The Non-equivalent Circulant D-Optimal Designs for $n \equiv 2 \bmod 4, n \leqslant 54, n=66$

S. Kounias,* C. Koukouvinos, N. Nikolaou, and A. Kakos
Department of Mathematics, University of Athens, Panepistemiopolis 15784, Athens, Greece

Submitted by the Managing Editors
Received December 18, 1991

Abstract

All non-equivalent circulant D-optimal designs for $n \equiv 2 \bmod 4, n \leqslant 54$ and $n=66$ are given and were found by an exhaustive search. There is a unique non-equivalent circulant design for each value of $n \leqslant 18,3$ for $n=26$ and $n=30,8$ for $n=38,31$ for $n=42,17$ for $n=46,39$ for $n=50,48$ for $n=54$, and 1025 for $n=66$. These are presented in tables in the form of the corresponding non-equivalent supplementary difference sets. Most of the given designs are new. © 1994 Academic Press, Inc.

1. Introduction

If $n \equiv 2 \bmod 4$ and A, B are $n / 2 \times n / 2$ commuting matrices, with elements ± 1, such that

$$
\begin{equation*}
A A^{T}+B B^{T}=(n-2) I_{n / 2}+2 J_{n / 2} \tag{1}
\end{equation*}
$$

where $J_{n / 2}$ is an $n / 2 \times n / 2$ matrix of 1's, then the $n \times n$ matrix

$$
R=\left(\begin{array}{cc}
A & B \\
-B^{T} & A^{T}
\end{array}\right)
$$

has the maximum determinant (see $[4,6]$) among all $n \times n, \pm 1$ matrices. Such matrices are called D-optimal designs of order n.

Now form the two sets $P=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ and $Q=\left\{q_{1}, q_{2}, \ldots, q_{s}\right\}$ where p_{i}, q_{j} denote the positions of -1 's in the first row of A, B respectively.

If the matrices A, B are circulant, then they satisfy (1) if and only if (see [2]) they are supplementary difference sets $2-\{n / 2 ; r, s ; \lambda\}$, where $\lambda=r+s-(n-2) / 4$ and $s \geqslant r \geqslant 0$ are found from

$$
\begin{equation*}
(n / 2-2 r)^{2}+(n / 2-2 s)^{2}=2 n-2 \tag{2}
\end{equation*}
$$

* On sabbatical at McGill University.

Hence the construction of the two circulant matrices A, B satisfying (1) is equivalent to the construction of the corresponding supplementary difference sets. For $n=22,34,58, D$-optimal designs satisfying (1) do not exist because $n-1$ is not the sum of two squares (see [2]).
In this paper we construct all non-equivalent circulant D-optimal designs for $n \leqslant 54$ and $n=66$. D-optimal designs for these values of n have been given before in the literature (see [2-15]), and Yang [13] published all non-equivalent circulant designs for $n \leqslant 38$. Bridges et al. [1] and Trung [9] have constructed a D-optimal design for $n=82$ which is not of circulant type. Here most of the D-optimal designs we give for $n \geqslant 42$ are new.

In Section 2 we define and give some results on non-equivalent circulant designs, in Section 3 we describe briefly the algorithm, and in Section 4 we present the tables of the non-equivalent circulant designs for $n \leqslant 54$. For $n=66$, there are 1025 such designs and since the space is limited, we give only 30 here, the remaining are available on request.

2. Non-equivalent Designs

From now on we assume that A, B are circulant and let a_{i} and b_{i}, $i=0,1, \ldots, m-1$, where $m=n / 2$, be the element of their first row.

Define the non-periodic autocorrelation function

$$
\begin{equation*}
N_{A}(t)=\sum_{i=0}^{m-t-1} a_{i} a_{i+t} \quad t=0,1, \ldots, m-1 \tag{3}
\end{equation*}
$$

then (1) is equivalent to

$$
\begin{array}{rll}
N_{A}(0)+N_{B}(0)=2 m & \text { if } & t=0 \\
N_{A}(t)+N_{B}(t)+N_{A}(m-t)+N_{B}(m-t)=2 & \text { if } & 1 \leqslant t \leqslant m-1 \tag{4}
\end{array}
$$

Let

$$
\begin{aligned}
& A(z)=a_{0}+a_{1} z+\cdots+a_{m-1} z^{m-1} \\
& B(z)=b_{0}+b_{1} z+\cdots+b_{m-1} z^{m-1}
\end{aligned}
$$

be polynomials associated with A and B, then

$$
A(z) A\left(z^{-1}\right)=N_{A}(0)+\sum_{t=1}^{m-1} N_{A}(t)\left(z^{t}+z^{-t}\right) \quad z \neq 0
$$

and

$$
\begin{aligned}
A(z) A\left(z^{-1}\right)+B(z) B\left(z^{-1}\right)= & N_{A}(0)+N_{B}(0)+\sum_{t=1}^{m-1}\left(N_{A}(t)+N_{B}(t)\right. \\
& \left.+z^{-m}\left(N_{A}(m-t)+N_{B}(m-t)\right)\right) z^{t}
\end{aligned}
$$

