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All non-equivalent circulant D-optimal designs for # =2 mod 4, n < 54 and n =66
are given and were found by an exhaustive search. There is a unique non-equivalent
circulant design for each value of n< 18, 3 for n=26 and n=30, 8 for n=38, 31
for n=42, 17 for n= 46, 39 for n= 50, 48 for n = 54, and 1025 for » = 66. These are
presented in tables in the form of the corresponding non-equivalent supplementary
difference sets. Most of the given designs are new.  © 1994 Academic Press, Inc.

1. INTRODUCTION

If n=2mod 4 and A, B are n/2 x n/2 commuting matrices, with elements
+ 1, such that

AAT+ BB = (n—2)1,,+2J,, (1)

where J,, is an n/2 x n/2 matrix of 1’s, then the n x n matrix

A B
Rz(—BT AT)

has the maximum determinant (see [4, 6]) among all nxn, +1 matrices.
Such matrices are called D-optimal designs of order 7.

Now form the two sets P= {py, p,, .., p,} and Q= {4y, q5, ..., 4, } Where
pi» q; denote the positions of —1’s in the first row of 4, B respectively.

If the matrices A, B are circulant, then they satisfy (1) if and only if
(see [2]) they are supplementary difference sets 2— {n/2;r, s; A}, where
A=r+s—(n—2)/4 and s=r>0 are found from

(/2 —2r)? + (nj2 — 25)? = 2n — 2. 2)
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Hence the construction of the two circulant matrices A4, B satisfying (1)
is equivalent to the construction of the corresponding supplementary
difference sets. For n =22, 34, 58, D-optimal designs satisfying (1) do not
exist because n— 1 is not the sum of two squares (see [2]).

In this paper we construct all non-equivalent circulant D-optimal designs
for n< 54 and n=66. D-optimal designs for these values of n have been
given before in the literature (see [2-157), and Yang [13] published all
non-equivalent circulant designs for » < 38. Bridges et al. [1] and Trung
[9] have constructed a D-optimal design for n =82 which is not of cir-
culant type. Here most of the D-optimal designs we give for n > 42 are new.

In Section 2 we define and give some results on non-equivalent circulant
designs, in Section 3 we describe briefly the algorithm, and in Section 4 we
present the tables of the non-equivalent circulant designs for n< 54. For
n =66, there are 1025 such designs and since the space is limited, we give
only 30 here, the remaining are available on request.

2. NON-EQUIVALENT DESIGNS

From now on we assume that 4, B are circulant and let a; and b,,
i=0,1,.,m—1, where m=n/2, be the element of their first row.
Define the non-periodic autocorrelation function

m—t—1

N,= Y aa,, t=01.,m—1, (3)

i=0
then (1) is equivalent to

N, (0)+Ny(0)=2m if =0

4
N(£)+ Ng(t)+ N y(m—1)+ Ny(m—1) =2 if1<t<m—1()

Let
A(zy=ao+az+ - +a,,_ z" !

B(z)=bo+byz+ -+ +b,_z"}

be polynomials associated with 4 and B, then

m—1

A@)A(z7)=N,0)+ ¥ Ny()z'+27")  z#0

t=1
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and

A(2) A1)+ B(2) B~ = N4(0) 4 Ny0)+ Y (Na(t) +Na(0)

=1

+z (N (m—t)+ Ng(m—1)))z*
If A and B satisfy (1) which is equivalent to (4) and z” =1, then

dm—2 if z=1

2m—2 if z"=1, z#1 )

A(z) A(z" ")+ B(z2) B(z“l)-—-{

Therefore (1), (4), and (5) are equivalent.

Now if (A(z), B(z)) is a pair of (m—1)th-degree polynomials, with
coefficients +1, satisfying (5), then (5) is also satisfied by the following
pairs:

(i) (—A4(z), B(2))
(i) (A(z), —B(z))
(iii) (B(z), A(z))
(iv) (2"~ '4(z™"), B(2))
(V) (A(z),z""'B(z" 1)
(vi) (z"4(z), z°B(z))
(vii) (A(z%), B(z%))  (d,m)=1.

All powers of z are taken mod m.

