy and advantages of themodels
are discussed. There are certain deficiencies associated with
some modeling methods due to the applied simplifications.
These deficiencies may include the hypothesis of an inviscid
fluid or the incapability of calculating the squeezed film
damping effect near a solid surface.

2. Theoretical modeling

In general, the motion of the cantilever in liquid causes a
fraction of the liquid mass to move along with the cantilever
and therefore the effective vibrational mass is increased due to
the coupledmass of liquid with themass of the cantilever. Also,
an extra damping force would be exerted on the system due
to the viscous friction property of the liquid. In tapping mode
AFM, the cantilever moves close to a surface that gives rise to
an additional damping effect related to the squeezed liquid.

2.1. Resonance frequency in free liquid

There are generally two types of modeling to obtain
the resonance frequency of a cantilever in liquid. Methods
which observe squeezed film damping are more suitable for
estimating resonances than those which neglect the effect of
a solid wall on the dynamic response of a cantilever. In this
section, three approximate methods for modeling cantilever
motion far from the surface are examined. The inviscid model
assumes that the liquid has a negligible viscosity and the
cantilever has a uniform cross section with its width much
smaller than its length. The viscous model considers damping,
as well as the additional mass effect of the liquid, and
determines the approximate resonances by an iterative process
with an estimated initial value of resonance frequency in air.
In the effective mass replacement model, the mere cantilever
mass is replaced with the total vibrational effective mass
(i.e. considering added fluid mass) in the equation of the
resonance frequency in a vacuum environment.
2.1.1. Sader’s inviscid model, vibration in a hypothetically inviscid
fluid

The theoretical model consists of some general presump-
tions and approximations as follows [20]:

1. The cross section of the cantilever is uniform over its entire
length.

2. The length of the cantilever exceeds its nominal width.
3. The cantilever is an isotropic linearly elastic solid and

internal frictional effects are negligible.
4. Themotion amplitude of the cantilever ismuch smaller than

its other geometrical dimensions.

Furthermore, all torsional effects will be neglected and only
the flexural mode of vibration will be considered. These
approximations are usually satisfied in practical interests, as
for microcantilevers used in atomic force microscopy. Due to
the small motion amplitude, the nonlinear effects of convective
inertia would be neglected and therefore hydrodynamic forces
acting on the cantilever would be a linear function of its
displacement. The velocity field at any point of the cantilever
is approximated to that of a long rigid beam with identical
oscillation amplitude. The resonance frequency of a multilayer
cantilever with a uniform cross section in an inviscid liquid is
given by [20]:

ωr

ωvac
=


1 +

πρf b
4

∑
ρihi

−
1
2

, (1)

where ωr is the resonance frequency in liquid, ωvac is the
resonance frequency in vacuum, ρi is the mass density of each
layer of the composite cantilever, hi is the thickness of each
layer, b is the width of the cantilever and ρf is the density of
the surrounding liquid.

2.1.2. Vancura’s viscous model, vibration in viscous fluid, iterative
process

In this modeling method, a general form of the resonance
frequency of the cantilever in free liquid, according to its
substantial viscosity, is given based on the solution of the fluidic
vibrational equation of the cantilever. Due to Sader [20], for a
liquid in which a cantilever is moving, the equation of motion
is written as:

− ∇.p̂ + η∇
2û = −iρf ωû, ∇.û = 0, (2)

where û is the velocity field, p̂ is the pressure, η is the dynamic
viscosity of the fluid and ω is the angular frequency. In Eq. (2),
all nonlinear effects of convectional inertia are neglected. The
general form of the Fourier solution of the hydrodynamic force
acting on the cantilever is written as:

F̂hydro(x | ω) =
π

4
ρf ω

2b2Γ (ω)Ŵ (x | ω), (3)

in which the hydrodynamic function, Γ (ω), is dimensionless
and acquired from Eq. (2). For a cylindrical cantilever, the exact
solution of Γ (ω) is well known as:

Γcirc(ω) = 1 +

4iK1


−i

√
i Re


√
i Re K0


−i

√
i Re

 . (4)

The Reynolds number, Re, is proportional to the squared
diameter of the cylinder (the dominant scale). K0 and K1 are
the modified Bessel function of type three. The hydrodynamic
function for a rectangular beam is:

Γrect(ω) = Ω(ω)Γcirc(ω), (5)
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where Ω(ω) is the correction function for a beam with a
rectangular cross-section. The hydrodynamic loading can be
stated in two terms. The first term, denoted by g1, is related
to the damping force, which is due to the fact that the
motion of the fluid is not necessarily in the same phase as
that of the cantilever. This term is called the liquid damping
coefficient, which is related to the velocity of the cantilever.
The second term, denoted by g2, is related to the acceleration
of the cantilever and is the result of the oscillatory motion
of the coupled liquid and cantilever masses. The general form
of hydrodynamic loading is expressed by combining the two
terms as [20,21]:

Fh = −g1u̇ − g2ü. (6)

u = u(x, t) is the vertical displacement, g1 is the liquid damping
term and g2 is the added fluid mass term in unit length of the
cantilever. The following equations are used to calculate the
terms g1 and g2:

g1 = πη ReΓi( Re ), (7)

g2 =
η Re
2fr

Γr( Re ), (8)

where Γr and Γi are the real and imaginary parts of the
hydrodynamic function of a rectangular beam, respectively,
which is written as:

Γ ( Re ) = Ω( Re )

1 +

4iK1


−i

√
i Re


√
i Re K0


−i

√
i Re


 , (9)

in which Reynolds number, Re, is dependent upon the reso-
nance frequency, fr , of the cantilever in liquid:

Re =
πρf b2fr

2η
. (10)

We see that the Reynolds number depends on the oscillation
frequency of the cantilever in liquid, while fr is an unknown pa-
rameter, the value of which is of interest to us. The resonance
frequency of a cantilever in free liquid is calculated based on the
resonance frequency in vacuum:

fr = f0
1

√
1 + Lg2/M


1 −

1
2Q 2

tot
, (11)

where L is the length of the cantilever and M is its mass. Qtot
is the quality factor of the cantilever immersed in liquid by
considering all dissipations including both structural and liquid
damping. It should be noted that the natural frequency is mea-
sured in the no-load condition,while the resonance frequency is
connected to the effects of loadings. The resonance frequency is
always smaller in value than the natural frequency. For a com-
posite cantileverwith different layers of length, L, the resonance
frequency in vacuum is calculated by:

f0 =
1
2π


λ0

L

2
 ΣiEiIi

b
∑
i

ρihi
, (12)

in which λ0 = 1.875104 denotes the fundamental mode of vi-
bration, Ii is the flexural moment of inertia and Ei is the mod-
ulus of elasticity of each layer. For a rectangular cross section,
the moment of inertia of each layer with respect to the neutral
axis is calculated by:

Ii = b

h3
i

12
+ hi(zi − zN)2


. (13)
zi − zN is the distance between the neutral axis and the center
of the ith layer. The quality factor of a microstructure dipped in
liquid (Qtot) takes into account liquid damping as well as inter-
nal damping, and is expressed by:

1
Qtot

=
1

Qint
+

1
Qfluid

, (14)

with Qint being the intrinsic quality factor and Qfluid the fluid
contribution to the quality factor. For a resonant microcan-
tilever in a liquid like water, in an out-of-plane mode (verti-
cal vibration), the term Qfluid is the dominant part of the total
Q -factor. Therefore, we neglect the term Qint and the total qual-
ity factor is approximated by:

Qtot ≈ Qfluid = 2π f0

√
1 + Lg2/M
Lg1/M

. (15)

From Eqs. (10) and (11), we find that a self-consistent calcu-
lation for defining the resonance frequency is necessary. This
is done by first calculating the Reynolds number according to
Eq. (10) with the resonance frequency in air as an initial value.
The value of the obtained Reynolds number is then used to cal-
culate the values of g1 and g2 according to Eqs. (7) and (8). These
calculated values can be used to obtain the new resonance fre-
quency in liquid according to Eq. (11), and the new Reynolds
number according to Eq. (10).

This iterative process is continued until self-consistency is
reached [22].

2.1.3. Effective mass replacement (EMR) model
According to recent investigations, the added fluid mass

represents the main role in the changes of the resonance
frequency of microcantilevers in free liquid [22]. Therefore, we
have replaced the cantilever mass in the equation of resonance
frequency in vacuum with the total effective mass including
the part of the liquid mass that is forced into motion by the
cantilever vibrations. According to Eq. (12), an approximate
formula for estimating the resonance peaks is derived as:

fr =
1
2π


λ0

L

2


ΣiEiIi
bΣiρihi + ρa

. (16)

Due to Greenspon [23], the added fluid mass density, ρa, can be
calculated by:

ρa = 0.6ρf L1/2b3/2. (17)

By representing the beam as a string of beads, Hosaka et al. [24]
gave another expression for ρa as:

ρa =
1
12

πρf b2 +
3
4
πb


2ρf η

ω
, (18)

inwhichω is the vibrating (circular) frequency of the cantilever.