If A and B satisfy (1) which is equivalent to (4) and $z^{m}=1$, then

$$
A(z) A\left(z^{-1}\right)+B(z) B\left(z^{-1}\right)= \begin{cases}4 m-2 & \text { if } \quad z=1 \tag{5}\\ 2 m-2 & \text { if } \quad z^{m}=1, \quad z \neq 1\end{cases}
$$

Therefore (1), (4), and (5) are equivalent.
Now if $(A(z), B(z))$ is a pair of $(m-1)$ th-degree polynomials, with coefficients ± 1, satisfying (5), then (5) is also satisfied by the following pairs:
(i) $(-A(z), B(z))$
(ii) $(A(z),-B(z))$
(iii) $(B(z), A(z))$
(iv) $\left(z^{m-1} A\left(z^{-1}\right), B(z)\right)$
(v) $\left(A(z), z^{m-1} B\left(z^{-1}\right)\right)$
(vi) $\left(z^{u} A(z), z^{v} B(z)\right)$
(vii) $\quad\left(A\left(z^{d}\right), B\left(z^{d}\right)\right) \quad(d, m)=1$.

All powers of z are taken mod m.
This is because (i) and (iv) leave $A(z) A\left(z^{-1}\right)$ invariant, (ii) and (v) leave $B(z) B\left(z^{-1}\right)$ invariant, (iii), (vi), and (vii) leave $A(z) A\left(z^{-1}\right)+B(z) B\left(z^{-1}\right)$ invariant.

The designs produced from A, B by applying operations (i)-(vii) are called equivalent. In the tables in Section 4, we give one design from every equivalent class.

3. The Algorithm

Here we describe briefly the algorithm.
Let

$$
x=A(1)=\sum_{i=0}^{m-1} a_{i}, \quad y=B(1)=\sum_{i=0}^{m-1} b_{i},
$$

then x, y are odd, found from (5), i.e.,

$$
x^{2}+y^{2}=4 m-2
$$

and we can always take $x \geqslant y>0$ by applying (i), (ii), and (iii) of Section 2. Let

$$
x_{i k}=\sum_{j \equiv i \bmod k}^{m-1} a_{j}, \quad y_{i k}=\sum_{j \equiv i \bmod k}^{m-1} b_{j} \quad i=0, \ldots, k-1,
$$

then

$$
\begin{gather*}
\sum_{i=0}^{k-1} x_{i k}=x, \quad \sum_{i=0}^{k-1} y_{i k}=y \\
\left|x_{i k}\right|,\left|y_{i k}\right| \leqslant[(m-1-i) / k]+1 \tag{6}\\
\left.x_{i k}, y_{i k} \equiv([m-1-i) / k]+1\right) \bmod 2 .
\end{gather*}
$$

We applied two different algorithms depending on m being prime or not.

3.1. m Prime

(i) Take $k=2$, find $x_{02}, x_{12}, y_{02}, y_{12}$ satisfying (6), i.e.,

$$
\begin{array}{ll}
x_{02}+x_{12}=x, & \left|x_{02}-x_{12}\right|=1 \\
y_{02}+y_{12}=y, & \left|y_{02}-y_{12}\right|=1
\end{array}
$$

this is always possible by applying (vi).
(ii) Find $x_{i 4}, y_{i 4}, i=0,1,2,3$, from

$$
\begin{array}{ll}
x_{04}+x_{24}=x_{02}, & x_{14}+x_{34}=x_{12} \\
y_{04}+y_{24}=y_{02}, & y_{14}+y_{34}=y_{12}
\end{array}
$$

By applying (iv), (v) we can take

$$
\begin{array}{lll}
x_{34} \leqslant x_{14}, & y_{34} \leqslant y_{14} & \text { when } \quad m \equiv 1 \bmod 4 \\
x_{04} \leqslant x_{24}, & y_{04} \leqslant y_{24} & \text { when } \\
m \equiv 3 \bmod 4
\end{array}
$$

(iii) Set $k=8$, find $x_{i 8}, y_{i 8}, i=0, \ldots, 7$, from $x_{i 4 .}, y_{i 4}$ and continue until $k \geqslant m$.
(iv) Examine the sequences

$$
x_{i k}, y_{i k} \quad i=0, \ldots, m-1
$$

and keep the sequences satisfying (4).
(v) Divide these sequences into non-equivalence classes and take one from every equivalence class.