This is because (i) and (iv) leave A(z) A(z~') invariant, (ii) and (v) leave
B(z) B(z~") invariant, (iii), (vi), and (vii) leave A(z) A4(z™")+ B(z) B(z™")
invariant.

The designs produced from A, B by applying operations (i)—(vii) are
called equivalent. In the tables in Section 4, we give one design from every
equivalent class.

3. THE ALGORITHM

Here we describe briefly the algorithm.
Let
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then x, y are odd, found from (5), ie.,
x4y’ =4m -2,

and we can always take x = y > 0 by applying (i), (ii), and (iii) of Section 2.
Let

then

k1 k1
Z X =X Z Y=Y
i=0 i=0

IXal s |yal < L0m—1=1)/k]+1 (6)
Xie» Yya=([m—1—i)/k]+1) mod 2.

We applied two different algorithms depending on m being prime or not.

3.1. m Prime

(i) Take k=2, find xq,, x12, pg2, ¥i1p satisfying (6), ie.,

Xo2 +X12=X, [X02 — X12l = 1,

Yoot V2= Yo=Yl =1;

this is always possible by applying (vi).
(i) Find x4, ya, i=0,1,2,3, from

Xoa + X4 = X3, Xiq4t X34 = X3,

Yoa+ Y24= Vo2, Yiat V3= Yo
By applying (iv), (v) we can take

X34<x14, y34<y14 when m=1mod4

Xoa X0, Vs < Vou when m =3 mod 4.

(i) Set k=38, find x,5, y;5, i=0, ..., 7, from x,,, y,, and continue
until &= m.

582a/65/1-3



30 KOUNIAS ET AL.
(iv) Examine the sequences
Xits Vie i=0,.,m—1

and keep the sequences satisfying (4).

(v) Divide these sequences into non-equivalence classes and take
one from every equivalence class.

As m increases, the number of generated sequences increases and for
m<23 we examined all of them. For m>31, m prime, the situation
becomes more difficult to handle.

3.2. m Not a Prime
Let m=pq, 1 <q <m, g prime, then
(i) Take k=gq and find x4, yu, i=0, .., k—1, satisfying (6). By
applying (vi) take

Xop = Max(Xy), Yor =max(yy)

and by applying (vii) take x,, to be the second largest among x,. Also by
applying (v) and (vi) take

Yk—1y2, k2 Yk + 132 k-

The number of sequences we examine can be reduced further if we take

Xk— 12,k Z Xk +3)2,k whenever xo, = X
Vie—3y2, k2 Yik+3)2 k whenever Vi 12k = Vet 12 k-

This can be done by applying (v) and {vi) of Section 2.
(i) Set zF=1, then z” =1 and

k-1 _ k—1 _
A(z)= z Xz, B(z)= Z YuZ'
i=0 i=0

i

satisfy (5).
Knowing x;, v, compute from (3), Ny(#), Ny(t), t=0, .., k—1.

(iii) Examine if
A Ny(0)+ Ny (0)=2m+2(m/k—1)
Ny +Ny()+Ny(k—t)+ Nytk—t)=2(m/k) if 1<t<(k—1)2
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If the answer is yes, continue.

(iv) Find x; 5, ;2 from (6) and go to (iii).
(v) Stop when k=m and keep the sequences x,,,, y,, satisfying (6).

(iv) Divide the sequences into non-equivalence classes and keep one
from every equivalence class.

This algorithm was applied for m =25, 27, 33.

4. TABLES

In this section we give the tables. The numbers inside the parentheses
denote the position of —1’ in the first row of 4 and B, respectively. These
sequences give also the non-equivalent supplementary difference sets

2—{n/2;r, s34}, where A=r+s5—(n—2)/4.

For n< 54, we give representatives of all the non-equivalence classes of
D-optimal circulant designs.

For n= 66, we give only 30 representatives, because there are 1025 such
non-equivalence classes of D-optimal designs and the space here is limited;
the remaining are available on request.

All non-equivalence classes of circulant designs for n < 38 have appeared
before in [13].

For n=42, a representative of the following equivalence classes of
designs, as listed in our tables, has appeared before: 1, 2, 4, 6, 8, 10, 17, 20,
and 21 appeared in [15] and class 29 appeared in [147]; the remaining 21
classes of our list are new.