2.2. Frequency response close to a surface

2.2.1. Rankl’s method
In this part, by approximating the various forces acting

on the cantilever, the equation of motion of the cantilever
and the boundary conditions are given. By assuming harmonic
motion with excitation frequency, ω, frequency responses of
microcantilevers are simulated for a definite range ofω, and the
resonance peaks are then indicated as resonance frequencies
of the cantilevers for various tip-sample separations [25]. A
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Figure 1: The model used for the theoretical analysis of the cantilever
oscillation in liquid in the vicinity of the sample surface. A cantilever with
homogeneous rectangular cross section and a sharp tip at the end of the
cantilever is shown.

schematic view of an AFM cantilever vibrating in liquid near a
surface is shown in Figure 1.

As shown in Figure 1, the cantilever is slightly inclined at
angle α, and has length L, width b, thickness h, cross section
area A, tip height l and equilibrium tip-sample separation D.
H(x, t) is the distance between any point of the cantilever and
the sample surface at any time of the vibration. The cantilever
is immersed in a liquid with density, ρf , and dynamic viscosity,
η. Due to the Euler–Bernoulli equation for a beam oscillating in
small amplitudes, the equation of motion is written as:

EI
∂4u
∂x4

+ µ∗
∂2u
∂t2

= F(x, t), (19)

where µ∗ (kg/m) is the linear mass density of the cantilever
in liquid, and F(x, t) (N/m) is the total force acting on the unit
length of the cantilever. In this case, the total force consists of
magnetic driving force, Fm, joint mass density, Ft , at the end of
the cantilever, and hydrodynamic force, Fh, written as:

F = Fm + Ft + Fh, (20)

Fm = S e−iωt , (21)

Ft = m∗

t
∂2u
∂t2

δ(x − L), (22)

Fh = Fs + Fv, (23)

where S is the strength of the magnetic force, m∗
t is the joint

mass density (the mass of the tip of the AFM cantilever) and
δ(x − L) is the Dirac’s delta function. The hydrodynamic force,
Fh, consists of two parts as follows:

1. The force associated with the viscous friction of the liquid is
expressed as:

Fv = −γ∞

∂u
∂t

. (24)

For a harmonically oscillating sphere, the closed form
solution of the friction coefficient, γs, was derived in [26]:

γs = 3πηd +
3
4
πd2


2ρf ηω, (25)

with d being the diameter of the sphere. A rectangular
cantilever can be considered as a string of closely arranged
spheres with the diameter equal to width b of the cantilever.
Then, the friction coefficient, γ∞, of the cantilever is the
sum of the friction coefficients of the spheres. For AFM
cantilevers, the resonance frequency is in the order of
100 kHz and both the penetration depth and cantilever
width are in the same order of 10 micrometers, so using
this spherical model is possible. The penetration depth is

δ =


2η
ωρ

(η andρ are, respectively, liquid dynamic viscosity
and density and ω is resonance frequency) [26].

Since the number of spheres per unit length of the
microcantilever is 1/b (b the cantilever width), γ∞ is given
by [24,26]:

γ∞ ≈ 3πη +
3
4
πb


2ρf ηωr . (26)

In Eq. (26), the resonance frequency of the cantilever in free
liquid, ωr , is obtained through the second method (viscous
model) discussed previously.