As m increases, the number of generated sequences increases and for $m \leqslant 23$ we examined all of them. For $m \geqslant 31, m$ prime, the situation becomes more difficult to handle.

3.2. m Not a Prime

Let $m=p q, 1<q<m, q$ prime, then
(i) Take $k=q$ and find $x_{i k}, y_{i k}, i=0, \ldots, k-1$, satisfying (6). By applying (vi) take

$$
x_{0 k}=\max \left(x_{i k}\right), \quad y_{0 k}=\max \left(y_{i k}\right)
$$

and by applying (vii) take $x_{1 k}$ to be the second largest among $x_{i k}$. Also by applying (v) and (vi) take

$$
y_{(k-1) / 2, k} \geqslant y_{(k+1) / 2, k} .
$$

The number of sequences we examine can be reduced further if we take

$$
\begin{array}{lll}
x_{(k-1) / 2, k} \geqslant x_{(k+3) / 2, k} & \text { whenever } & x_{0 k}=x_{1 k} \\
y_{(k-3) / 2, k} \geqslant y_{(k+3) / 2, k} & \text { whenever } & y_{(k-1) / 2, k}=y_{(k+1) / 2, k} .
\end{array}
$$

This can be done by applying (v) and (vi) of Section 2.
(ii) Set $z^{k}=1$, then $z^{m}=1$ and

$$
A(z)=\sum_{i=0}^{k-1} x_{i k} z^{i}, \quad B(z)=\sum_{i=0}^{k-1} y_{i k} z^{i}
$$

satisfy (5).
Knowing $x_{i k}, y_{i k}$, compute from (3), $N_{X}(t), N_{Y}(t), t=0, \ldots, k-1$.
(iii) Examine if

$$
\begin{aligned}
N_{X}(0)+N_{Y}(0) & =2 m+2(m / k-1) \\
N_{X}(t)+N_{Y}(t)+N_{X}(k-t)+N_{Y}(k-t) & =2(m / k) \quad \text { if } \quad 1 \leqslant t \leqslant(k-1) / 2
\end{aligned}
$$

If the answer is yes, continue.
(iv) Find $x_{i, 2 k}, y_{i, 2 k}$ from (6) and go to (iii).
(v) Stop when $k=m$ and keep the sequences $x_{i m}, y_{i m}$ satisfying (6).
(iv) Divide the sequences into non-equivalence classes and keep one from every equivalence class.

This algorithm was applied for $m=25,27,33$.

4. Tables

In this section we give the tables. The numbers inside the parentheses denote the position of -1^{\prime} in the first row of A and B, respectively. These sequences give also the non-equivalent supplementary difference sets

$$
2-\{n / 2 ; r, s ; \lambda\}, \quad \text { where } \quad \lambda=r+s-(n-2) / 4
$$

For $n \leqslant 54$, we give representatives of all the non-equivalence classes of D-optimal circulant designs.

For $n=66$, we give only 30 representatives, because there are 1025 such non-equivalence classes of D-optimal designs and the space here is limited; the remaining are available on request.

All non-equivalence classes of circulant designs for $n \leqslant 38$ have appeared before in [13].

For $n=42$, a representative of the following equivalence classes of designs, as listed in our tables, has appeared before: $1,2,4,6,8,10,17,20$, and 21 appeared in [15] and class 29 appeared in [14]; the remaining 21 classes of our list are new.

For $n=46$, class 11 of our list appeared in [14]; the remaining 16 classes of our list are new.

For $n=50$, class 36 of our list appeared in [14]; the remaining 38 classes of our list are new.

For $n=54$, classes 25,40 of our list appeared in [14]; the remaining 46 clases of our list are new.

For $n=66,2-(33 ; 12,13 ; 9)$, there are 509 non-equivalence classes, class 425 of our list appeared in [15], and class 431 of our list appeared in [4]; the remaining 507 classes of our list are new.

For $n=66,2-(33 ; 11,15 ; 10)$, there are 516 non-equivalence classes; all of them are new.

TABLE I
All Non-equivalent Circulant D-Optimal Designs for $n \equiv 2 \bmod 4, n \leqslant 54, n=66$