For n =46, class 11 of our list appeared in [ 14]; the remaining 16 classes
of our list are new.

For n= 50, class 36 of our list appeared in [14]; the remaining 38 classes
of our list are new.

For n= 54, classes 25, 40 of our list appeared in [14]; the remaining 46
clases of our list are new.

For n=66, 2—(33;12, 13;9), there are 509 non-equivalence classes,
class 425 of our list appeared in [15], and class 431 of our list appeared
in [4]; the remaining 507 classes of our list are new.

For n=66, 2—(33; 11, 15; 10), there are 516 non-equivalence classes; all
of them are new.
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TABLE I
All Non-equivalent Circulant D-Optimal Designs for #» =2 mod 4, n < 54, n= 66

n=6 2-(3;0,1;0)
A={} B={1}
n=10; 2-(51,1;0)

={4} Bi={4}
n=14 2-(7;1,3;1)

Al={6} B ={315!6}
n=18 2-(9;2,3;1)

A1={7$8} B1={316’8}
n=26; 2-(13;3,6;3)

A= {8,11,12} B, ={3,4,5,7,10,12}
A ={8,11,12,} B,={4,5,7,9,11,12}

n=26 2-(13;4,4;2)

A = {57,812} B;={57,8,12}
n=230; 2-(15;4,6;3)

,14} B, =1{3,7,8,9,10,14}

A ={6,9,12,1

Ay ={8,9,12,14} B, ={4,5,7,8,12,14}

As={8,9,12,14} Bs={5,6,9,11,13,14}

n=238; 2-(19;6,7;4)

A ={6,7,8,10,13,18} By ={4,5,7,8,12,14,18}
A, =1{6,7,8,10,13,18} B, ={5,6,10,12,14,15,18}
As={7,8,9,11,13,18}  Bs={4,5,9,12,15,16,18}
As={7,10,13,14,16,18} B, ={6,7,8,11,13,17,18}
As=1{7,8,9,12,15,18}  Bs={6,7,11,12,14,16,18}
As = {8,10,11,15,16,18} Be={4,5,7,8,12,14,18}

Ay ={810,11,15,16,18} B, ={5,6,10,12,14,15,18}
Ag=1{9,10,13,15,17,18} Bs = {4,5,7,11,13,14, 18}
n=42; 2-(21;6,10;6)

A ={5,6,8,12,1520} By = {4,8,9,12,14,16,17,18,19,20}
A, ={6,9 12,13,18,20} B; = {4,8,9,12,14,16,17,18,19, 20}
As = {6,11,13, 16,19,20} Bs; = {6,7,8,11,12,14,16,17,18, 20}
A4 = {17,13,17,18,19, 20} B,=1{3,4,7,10,11,13,15, 16,18,20}
={7.9,10,14,16,20}  B; = {4,5,8,12,13,14,15,17,18,20 }

={7,9,10,14,16,20}  Bs = {4,5,6,7,8,11,12,15,17,20 }



NON-EQUIVALENT DESIGNS FOR n = 2mod 4

33

TABLE 1—Continued

A7 ={7,9,11,14,19,20)}

As = {8,13,16,18,19,20 }
Ay = {8,10,11,16,18,20 }
A = {8,9,14,16,17,20}

Ay = {8,12,14,15,18,20}
Anz = {8,10,11,14,18,20}
A = {9,10,11,15,18,20}

Ay = {9,13,16,18,19,20}
Ais = {9,12,13,17,18,20}
Ass = {9,11,12,15,16,20}
A = {9,12,15,16,18,20}
Ase = {9,11,12,15,16,20 }
A = {9,10,14,17,19,20}
Az = {9,12,13,16,18,20 }

An = {9, 10, 14, 17, 19, 20}

Agy = {10,12,13,15,19,20}
Ay = {10,11,13,14,19,20}
Age = {10,13,14,18,19,20}
Ags = {10,11,13,14,19,20)
A = {10,11,13,17,18,20}
Ayr = {10,11,14,15,18,20}
Ay = {10,11,13,15,19,20}
A = {10,11,13,15,19, 20}
Aso = {10,11,13, 14, 19,20}
Ag = {10,13,14,18,19, 20}

n = 46;