2. The effect of the surface at small cantilever-sample separa-
tions gives rise to an additional force. Considering the liquid
bounded between the surface and the cantilever, when the
cantilever approaches the surface, the liquid is consequently
squeezed and has a tendency to move out of confinement.
Thus, the viscous resistance generates an extra force, which
is dependent on the distance between the cantilever and the
sample surface. The so-called squeezed film damping force
has a substantial effect on the motion of the cantilever and
is written as:

Fs = −ηb3
1
H3

∂u
∂t

. (27)

In typical AFM experiments, the cantilever is usually inclined
at an angle of α = 15°, with respect to the horizontal
surface. As a result, distance h is dependent on coordinate x and
consequently the distribution of force Fs along the cantilever
is not uniform. For large distances, force density, Fs, is nearly
constant along the cantilever (denoted by F e

s ) and for small
distances,most force is concentrated at the end of the cantilever
(denoted by F c

s ), which is equal to the integral of the Fs along the
cantilever. In order to combine the two approximations into a
single model, a weight function, w(D), is used:

Fs = F c
s (1 − w(D)) + F e

s w(D), (28)
for which the weight function should be zero for small
tip-sample separations and one for large separations [25].
According to Figure 1, the distance between the cantilever and
the sample surface at any time and location is:
H(x, t) = D + l + (L − x) sinα + u(x, t). (29)
It is clear from Eq. (29) that distance H(x, t) and, thereby,
the squeezed film damping are functions of time. However,
under most operating conditions of the tapping mode, vertical
displacement u(x, t) is in the range of several dozen to several
hundred nanometers, which is 2–3 orders of amplitude smaller
than the constant part of the H(x, t). By neglecting the time-
dependent part of the cantilever-sample distance, we have:
H0 = H(0) = D + l + L sinα, (30)
HL = H(L) = D + l, (31)
and the forces F e

s and F c
s as:

F e
s = −γ0

1
H3

L

∂u(x, t)
∂t

, (32)

F c
s = −ηb3δ(x − L)

∂u
∂t

∫
1

H(x)3
dx

= −V0
L
2
HL + H0

H2
L H

2
0

δ(x − L)
∂u(L, t)

∂t
, (33)
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where γ0 and V0 are the constant force strength and point force
strength, respectively. Finally, the equation of motion of the
cantilever and its boundary conditions are as:

EI
∂4u
∂x4

+ µ∗
∂2u
∂t2

= S e−iωt
−


γ∞ + γ0

1
H3

L
w(D)


∂u
∂t

,

u(0, t) = 0, u′(0, t) = 0, u′′(L, t) = 0,

u′′′(L, t) = −
1
EI


m∗

t
∂2u
∂t2

− V0
L
2
HL + H0

H2
L H

2
0

∂u(L, t)
∂r

(1 − w(D))


. (34)

The harmonical analytical solution of Eq. (34) is:

u(x, t) =

A eβx

+ B e−βx
+ C eiβx

+ D e−iβx e−iωt , (35)

in which A, B, C , D and term β are determined through the
solution of Eq. (34) (see the Appendix of [25]).

2.2.2. Modal analysis
The modal analysis was used by Korayem and Ebrahimi in

the dynamic analysis of tapping-mode AFM cantilevers [27].
In this model, the hydrodynamic forces are also applied by
added mass and added damping. The bending behavior of an
AFM cantilever in liquid can be written, using beam vibrating
formulation, by the following partial differential equation:

EI
∂4u
∂x4

+ ρA
∂2u
∂t2

+ c
∂u
∂t

= F(x, t), (36)

where c represents the damping coefficient. F(x, t) is the force
applied on the cantilever per unit length of the cantilever at any
time. It is composed of forces due to tip-sample interaction (Fts),
hydrodynamic forces due to liquid around the cantilever (Fliq),
and excitation force (Fexc) applied on the cantilever:

F(x, t) = Fexc(x, t) + Fliq(x, t) + Fts(x, t). (37)

Researchers have approximated hydrodynamic forces to be
in proportion with the cantilever vibration acceleration and
velocity as [25]:

Fliq(x, t) = −ρa
∂2u
∂t2

− ca
∂u
∂t

, (38)

where ρa is the additional mass, which is gained, based on
Eq. (17) or (18). The additional damping coefficient, due to
hydrodynamic effects (ca), consists of two parts:

ca = γ∞ + γs. (39)

The coefficient γ∞ is the hydrodynamic damping when the
cantilever is vibrating in free liquid (far from the sample
surface), which is gained based on Eq. (26), and the damping
coefficient of the squeezed film damping is gained by:

γs =
ηb3

H(x, t)3
, (40)

where H(x, t) is the transient distance between the cantilever
and surface, and is gained by Eq. (29). Obviously, γ∞ is a
constant, but γs depends on location and time. The separation
of the cantilever tip from the sample is:

dts = D + u(L, t). (41)

Using Eqs. (36)–(38), the governing equations can bewritten as:

EI
∂4u
∂x4

+ (ρA + ρa)
∂2u
∂t2

+ (c + ca)
∂u
∂t

= Fts(x, t) + Fexc(x, t). (42)
Table 1: Properties of the layers of composite cantilevers and the
surrounding liquid.