$$
n=6 ; 2-(3 ; 0,1 ; 0)
$$

$$
A_{1}=\{\quad\} \quad B_{1}=\{1\}
$$

$$
n=10 ; \quad 2-(5 ; 1,1 ; 0)
$$

$$
A_{1}=\{4\} \quad B_{1}=\{4\}
$$

$$
n=14 ; \quad 2-(7 ; 1,3 ; 1)
$$

$$
A_{1}=\{6\} \quad B_{1}=\{3,5,6\}
$$

$$
n=18 ; \quad 2-(9 ; 2,3 ; 1)
$$

$$
A_{1}=\{7,8\} \quad B_{1}=\{3,6,8\}
$$

$$
n=26 ; 2-(13 ; 3,6 ; 3)
$$

$$
A_{1}=\{8,11,12\} \quad B_{1}=\{3,4,5,7,10,12\}
$$

$$
A_{2}=\{8,11,12,\} \quad \dot{B_{2}}=\{4,5,7,9,11,12\}
$$

$n=26 ; 2-(13 ; 4,4 ; 2)$

$$
A_{1}=\{5,7,8,12\} \quad B_{1}=\{5,7,8,12\}
$$

$n=30 ; 2-(15 ; 4,6 ; 3)$
$A_{1}=\{6,9,12,14\} \quad B_{1}=\{3,7,8,9,10,14\}$
$A_{2}=\{8,9,12,14\} \quad B_{2}=\{4,5,7,8,12,14\}$
$A_{3}=\{8,9,12,14\} \quad B_{3}=\{5,6,9,11,13,14\}$
$n=38 ; 2-(19 ; 6,7 ; 4)$
$A_{1}=\{6,7,8,10,13,18\} \quad B_{1}=\{4,5,7,8,12,14,18\}$
$A_{2}=\{6,7,8,10,13,18\} \quad B_{2}=\{5,6,10,12,14,15,18\}$
$A_{3}=\{7,8,9,11,13,18\} \quad B_{3}=\{4,5,9,12,15,16,18\}$
$A_{4}=\{7,10,13,14,16,18\} \quad B_{4}=\{6,7,8,11,13,17,18\}$
$A_{5}=\{7,8,9,12,15,18\} \quad B_{5}=\{6,7,11,12,14,16,18\}$
$A_{6}=\{8,10,11,15,16,18\} \quad B_{6}=\{4,5,7,8,12,14,18\}$
$A_{7}=\{8,10,11,15,16,18\} \quad B_{7}=\{5,6,10,12,14,15,18\}$
$A_{8}=\{9,10,13,15,17,18\} \quad B_{8}=\{4,5,7,11,13,14,18\}$

$$
n=42 ; \quad 2-(21 ; 6,10 ; 6)
$$

$A_{1}=\{5,6,8,12,15,20\}$	$B_{1}=\{4,8,9,12,14,16,17,18,19,20\}$
$A_{2}=\{6,9,12,13,18,20\}$	$B_{2}=\{4,8,9,12,14,16,17,18,19,20\}$
$A_{3}=\{6,11,13,16,19,20\}$	$B_{3}=\{6,7,8,11,12,14,16,17,18,20\}$
$A_{4}=\{7,13,17,18,19,20\}$	$B_{4}=\{3,4,7,10,11,13,15,16,18,20\}$
$A_{5}=\{7,9,10,14,16,20\}$	$B_{5}=\{4,5,8,12,13,14,15,17,18,20\}$
$A_{6}=\{7,9,10,14,16,20\}$	$B_{6}=\{4,5,6,7,8,11,12,15,17,20\}$