By ={ 9,11,12,14,15,19,20 }
Be={ 10,11,12,14,15,18,20}
By={ 11,12,13,14,17,18,20}
Bio = {4,5,6,8,10,12,13,15,16,20 }
By = {4,5,6,10,13,14,15,17,18,20}
By, = {5,6,10,11,13,15,16,18,19, 20}
Bys = {3,6,7,10,12,13, 14,15, 18, 20}
B = {3,4,5,9,12,13,15,17,18, 20}
Bys = {3,4,6,10,12,13,14,15,18,20}
Bis = {4,5,7,9,10,12,16,18,19, 20}
Byr = {4,6,8,9,12,13,17, 18,19, 20}
Bis = {4,5,6,8,10,13,16,18, 19,20}
By = {4,6,8,10,11,12,13,16, 19,20}
By = {4,5,6,7,11,12,14,16,17,20}
By, = {5,6,8,10,12,13,14,17,18, 20}
By =1{3,5,6,9,11,15,16,18,19,20}
By = {3,6,7,8,11,13,14, 16,18, 20}
B = {3,5,6,8,12,13,15,16,18,20}
Bys = {3,4,5,7,8,11,13,15,18,20}
By = {3,7,8,10,12,13,16,18,19,20}
By = {4,5,7,9,10,12,16,18,19,20}
Bys = {4,6,7,10,13,14,15,17,19,20}
By = {4,6,7,8,11,12,14,17,18,20}
B = {4,6,8,9,12,13,15,17,19,20}
B = {4,5,7,8,11,13,15,17,18,20}

2—(23; 7, 10; 6)

5,7,8,
3,4,6,
4,1,8,
5

A, = {8,11,15,16,17,19,22}
A; = {8,12,16,17,19,20,22}
As = {9,13,15,18,20,21,22}
A= {9,11,12,13,17,19,22}
As = {9,10,12,14,16,19,22}
As = {9,12,14,16,18,21,22}
Az = {9,12,13,14,19,21,22}
As = {10,12,14,17,20,21,22}
Ap = {10,11,12,14,17,21,22}
Ao = {10,13,14,16,20,21,22}

B, = {4,5,6,8,9,14,16,18,21,22}

B, = {4,5,7,9,14,15,18,20,21, 22}
B = {4,6,7,10,11,12,16, 19, 20,22}
B, = {4,7,8,11,13,14,18,19,20, 22}
Bs = {4,5,6,10,13,17,18,19, 21,22}
Bs = {4,5,7,8,9,14,15,16,19,22}

Br = {4,7,10,11,12,14,16,18, 21,22}
B = {3,6,7,8,9,13,14,17,20, 22}

B = {3,6,7,8,11,13,14,16,20, 22}
Bio = {3,6,7,8,12,14,16,17,19, 22}

An = {10,11,12,15,19,20,22} By = {4,5,7,9,10,13,14,16,20, 22}
App = {10,11,13,15,19,21,22} B, = {4,7,9,13,14,16,17,20,21, 22}
A = {10,12,13,14,16,21,22} Bys = {4,5,7,10,12,14,17,18,21, 22}
Aug = {10,11,12,16,19,20,22} B, = {4,7,8,10,13,14, 15,18, 20,22}
Ags = {11,12,13,15,19,21,22} Bs = {3,5,8, 10,13, 16, 17,20, 21, 22}
Aws = {11,12,14,17,20,21,22} Bis = {3,4,7,9,11, 14, 18,20, 21,22}
Arr = {11,12,13,14,18,21,22} By; = {3,4,7,9,10,13,15,18,20, 22}
n=>50; 2-—(25;9,9;6)

A; = {6,8,10,13,14,15,16,20,24} B, = {6,9,10,11,15,18,21,23, 24}
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TABLE 1—Continued