Material ρ, ρf (kg/m3) E (GPa) η(kg/m s)

Single-crystal silicon 2330 170 –
Silicon oxide 2200 85.8 –
Silicon nitride 3100 290 –
Water 998.2 – 8.94 × 10−4

Fts is the tip-sample interaction, which is applied on the
cantilever tip:

Fts =


Fvdw(dts) cosα dts > a0
(Fvdw(a0) + FDMT) cosα dts ≤ a0.

(43)

In Eq. (43), Fvdw(dts) = −HR/(6d2ts) is the van der Waals force
and FDMT =

4
3E

∗
√
R(a0 −dts)3/2 is the repulsive contact force.H

is the Hamakar constant, a0 is the intermolecular distance, R is
the tip cone radius, and E∗ is the effective elastic modulus given
by:

E∗
= [(1 − υ2

t )/Et + (1 − υ2
s )/Es]

−1,

in which Et , Es, υt and υs are the elastic module and Poisson
ratios of the tip and sample, respectively. Fexc is the magnetic
harmonic excitation force. By setting ctot = c + ca and ρtot =

ρA + ρa, and using delta functions, Eq. (42) can be written as:

EI
∂4u
∂x4

+ ρtot
∂2u
∂t2

+ ctot
∂u
∂t

= Fts(x, t)δ(x − L1) + Fexc(x, t), (44)

where L1 is the position of the tip from the beginning of the
cantilever, and δ(x − Li) is the delta function. The boundary
conditions are as the boundary conditions of a clamped-free
cantilever. The equation can be solved using modal analysis for
a continuous beam model [27].

3. Simulation results and discussion

According to the five modeling methods discussed in
previous parts, the resonance frequency of microcantilevers
with variable widths in liquid far from the sample surface
will be compared. It should be noted that Vancura’s viscous
model [22] (Section 2.1.2), Rankl’s method (Section 2.2.1) and
Modal analysis (Section 2.2.2) consider both effective damping
and added fluid mass in calculating the resonance frequency,
while the first approximate method, i.e. Sader’s inviscid
modeling (Section 2.1.1) and effectivemass replacementmodel
(Section 2.1.3) neglect the effect of viscous friction damping
on the resonance frequency. However, their results are almost
close to the experimental results, since the effect of viscous
damping in reducing the resonance frequency in free liquid
is much smaller in comparison to the effect of added fluid
mass. Table 1 shows the mechanical properties of water and
composite cantilevers, which consist of a single crystal silicon
layer (5 µm) in the center and two layers of oxide silicon
(2.2 µm) and nitride silicon (1 µm) on top.

Table 2 shows the resonance frequency values acquired from
various methods for cantilever geometries of 200 µm length,
8.2 µm thickness and four different widths, featuring 50, 100,
140 and 186 µm immersed in free water.

The results show that when we use a wider cantilever, the
resonance frequency shifts towards lower values, due to an
increase in the effective vibrating mass. This is because the
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Table 2: Comparison of various methods in calculating the resonance frequencies of four microcantilevers vibrating in water far away the surface with the
experimental data. The cantilevers have a 200 µm length, 8.2 µm thickness and variable widths (frequencies given in kHz).

Cantilever width (µm) fRankl fViscous fInviscid fEMR fModal fMeas. [22]

50 145.1 161 168.7 145.1 145.1 165.9
100 126.7 126.3 130.6 126.6 126.7 142.2
140 118.2 110.5 113.7 118.1 118.2 129.7
186 111.3 98.2 100.5 111.2 111.3 120.5
Table 3: The ratio of the theoretical to measured resonance frequencies of four microcantilevers vibrating in water far away the surface (details as in Table 2).

Cantilever width (µm) fRankl/fMeas. fViscous/fMeas. fInviscid/fMeas. fEMR/fMeas. fModal/fMeas.

50 0.87 0.97 1.02 0.87 0.87
100 0.89 0.89 0.92 0.89 0.89
140 0.91 0.85 0.88 0.91 0.91
186 0.92 0.81 0.83 0.92 0.92
cantilever mass is proportional to its width, and also the mass
of liquid forced into motion by the oscillation of the cantilever
is changed with the width dimension.