TABLE I-Continued

$A_{7}=\{7,9,11,14,19,20\}$	$B_{7}=\{5,7,8,9,11,12,14,15,19,20\}$
$A_{8}=\{8,13,16,18,19,20\}$	$B_{8}=\{3,4,6,10,11,12,14,15,18,20\}$
$A_{9}=\{8,10,11,16,18,20\}$	$B_{9}=\{4,7,8,11,12,13,14,17,18,20\}$
$A_{10}=\{8,9,14,16,17,20\}$	$B_{10}=\{4,5,6,8,10,12,13,15,16,20\}$
$A_{11}=\{8,12,14,15,18,20\}$	$B_{11}=\{4,5,6,10,13,14,15,17,18,20\}$
$A_{12}=\{8,10,11,14,18,20\}$	$B_{12}=\{5,6,10,11,13,15,16,18,19,20\}$
$A_{13}=\{9,10,11,15,18,20\}$	$B_{13}=\{3,6,7,10,12,13,14,15,18,20\}$
$A_{14}=\{9,13,16,18,19,20\}$	$B_{14}=\{3,4,5,9,12,13,15,17,18,20\}$
$A_{15}=\{9,12,13,17,18,20\}$	$B_{15}=\{3,4,6,10,12,13,14,15,18,20\}$
$A_{16}=\{9,11,12,15,16,20\}$	$B_{16}=\{4,5,7,9,10,12,16,18,19,20\}$
$A_{17}=\{9,12,15,16,18,20\}$	$B_{17}=\{4,6,8,9,12,13,17,18,19,20\}$
$A_{18}=\{9,11,12,15,16,20\}$	$B_{18}=\{4,5,6,8,10,13,16,18,19,20\}$
$A_{19}=\{9,10,14,17,19,20\}$	$B_{19}=\{4,6,8,10,11,12,13,16,19,20\}$
$A_{20}=\{9,12,13,16,18,20\}$	$B_{20}=\{4,5,6,7,11,12,14,16,17,20\}$
$A_{21}=\{9,10,14,17,19,20\}$	$B_{21}=\{5,6,8,10,12,13,14,17,18,20\}$
$A_{22}=\{10,12,13,15,19,20\}$	$B_{22}=\{3,5,6,9,11,15,16,18,19,20\}$
$A_{23}=\{10,11,13,14,19,20\}$	$B_{23}=\{3,6,7,8,11,13,14,16,18,20\}$
$A_{24}=\{10,13,14,18,19,20\}$	$B_{24}=\{3,5,6,8,12,13,15,16,18,20\}$
$A_{25}=\{10,11,13,14,19,20\}$	$B_{25}=\{3,4,5,7,8,11,13,15,18,20\}$
$A_{26}=\{10,11,13,17,18,20\}$	$B_{26}=\{3,7,8,10,12,13,16,18,19,20\}$
$A_{27}=\{10,11,14,15,18,20\}$	$B_{27}=\{4,5,7,9,10,12,16,18,19,20\}$
$A_{28}=\{10,11,13,15,19,20\}$	$B_{28}=\{4,6,7,10,13,14,15,17,19,20\}$
$A_{29}=\{10,11,13,15,19,20\}$	$B_{29}=\{4,6,7,8,11,12,14,17,18,20\}$
$A_{30}=\{10,11,13,14,19,20\}$	$B_{30}=\{4,6,8,9,12,13,15,17,19,20\}$
$A_{31}=\{10,13,14,18,19,20\}$	$B_{31}=\{4,5,7,8,11,13,15,17,18,20\}$
	$n=46 ;$

$A_{1}=\{8,11,15,16,17,19,22\}$	$B_{1}=\{4,5,6,8,9,14,16,18,21,22\}$
$A_{2}=\{8,12,16,17,19,20,22\}$	$B_{2}=\{4,5,7,9,14,15,18,20,21,22\}$
$A_{3}=\{9,13,15,18,20,21,22\}$	$B_{3}=\{4,6,7,10,11,12,16,19,20,22\}$
$A_{4}=\{9,11,12,13,17,19,22\}$	$B_{4}=\{4,7,8,11,13,14,18,19,20,22\}$
$A_{5}=\{9,10,12,14,16,19,22\}$	$B_{5}=\{4,5,6,10,13,17,18,19,21,22\}$
$A_{6}=\{9,12,14,16,18,21,22\}$	$B_{6}=\{4,5,7,8,9,14,15,16,19,22\}$
$A_{7}=\{9,12,13,14,19,21,22\}$	$B_{7}=\{4,7,10,11,12,14,16,18,21,22\}$
$A_{8}=\{10,12,14,17,20,21,22\}$	$B_{8}=\{3,6,7,8,9,13,14,17,20,22\}$
$A_{9}=\{10,11,12,14,17,21,22\}$	$B_{9}=\{3,6,7,8,11,13,14,16,20,22\}$
$A_{10}=\{10,13,14,16,20,21,22\}$	$B_{10}=\{3,6,7,8,12,14,16,17,19,22\}$
$A_{11}=\{10,11,12,15,19,20,22\}$	$B_{11}=\{4,5,7,9,10,13,14,16,20,22\}$
$A_{12}=\{10,11,13,15,19,21,22\}$	$B_{12}=\{4,7,9,13,14,16,17,20,21,22\}$
$A_{13}=\{10,12,13,14,16,21,22\}$	$B_{13}=\{4,5,7,10,12,14,17,18,21,22\}$
$A_{14}=\{10,11,12,16,19,20,22\}$	$B_{14}=\{4,7,8,10,13,14,15,18,20,22\}$
$A_{15}=\{11,12,13,15,19,21,22\}$	$B_{15}=\{3,5,8,10,13,16,17,20,21,22\}$
$A_{16}=\{11,12,14,17,20,21,22\}$	$B_{16}=\{3,4,7,9,11,14,18,20,21,22\}$
$A_{17}=\{11,12,13,14,18,21,22\}$	$B_{17}=\{3,4,7,9,10,13,15,18,20,22\}$