A, = {6,9,11,12,13,14,18,22, 24}
A; = {7,8,15,16,18, 20,21, 22, 24}
A, ={7,8,9,10,12,13,17,20, 24}
As = {7,8,11,12,13, 14,16, 23,24}
As = {7,11,14,15,19,20, 21,22, 24}
Ar = {7,9,13,16,17,18,19,21, 24}
As = {7,8,12,14,15,16,18, 21,24}
Ag = {7,9,10,11,13,16,17, 23,24}
Apo = {7,9,12,13,15,17, 18,22, 24}
Ay = {7,8,9,12,13,15,17,22, 24}
Ay, = {1,8,9,11,12,16,18,23, 24}
Ais = {7,9,13,14, 16,18, 21,22, 24}
Awe = {7,8,11,12,14,16,18,21, 24}
Ars = {8,10,11,12,14,16,17,23, 24}
Ass = {8,12,13,14,16,17, 21,23, 24}
Arr = {8,10,14,17,19, 20, 22, 23, 24}
Ass = {8,11,14,16,17,18,22, 23,24}
Ao = {8,10,14,17,19,20, 22, 23, 24}
Ago = {8,12,13,16,19, 21,22, 23,24}
Ag = {8,9,12,14,16,18,21,23,24}
Az = {8,9,12,13,14,17,19,21,24}
Ags = {8,9,11,16,17, 19, 20,23, 24}
Aze = {8,9,11,12,13,16,18,22, 24}
Ags = {8,9,14,15,17,18,20, 22, 24}
Ags = {8,9,11,12,14,17,19,23, 24}
Agr = {8,10,14,15,17, 20,22, 23,24}
Ags = {8,9,12,13,16,19, 21, 22,24}
Az = {9,10,12,17,18, 19, 20, 23,24}
Aso = {9,10,13,16,18,20,21,22,24}
As = {9,11,12,13,16,17, 21,23, 24}
Asz = {9,12,13,16,18,21, 22,23, 24}
Ass = {9,10,11,13,15,18, 20,21, 24}
Asq = {9,11,12,14, 16,18, 22, 23, 24}
Ass = {9,12,13,14,17,19,21,23, 24}
Ass = {9,10,13,14,16,18, 22, 23,24}
Asr = {9,10,12,13,17, 18,20, 22, 24}
Ass = {9,10,12,13,15,17,19,23, 24}
Ase = {9,10,13,15,17,20, 22, 23,24}

n = 54;

B, = {6,9,10,15,16,18,20,23, 24}
Bs = {4,8,9,11,14,17,18,22, 24}
B, = {4,6,10,12,15,16,21,22, 24}
Bs = {4,6,10,13,16,18,20, 23, 24}
B = {5,6,10,12,16,19,21,22, 24}
By = {5,17,8,12,14,19, 20, 23, 24}
Bs = {6,8,10,13,18,19, 20, 23,24}
By = {6,8,10,11,15,16,19, 21,24}
Bio = {6,10,11,13, 14,17, 22, 23, 24}
B, = {6,7,10,13,16, 18,19, 20, 24}
By = {7,10,12,14,17, 18,20, 23, 24}
Bis = {7,10,12,13, 14, 19, 20, 23, 24}
B = {8,9,11,13,16,17,22, 23, 24}
Bis = {4,6,7,10,14,15,19, 21,24}
Bis = {5,7,9,12,17,18,20, 23,24}
Bir = {5,6,10,13,14, 16,18, 23, 24}
Bis = {5,8,9,10,13,17,20, 22, 24}
Bie = {5,7,12,13,15,19, 20, 23,24}
Bao = {5,6,11,14, 16,18, 20, 23, 24}
By = {5,6,11,16,19,20, 22, 23, 24}
B, = {5,6,7,13,16,19, 20, 22, 24}
By = {6,8,11,12,13,16, 18, 22,24}
B ={6,7,9,11,14,17,18, 23,24}
Bas = {6,7,8,11,14,18,19,22, 24}
Bas = {6,7,10,11,13, 15,17, 23,24}
By = {1,9,12,13,15,19, 20,23, 24}
Bas = {7,9,11,13,16,17, 18,23, 24}
Bz = {3,7,9,11,12, 16,18, 21, 24}
Bso = {4,6,11,12,15,16,21, 22, 24}
By = {5,7,9,12,14, 15,18, 23,24}
Bay = {5,6,10,14,16,18, 21,23, 24}
Bss = {5,6,7,11,12,15,19, 22, 24}
By = {5,6,10,13,14,15,18, 21,24}
Bss = {5,6,10,12,13,18,21, 22, 24}
Bss = {6,7,8,11,13,15,18,21,24}
By = {6,8,11,14,17,18,22,23,24}
Bss = {6,7,8, 11,14,17,19, 23,24}
Bso = {1,8,11,13,16,17, 19, 23,24}