The ratio of theoretical predictions to experimental reso-
nance frequencies are shown in Table 3. According to Table 3,
for comparatively thick cantilevers of Table 2, the accuracies of
resonance frequencies determined fromRankl’s method aswell
as the EffectiveMass Replacement (EMR)method are clearly en-
hanced, whereas it is seen that viscous modeling and the invis-
cid method gradually lose their preciseness by increasing the
width of the cantilever. The modal results are similar to those
of the Ranklmethod and it seems that the theoretical frequency
to measured data ratio remains almost constant. The discrep-
ancy between Rankl and EMRmethods in large tip-sample sep-
arations is so small that we can consider their values as identi-
cal. Their similarity is probably due to the fact that water has
a low viscosity, so the viscous friction damping has very lit-
tle effect on such thick cantilevers. If a liquid with higher vis-
cous resistance was used instead, the Rankl and EMR methods
would showmore pronounced different resonance frequencies.
The trend of changes in resonance frequencies in the Rankl (or
EMR)method indicates that by choosing a cantileverwith lower
aspect ratio (the size of thickness divided by the size of width),
the fluctuations of the results of these methods are less than
those obtained by viscous or inviscid methods. Therefore, they
showabetter stability or less sensitivitywhen thewidthdimen-
sion is changed. However, as shown in Table 2, for thick micro-
cantilevers with a rather high aspect ratio (constant length and
smaller width), the resonance frequencies of viscous or inviscid
methods give better agreement with experimental values. For
the following comparisons, we consider the Rankl and EMR as
almost similar methods and then analyze their differences with
other modeling methods.

Figure 2 shows the resonance frequency of cantilevers with
8.2 µm thickness and different widths. The slopes of the
curves attributed to each method indicate that the resonance
frequencies gained by viscous and inviscid models bear large
changes by changing the widths of the cantilevers, but Rankl
and EMR methods have smaller changes. Around the width of
100 µm, the results of all methods seem to be equal, and for
widths larger than 100µm, the resonance frequencies obtained
from Rankl’s method are predicted to show better agreement
with real values.

Since the added liquid mass and the viscous damping
are major effective factors, the differences in the results are
mainly due to the differences in the calculation of those
factors between the methods. Figure 3 shows the damping
Figure 2: Diagram of the resonance frequency versus cantilever width for
cantilevers with 200 µm length and 8.2 µm thickness for different modeling
methods.

coefficient (a) and the added mass density (b) for different
widths of the cantilever. Due to Figure 3(b), the closeness
of added mass density values around the width of 100 µm
may be the reason for the similarity of resonance frequencies
obtained from different methods for thick cantilevers on
which viscous damping has a minimal effect when separation
between the cantilever and the sample surface is large. We
then have compared the methods in calculating the resonance
frequency of a thin cantilever with 200 µm length, 20 µm
width, 0.6 µm thickness and 3 µm tip height. Frequency
response curves (tuning curves) of the magnetically oscillated
cantilever with a rectangular cross section immersed in a
buffer solution, demonstrate a high dependency upon tip-
sample separation. The buffer solution consists of 150 mM
Nacl and 5 mM NaH2PO4. Tuning curves were recorded by
varying the excitation frequency from 0.1 to 10 kHz in steps of
0.1 kHz, and bymeasuring the corresponding amplitudes of the
cantilever response. The acquired amplitude–frequency curves
from simulation show a good agreement with the experimental
results of [25]. Resonance frequency determined from the peak
of the tuning curve at the separation of 44µm(a big separation)
can be compared with the values of other modeling methods as
shown in Table 4.

According to Table 4, the good agreement of Rankl or
Vancura viscous data with those experimentally obtained, in
comparison with other models, indicates that the viscous
friction of the liquid greatly affects such a thin cantilever
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Figure 3: Comparison of the methods in calculating viscous damping coefficient and added fluid mass density for cantilevers of 200 µm length, 8.2 thickness and
variable widths vibrating in water. (a) Damping coefficient changes for different widths. (b) Added fluid mass density changes for different widths.
Table 4: Theoretical resonance frequency of a thin cantilever vibrating in
water at a large tip-sample separation (44µm). The cantilever has 200µm
length, 0.6 µm thickness and 20 µmwidth.