$$
n=50 ; \quad 2-(25 ; 9,9 ; 6)
$$

$A_{1}=\{6,8,10,13,14,15,16,20,24\} \quad B_{1}=\{6,9,10,11,15,18,21,23,24\}$

$A_{2}=\{6,9,11,12,13,14,18,22,24\}$	$B_{2}=\{6,9,10,15,16,18,20,23,24\}$
$A_{3}=\{7,8,15,16,18,20,21,22,24\}$	$B_{3}=\{4,8,9,11,14,17,18,22,24\}$
$A_{4}=\{7,8,9,10,12,13,17,20,24\}$	$B_{4}=\{4,6,10,12,15,16,21,22,24\}$
$A_{5}=\{7,8,11,12,13,14,16,23,24\}$	$B_{5}=\{4,6,10,13,16,18,20,23,24\}$
$A_{6}=\{7,11,14,15,19,20,21,22,24\}$	$B_{6}=\{5,6,10,12,16,19,21,22,24\}$
$A_{7}=\{7,9,13,16,17,18,19,21,24\}$	$B_{7}=\{5,7,8,12,14,19,20,23,24\}$
$A_{8}=\{7,8,12,14,15,16,18,21,24\}$	$B_{8}=\{6,8,10,13,18,19,20,23,24\}$
$A_{9}=\{7,9,10,11,13,16,17,23,24\}$	$B_{9}=\{6,8,10,11,15,16,19,21,24\}$
$A_{10}=\{7,9,12,13,15,17,18,22,24\}$	$B_{10}=\{6,10,11,13,14,17,22,23,24\}$
$A_{11}=\{7,8,9,12,13,15,17,22,24\}$	$B_{11}=\{6,7,10,13,16,18,19,20,24\}$
$A_{12}=\{7,8,9,11,12,16,18,23,24\}$	$B_{12}=\{7,10,12,14,17,18,20,23,24\}$
$A_{13}=\{7,9,13,14,16,18,21,22,24\}$	$B_{13}=\{7,10,12,13,14,19,20,23,24\}$
$A_{14}=\{7,8,11,12,14,16,18,21,24\}$	$B_{14}=\{8,9,11,13,16,17,22,23,24\}$
$A_{15}=\{8,10,11,12,14,16,17,23,24\}$	$B_{15}=\{4,6,7,10,14,15,19,21,24\}$
$A_{16}=\{8,12,13,14,16,17,21,23,24\}$	$B_{16}=\{5,7,9,12,17,18,20,23,24\}$
$A_{17}=\{8,10,14,17,19,20,22,23,24\}$	$B_{17}=\{5,6,10,13,14,16,18,23,24\}$
$A_{18}=\{8,11,14,16,17,18,22,23,24\}$	$B_{18}=\{5,8,9,10,13,17,20,22,24\}$
$A_{19}=\{8,10,14,17,19,20,22,23,24\}$	$B_{19}=\{5,7,12,13,15,19,20,23,24\}$
$A_{20}=\{8,12,13,16,19,21,22,23,24\}$	$B_{20}=\{5,6,11,14,16,18,20,23,24\}$
$A_{21}=\{8,9,12,14,16,18,21,23,24\}$	$B_{21}=\{5,6,11,16,19,20,22,23,24\}$
$A_{22}=\{8,9,12,13,14,17,19,21,24\}$	$B_{22}=\{5,6,7,13,16,19,20,22,24\}$
$A_{23}=\{8,9,11,16,17,19,20,23,24\}$	$B_{23}=\{6,8,11,12,13,16,18,22,24\}$
$A_{24}=\{8,9,11,12,13,16,18,22,24\}$	$B_{24}=\{6,7,9,11,14,17,18,23,24\}$
$A_{25}=\{8,9,14,15,17,18,20,22,24\}$	$B_{25}=\{6,7,8,11,14,18,19,22,24\}$
$A_{28}=\{8,9,11,12,14,17,19,23,24\}$	$B_{26}=\{6,7,10,11,13,15,17,23,24\}$
$A_{27}=\{8,10,14,15,17,20,22,23,24\}$	$B_{27}=\{7,9,12,13,15,19,20,23,24\}$
$A_{28}=\{8,9,12,13,16,19,21,22,24\}$	$B_{28}=\{7,9,11,13,16,17,18,23,24\}$
$A_{29}=\{9,10,12,17,18,19,20,23,24\}$	$B_{29}=\{3,7,9,11,12,16,18,21,24\}$
$A_{30}=\{9,10,13,16,18,20,21,22,24\}$	$B_{30}=\{4,6,11,12,15,16,21,22,24\}$
$A_{31}=\{9,11,12,13,16,17,21,23,24\}$	$B_{31}=\{5,7,9,12,14,15,18,23,24\}$
$A_{32}=\{9,12,13,16,18,21,22,23,24\}$	$B_{32}=\{5,6,10,14,16,18,21,23,24\}$
$A_{33}=\{9,10,11,13,15,18,20,21,24\}$	$B_{33}=\{5,6,7,11,12,15,19,22,24\}$
$A_{34}=\{9,11,12,14,16,18,22,23,24\}$	$B_{34}=\{5,6,10,13,14,15,18,21,24\}$
$A_{35}=\{9,12,13,14,17,19,21,23,24\}$	$B_{35}=\{5,6,10,12,13,18,21,22,24\}$
$A_{38}=\{9,10,13,14,16,18,22,23,24\}$	$B_{36}=\{6,7,8,11,13,15,18,21,24\}$
$A_{37}=\{9,10,12,13,17,18,20,22,24\}$	$B_{37}=\{6,8,11,14,17,18,22,23,24\}$
$A_{38}=\{9,10,12,13,15,17,19,23,24\}$	$B_{38}=\{6,7,8,11,14,17,19,23,24\}$
$A_{39}=\{9,10,13,15,17,20,22,23,24\}$	$B_{39}=\{7,8,11,13,16,17,19,23,24\}$