2-(27;9,11;7)

A, = {5,6,10,14,16,18,19,21,26}
A, = {5,10,11,15,18,19, 22, 24,26}
As = {6,8,11,16,17,19,20, 21,26}
Aq = {6,8,9,11,16,17,22,23,26)
As = {6,8,10,12,13,18,22,23,26}
Ag = {6,10,14,15,16,18, 21,24, 26}
Ay = {6,9,11,12,13,15,18,23,26}

B: = {5,6,7,8,10,12,13,16,22,25, 26}
B, = {6,8,11,12,13,14,16,17,23,24, 26}
B, = {5,9,12,13,15, 16,18, 20, 24, 25,26}
By = {5,10,11,13,14,15,17,18,22, 24,26}
Bs = {6,7,12,13,14,15,17,18,21, 24,26}
Bs = {6,9,10,12,17, 18,19, 22,23, 24,26}
By = {6,8,12,13,14,17,18,22,24,25,26}
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TABLE I—Continued

As = {6,10,12,13,18,19,21,22, 26}
Ag = {6,9,10,12,14,18,19,24,26}
Ay = {6,7,11,15,17,20, 23,24, 26}
Ay = {7,10,11,13,14,15,20, 23,26}
Ay, = {7,9,16,18,19,21, 22, 25,26}
Az = {7,10,15,17,20,21,22,24, 26}
A = {7,8,12,17,19, 20, 23, 25,26}
Ays = {7,10,12,14,18,19,23,24, 26}
Ase = {7,9,14,17,18,20,23, 24,26}
A = {7,8,11,13,18,19,20,22,26}
A = {7,8,9,14,16,19, 22,23, 26}
Ay = {7,9,12,15,16,18,21,22,26}
Az = {8,13,14,15,17,19, 23, 25,26}
Ag = {8,9,14,17,19, 22, 23, 24,26}
Ap = {8,9,14,16,17, 19,22, 23,26}
Ags = {8,10,11,16,17,21,23, 24,26}
Aqq = {8,10,12,16,17,20,23, 24, 26}
Ags = {8,9,13,17,18,20,23,24,26}
Az = {8,13,14,15,16,19,22,25,26}
Agr = {8,12,13,18,19,21,23,25,26}
A = {8,9,11,12,15,16,21,24,26}
Agp = {8,12,14,17,19,22,23, 25,26}
Az = {8,13,14,15,17,20,22, 25, 26}
As = {9,10,11,13,14,17, 20, 22,26}
Asz = {9,10,11,15,16,18,19, 23,26}
Ass = {9,11,183, 14,16, 17, 20, 25,26}
Az = {9,12,13,17,19, 20, 22, 24, 26}
Ass = {9,11,12,14, 18,20, 21, 25, 26}
Ase = {9,10,11,14,17,18,20,24, 26}
Asr = {9,10,11,14, 16,18, 20,23, 26}
Ase = {9,11,13,16,17,20,23,25,26}
Asg = {9,11,13,14,18,19,20,23,26}
Ay = {9,11,14,16,17,20,24,25,26)
={9,11,12,17,18,21, 22,24, 26}
Aqg = {9,11,14,17,18,20,21,25,26}
A = {9,12,14,15,18, 22,23, 24, 26}
Ay = {9,10,11,15,16,19,23,24,26}
= {10,11,13,14,16,19, 21, 25,26}
Age = {10,12,13,15,16,19,21,25, 26}
Aqr = {11,12,13,15, 18, 20,22, 25,26}
Ay = {11,12,14,17,18,21,23, 25, 26}