Modeling method Resonance frequency (kHz) % Error

Rankl 3.150 0.96%
Viscous 3.153 1%
Inviscid 5.276 69%
EMR 3.849 23%
Experiment [25] 3.120 –

whose thickness is much smaller than its width and whose
cross section area is comparatively small whereas the effect of
viscosity is not considered using EMR and inviscid methods.
From Figure 3, we also know that the added mass terms with
this width are close to each other in these two methods.
Changes of resonance frequency due to different thicknesses are
shown in Figure 4. In this case, the Rankl and EMRmethods gave
similar results. As shown in Figure 4, for a cantilever of width
50 µm, the Rankl method gives lower values in comparison
to other methods and by a gradual increase in width, the
resonance frequencies of the Ranklmethod shift towards higher
values while the predicted data of viscous and inviscidmethods
become closer. Also, the results are very close in caseswhere the
cantilever width is 100 µm and in other cantilever widths the
difference is higher.

Characteristics of four liquids are shown in Table 5. Tables 6
and 7 show the resonance frequencies of liquid-immersed
microcantilevers with two different lengths in different liquids
of Table 5 for comparing methods. The cantilevers have the
mass density of 2320 kg/m3 and the Young’s modulus of
172.6 GPa. According to Tables 6 and 7, since the geometrical
dimensions of the cantilevers are changed, the methods show
different accuracy with respect to the measured resonance
frequencies. In these two cases, the viscous model has the
best agreement with the experimentally obtained values, while
other models indicate fluctuations in their results for fluids of
different properties.

EMR, Vancura and Sader models do not have the effect of
the squeezed film damping in their models and, so, are not
comparable with models that consider the effect of squeezed
film damping, like the Ranklmodel. By using themodalmethod,
the frequency response of rather thick silicon microcantilevers
is simulated for various tip-sample separations in Figure 5,
and so the effect of squeezed film damping can be observed.
According to Figure 5, the four microcantilevers with different
widths have disparate responses in the vicinity of a solid
surface. As shown in Figure 5, when the cantilever approaches
Table 5: Viscosities and densities of four fluids at T = 27 °C.

Fluid Viscosity η (kg/m s) Density ρf (kg/m3)

Acetone 3.08 × 10−4 785
CCl4 8.79 × 10−4 1590
Water 8.94 × 10−4 997
1-butanol 2.47 × 10−3 805

the sample, the maximum point of the tuning curves is shifted
to lower quantities and the sharpness of the peaks is gradually
smoothed. At larger cantilever widths, the reduction of the
resonance frequency with a reduction in separation is greater.

If we notice the equation of squeezed film damping
(Eq. (16)), it is obvious that this force is directly proportional to
cubic width and inversely to cubic cantilever-sample distance.
Thereby, the effect of this damping on the motion of the
cantilever is higher if we drive a rather wide cantilever in the
close vicinity of a surface.

Spring constants of the examined cantilevers would be a key
factor in vibration analysis, which depends greatly on flexural
stiffness, inwhich the thickness of the cantilever is an important
parameter. The large thickness, which was held constant in
the tuning curve simulations, shows its influence in the form
of increasing resonance frequency and difficulty in excitation
of the cantilever as well. Spring constant also depends on the
width of the cantilever. In Figure 5, spring constants of the
four cantilevers, with widths of 50, 100, 140 and 186 µm, are
increased as 160.5 N/m, 321 N/m, 449.4 N/m and 597.1 N/m,
respectively, but the resonances occur at lower values. In fact,
the reduction in frequencies is due to the effect of added mass
and squeezed film, which dominates the effect of the spring
constant.

Figure 6 shows the diagrams of the resonance frequency
versus cantilever width for two cantilevers (200µm length and
two thicknesses of (a) 8.2µmthickness and (b) 2µmthickness)
in two closer separations of cantilever from the sample (25m &
1 µm). It is seen that the slope of reduction in resonance
frequency, by increasing cantilever width, is larger in closer
separations.

For Rankl orModalmethods, which consider the addedmass
method, for a one layer cantilever we can write the resonance
frequency far from the surface in a low viscosity liquid as:

1
f 2r

=

kL4

ρ + 0.6 × ρf


Lb/h2


Eh2

, (45)
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Figure 4: Diagrams of resonance frequency versus thickness for cantilevers with the same length and four different widths, based on various modeling methods.
Table 6: Resonance frequencies of a liquid-immersed cantilever with 197 µm length, 29 µmwidth and 2 µm thickness based on various methods (frequencies
given in kHz, measured data from [28]).