$$
n=54 ; 2-(27 ; 9,11 ; 7)
$$

$A_{1}=\{5,6,10,14,16,18,19,21,26\}$	$B_{1}=\{5,6,7,8,10,12,13,16,22,25,26\}$
$A_{2}=\{5,10,11,15,18,19,22,24,26\}$	$B_{2}=\{6,8,11,12,13,14,16,17,23,24,26\}$
$A_{3}=\{6,8,11,16,17,19,20,21,26\}$	$B_{3}=\{5,9,12,13,15,16,18,20,24,25,26\}$
$A_{4}=\{6,8,9,11,16,17,22,23,26\}$	$B_{4}=\{5,10,11,13,14,15,17,18,22,24,26\}$
$A_{5}=\{6,8,10,12,13,18,22,23,26\}$	$B_{5}=\{6,7,12,13,14,15,17,18,21,24,26\}$
$A_{6}=\{6,10,14,15,16,18,21,24,26\}$	$B_{6}=\{6,9,10,12,17,18,19,22,23,24,26\}$
$A_{7}=\{6,9,11,12,13,15,18,23,26\}$	$B_{7}=\{6,8,12,13,14,17,18,22,24,25,26\}$

TABLE I-Continued

$26\}$	
	$B_{9}=\{7,8,9,10,12,14,15,18,21,25,26\}$
$A_{10}=\{6,7,11,15,17,20,23,24,26\}$	
$A_{11}=\{7,10,11,13,14,15,20,23,26\}$	$B_{11}=\{4,6,11,12,13,17,19,21,22,23,26\}$
$A_{13}=\{7,10,15,17,20,21,22,24,26\}$	$B_{13}=\{5,6,9,10,12,14,15,18,24,25,26\}$
5,26\}	
$A_{16}=\{7,9,14,17,18,20,23,24,26\}$	
$A_{18}=\{7,8,9,14,16,19,22,23,26\}$	$B_{18}=\{7,9,11,12,16,17,18,20,22,23,26\}$
,22,26\}	$B_{19}=\{7,9,11,14,15,16,21,22,23,25,26\}$
$A_{20}=\{8,13,14,15,17,19,23,25,26\}$	
$A_{21}=\{8,9,14,17,19,22,23,24,26\}$	$B_{21}=\{5,9,12,13,15,16,18,20,24,25,26\}$
$A_{22}=\{8,9,14,16,17,19,22,23,26\}$	
$A_{23}=\{8,10,11,16,17,21,23,24,26\}$	$B_{23}=\{5,7,9,10,14,15,16,18,19,22,26\}$
$A_{24}=\{8,10,12,16,17,20,23,24,26\}$	
$A_{25}=\{8,9,13,17,18,20,23,24,26\}$	$B_{25}=\{5,7,9,10,12,13,17,19,20,21,26\}$
\{ $8,12,13,18,19,21,23,25,26\}$	B_{27}
$A_{28}=\{8,9,11,12,15,16,21,24,26\}$	$B_{28}=\{6,8,12,14,17,18,19,22,24,25,26\}$
$\{8,13,14,15,17,20,22,25,26\}$	$B_{30}=\{6,7,8,10,12,15,16,20,22,23,26\}$
\{9,10, 11, 13, 14, 17, 20, 22, 26\}	$B_{31}=\{4,5,6,7,11,13,16,20,21,24,26\}$
\{9, 10, 11, 15, 16, 18, 19, 23, 26\}	$B_{32}=\{4,5,6,8,10,12,17,20,22,23,26\}$
$A_{33}=\{9,11,13,14,16,17,20,25,26\}$	$B_{33}=\{4,6,8,9,10,15,16,18,22,23,26\}$
(9,12	$B_{34}=\{4,5,10,12,13,16,21,22,24,25,26\}$
\{9,11, 12, 14, 18, 20, 21, 25, 26\}	$B_{35}=\{4,8,9,11,12,14,18,19,20,22,26\}$
$A_{36}=\{9,10,11,14,17,18,20,24,26\}$	$B_{36}=\{4,6,7,9,11,12,13,18,22,23,26\}$
$A_{37}=\{9,10,11,14,16,18,20,23,26\}$	$\{5,7,8,12,15,16,20,21,22,23,2$
$A_{38}=\{9,11,13,16,17,20,23,25,26\}$	$\{5,6,11,13,16,20,21,22,24,25,26\}$
$A_{39}=\{9,11,13,14,18,19,20,23,26\}$	$\{5,8,9,10,12,16,18,21,24,25,26\}$
$A_{40}=\{9,11,14,16,17,20,24,25,26\}$	$B_{40}=\{5,7,8,9,11,13,14,18,21,25,26\}$
$A_{41}=\{9,11,12,17,18,21,22,24,26\}$	\{6,8,9,14,15,17,19,21, 22, 25,26\}
$A_{42}=\{9,11,14,17,18,20,21,25,26\}$	$B_{42}=\{6,7,8,10,14,16,19,20,21,24,26\}$
$A_{43}=\{9,12,14,15,18,22,23,24,26\}$	$B_{43}=\{6$,
$A_{44}=\{9,10,11,15,16,19,23,24,26\}$	$B_{44}=\{7,9,10,13,15,16,18,20,22,25$,
$A_{45}=\{10,11,13,14,16,19,21,25,26\}$	$B_{45}=\{4,5,8,12,15,16,17,18,22,24,26\}$
$A_{46}=\{10,12,13,15,16,19,21,25,26\}$	$B_{46}=\{5,6,7,11,14,15,19,21,22,24,26\}$
$A_{47}=\{11,12,13,15,18,20,22,25,26\}$	$B_{47}=\{4,5,7,8,11,15,16,17,21,23,26\}$
\{11	$B_{48}=\{4,5,6,8,10$,