Bs = {6,8,9,10,11,14, 16,19, 20, 24,26}
By = {7,8,9,10,12,14,15,18,21, 25,26}
B = {7,11,13,14,18,19, 21,23, 24, 25,26}
Bu = {4,6,11,12,13,17,19,21, 22, 23,26}
Biy = {4.7.8,10,12, 14, 15,20, 21, 22, 26}
Bis = {5,6,9,10,12,14,15,18,24,25,26}
Bi = {5,7,9,14,15,16,18,19,21,22, 26}
Bus = {5.6.7.8, 10,12, 13, 16,22, 25, 26}
Bis = {6,8,10,11,12,13,17,18,22,25,26}
Byr = {7,9,10,13,14,16,18,19, 23,24, 26}
Bie = {7,9,11,12,16,17,18,20, 22, 23,26}
Bie = {7,9,11,14,15,16,21,22,23,25,26}

1,12,14

2,13,15

Bao = {4,9,11, ,18,19,22,23,25,26}
Ba = {5,9,12, ,16,18,20, 24,25, 26}
By, = {5,6,7,9,10,14, 16, 18, 20, 21, 26}
By = {5,7,9,10,14,15,16,18,19,22, 26}
Ba = {5,6,7,8,11,12,13,16,21, 23,26}
Bas = {5,7,9,10,12,13,17, 19, 20,21, 26}
Bas = {6,7,9,11,14,15,19,20, 22,24, 26}
Bar = {6,8,11,14,15,17,21, 22, 23,25, 26}
By = {6,8,12,14,17,18,19, 22, 24,25, 26}
By = {6,7,11,13,17,18,21, 23, 24, 25,26}
Bs = {6,7,8,10,12,15,16, 20, 22,23, 26}
Bs = {4,5,6,7,11,13,16,20,21, 24, 26}
Bx = {4,5,6,8,10,12,17, 20,22, 23,26}
By = {4,6,8,9,10,15,16, 18,22, 23, 26}
B, = {4,5,10,12,13,16,21, 22, 24,25, 26}
Bss = {4,8,9,11,12,14,18,19, 20,22, 26}
Bis = {4,6,7,9,11,12,13,18,22, 23,26}
Bar = {5,7,8,12,15,16,20, 21, 22, 23,26}
Bsg = {5,6,11,13,16,20, 21, 22, 24, 25, 26}
Bso = {5.8,9, 10,12, 16, 18, 21, 24, 25, 26}
B = {5,7,8,9,11,13,14,18, 21,25, 26}
Bu = {6.8,9,14,15,17,19, 21, 22, 25, 26}
By = {6,7,8,10,14,16,19, 20, 21, 24,26}
Bg = {6,7,10,12,14,17, 18,19, 23,24, 26}

!

. By = {7,9,10,13,15,16,18, 20, 22, 25, 26 }

Bus = {4,5,8,12,15,16,17, 18, 22, 24,26}
Bus = {5,6,7,11,14,15,19, 21,22, 24,26}
B = {4,5,7,8,11,15,16,17, 21,23, 26}
Bys = {4,5,6,8,10,15,16, 18, 22,23, 26}

n=66; 2-(3312,13;9)
4, = {5,8,9,10,11, 16,18, 20, 23, 27, 28, 32}
B, = {5,7,11,15,18, 23, 24, 25, 26, 28,29, 31,32}
A; = {5,11,12,13,16,17, 18, 20, 21, 27, 30, 32}
B, ={578911 14,15,19,22,27,29, 31,32}

35



KOUNIAS ET AL.

TABLE I—Continued

A; = {5,7,10,11,15,17,18, 21,26, 36, 31, 32}
B; = {6,11,12,14,15,16,18,19, 21, 23, 29, 30, 32}

A= {5,6,8,9,10,11,12,18,23,27,31,32}
B, = {6,8,10,13,15,16,19, 21,24, 25,29, 31,32}

= {5,10,12,17, 18, 22, 24, 25,26, 27, 28,32}
= {6,7,8,10,11,15,16, 19, 22,25, 28, 30, 32}

As = {5,9,11,16,19, 20, 21, 23,27, 28, 29, 32}
Bs = {6,12,13,14,15,17, 19, 22, 25,27, 28, 31, 32}