Fluid fRankl fViscous fEMR fInviscid fMeas. fRankl/fMeas. fViscous/fMeas. fEMR/fMeas. fInviscid/fMeas.

Acetone 24.1 28.7 24.4 32.6 29.5 0.82 0.97 0.83 1.10
CCl4 17.5 20.1 17.6 24.2 20.8 0.84 0.97 0.85 1.16
Water 21.6 24.3 21.9 29.6 25.2 0.86 0.96 0.87 1.17
1-butanol 23.5 23.4 24.1 32.3 24.1 0.98 0.97 1 1.3
Table 7: Resonance frequencies of a liquid-immersed cantilever with 397 µm length, 29 µmwidth and 2 µm thickness based on various methods (frequencies
given in kHz, measured data from [28]).

Fluid fRankl fViscous fEMR fInviscid fMeas. fRankl/fMeas. fViscous/fMeas. fEMR/fMeas. fInviscid/fMeas.

Acetone 4.9 6.3 5.1 8.0 6.35 0.77 0.99 0.80 1.26
CCl4 3.5 4.2 3.7 5.9 4.22 0.83 0.99 0.88 1.40
Water 4.4 5.0 4.6 7.3 5.04 0.87 0.99 0.91 1.45
1-butanol 4.4 4.2 5.1 7.9 3.93 1.12 1.07 1.30 2.01
where k is a constant and fr is the resonance frequency. From
this formula, we can see that the density of the liquid has an
inverse relation with the square of the resonance frequency.

For a one layer silicon cantilever, with density of 2330 kg/m3

and Young’s modulus of 170 GPa, the log–log plot of the
resonance frequency versus cantilever thickness (h), cantilever
width (b) and cantilever length (L) gives the following formulas
for far separations from the sample, and the low viscosity of the
liquid. The base dimensions are h = 10 µm, W = 50 µm and
L = 200 µm.

1
f 2

= 2.3 × 10−25h−2.88, (46)

1
f 2

= 5.33 × 10−10b0.2913, (47)
1
f 2

= 2.2486 × 105L4.2913. (48)

4. Conclusions

Simulation results of the approximate resonance frequency
of microcantilevers vibrating in free liquid were compared to
experimental data, and the accuracy of various methods was
studied. By presenting a typical modeling of an AFM cantilever
in practical experiments and then an analytical solution of the
equation of motion of the cantilever by approximating the
hydrodynamic forces acting on it, the frequency response of
several microcantilevers were simulated at various tip-sample
separations. Microcantilevers with different dimensions have
different resonance frequencies in a liquid environment.
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Figure 5: Simulations of frequency responses of four water-immersed microcantilevers with 200 µm length, 8.2 µm thickness and different widths featuring 50,
100, 140 and 186 µm are shown for various tip-sample separations. The effect of hydrodynamic forces particularly the squeezed film damping is such that the
resonance peaks occur at lower values for large widths.
Figure 6: Diagram of the resonance frequency versus cantilever width for a cantilever with 200 µm length and (a) 8.2 µm thickness (b) 2 µm thickness in two
different separations (25 & 1 µm) from the sample.
Based on the frequency changes, due to the variable widths
and different fluids, the sensitivity of various methods with
respect to geometrical parameters as well as liquid properties
was observed. In large tip-sample separations, the modeling
methods of Rankl and Vancura (viscous model) displayed more
agreeable results for a thin cantilever with a small cross section
area, because of consideration of the effect of viscous friction
damping on the oscillatorymotion of the cantilever. For slightly
thicker cantilevers vibrating in different liquids, the viscous
model has the best agreement with experimentally obtained
values. For much thicker cantilevers, the methods of Rankl and
effective mass replacement show higher accuracy and stability
by changing the dimensions of thewidth, however, fluctuations
in their results occurred as the liquid properties were changed.
As the cantilever got closer to the solid surface with constant
velocity, the hydrodynamic loading had its effect on shifting the
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resonance peaks of the amplitude–frequency curves towards
lower values and smaller motion amplitudes. This effect was
observed using the Rankl modeling method through which the
effect of squeezed liquid can be considered in the damping
term. However, some other methods are applicable only for big
tip-sample separations where we can neglect the effect of the
sample surface on the resonance frequency.
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