A7 = {5,10,14,18,19, 20, 21,24, 26, 28,31, 32}
B, = {1,10,11,12, 14,15, 20, 21, 23, 27, 29, 30, 32}

As = {5,7,13,14,15,17,18,19, 24,28, 31,32}
Bs = {7,11,12,14,18,19,21,23,24, 27,29, 30, 32}

Ao = {5,6,9,10,11,12,18,19,21,23,27, 32}
Bo = {7,8,11,15,17,21,22, 24, 25,27, 29, 30, 32}

Ao = {5,6,8,9,11,13,17,18,21, 23,28, 32}
By = {8,11,12,13, 9 20,21,24,27,28, 30,32}

An = {5,6,7,10,11,15,17,23,24,25,27,32}
By, = {8,10,12,13,17,18,20,21,23, 24,27, 30,32}

A = {5,6,9,10,11,16,19,23,27,29, 31,32}
By, = {8,11,13,15,16,17,18,23,24, 26,27, 30,32}

Ais = {5,6,10,14,19,21, 24,26, 29, 30, 31,32}
Bis = {9,11,12,13, 15,19, 20,23, 24, 26,29, 30,32}

Ay = {6,12,13,17,18,19,21,22,23,29,31,32}
B = {3,7,10,12, 15,17, 21, 24,27, 28,29, 30, 32}

Ass = {6,7,9,13,14,15,17,19, 26,29, 31, 32}
Bis = {4,6,10,15,18,19,20,21, 24,25, 27, 28, 32}
n=66; 2-(33 11,15 10)

= {5,11,13,14,15, 16, 20,23, 27,31, 32}
= {4,7,9,10,11,12,13,17, 18,20, 22, 23, 26, 30, 32}

A, = {5,7,8,11,15,17,22,27, 30,31, 32}
B, = {5,7,10,11,13, 14,18, 20,21, 22, 23, 25, 26, 27, 32}

As = {5,8,13,14,15,18,20, 25,28, 29, 32}
B, = {5,7,8,9,10,13,14,15,16,17,21,25,27,29, 32}
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TABLE I—Continued

Ay = {5,7,11,12,14,15,18,23,26, 28, 32}
By = {6,7,8,12,13,17,19,20,21, 22,23, 24, 27, 30, 32}

As = {5,7,10,11,14,17,21, 26, 30, 31,32}
Bs = {6,8,9,10,11,12,14,16,17,21,22, 24,25, 30, 32}

As = {5,11,15,16,17,20, 23,24, 25,27, 32}
Bs = {6,8,10,11,12,14,17, 21,22, 24,25, 27,30, 31, 32}

Ar = {5,6,7,10,14,17,20,21,26, 30,32}
Br = {8,9,11,13,17,18,19,22, 24, 25, 26, 27, 29, 30, 32}

As = {6,9,11,12,13, 18,22, 24,29, 30, 32}
By = {4,5,9,12,13,16,17,18,19, 20, 21,23, 27,29, 32}

Ag = {6,13,14,16,17,21,22, 23,26, 28,32}
B, = {4,1,8,9,10,13,16, 20, 22, 24, 27, 28, 29, 30, 32}

A = {6,11,15,17,21,23,24, 25,27, 28,32}
Bio = {4,6,9,11,12,13, 14,19, 22, 23,24, 25,28, 31, 32}

An = {6,10,13,17,22,23, 25,26, 27, 28,32}
By = {4,5,9,11,13,17,18,19,20, 21,24, 27,29, 30, 32}

Anz = {6,10,11,12, 16,18, 21,27, 30, 31,32}
By = {4,5,7,12,15,19, 21,22, 24, 25, 26, 28, 29, 30, 32}

A1s = {6,11,14, 16,17, 23, 24,25, 26, 28, 32}
Bis = {4,5,8,10,12,14,17,18,21, 22,24, 25, 26, 27, 32}

Ay = {6,8,9,10,14,15,19,26,27, 29, 32}
B = {5,7,9,12,15,16,17,18,19,21,23, 24,27, 31, 32}

Aws = {6,8,11,12, 16,20, 26,27, 29,31, 32}
Bis = {5,7,10,14,15,16,17, 18,19, 21, 24, 25,27, 31, 32}
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