$n=66 ; 2-(33 ; 12,13 ; 9)$

$$
\begin{aligned}
& A_{1}=\{5,8,9,10,11,16,18,20,23,27,28,32\} \\
& B_{1}=\{5,7,11,15,18,23,24,25,26,28,29,31,32\} \\
& A_{2}=\{5,11,12,13,16,17,18,20,21,27,30,32\} \\
& B_{2}=\{5,7,8,9,11,14,15,19,22,27,29,31,32\}
\end{aligned}
$$

TABLE I—Continued

$$
\begin{aligned}
& A_{3}=\{5,7,10,11,15,17,18,21,26,30,31,32\} \\
& B_{3}=\{6,11,12,14,15,16,18,19,21,23,29,30,32\} \\
& A_{4}=\{5,6,8,9,10,11,12,18,23,27,31,32\} \\
& B_{4}=\{6,8,10,13,15,16,19,21,24,25,29,31,32\} \\
& A_{5}=\{5,10,12,17,18,22,24,25,26,27,28,32\} \\
& B_{5}=\{6,7,8,10,11,15,16,19,22,25,28,30,32\} \\
& A_{6}=\{5,9,11,16,19,20,21,23,27,28,29,32\} \\
& B_{6}=\{6,12,13,14,15,17,19,22,25,27,28,31,32\} \\
& A_{7}=\{5,10,14,18,19,20,21,24,26,28,31,32\} \\
& B_{7}=\{7,10,11,12,14,15,20,21,23,27,29,30,32\} \\
& A_{8}=\{5,7,13,14,15,17,18,19,24,28,31,32\} \\
& B_{8}=\{7,11,12,14,18,19,21,23,24,27,29,30,32\} \\
& A_{9}=\{5,6,9,10,11,12,18,19,21,23,27,32\} \\
& B_{9}=\{7,8,11,15,17,21,22,24,25,27,29,30,32\} \\
& A_{10}=\{5,6,8,9,11,13,17,18,21,23,28,32\} \\
& B_{10}=\{8,11,12,13,14,19,20,21,24,27,28,30,32\} \\
& A_{11}=\{5,6,7,10,11,15,17,23,24,25,27,32\} \\
& B_{11}=\{8,10,12,13,17,18,20,21,23,24,27,30,32\} \\
& A_{12}=\{5,6,9,10,11,16,19,23,27,29,31,32\} \\
& B_{12}=\{8,11,13,15,16,17,18,23,24,26,27,30,32\} \\
& A_{13}=\{5,6,10,14,19,21,24,26,29,30,31,32\} \\
& B_{13}=\{9,11,12,13,15,19,20,23,24,26,29,30,32\} \\
& A_{14}=\{6,12,13,17,18,19,21,22,23,29,31,32\} \\
& B_{14}=\{3,7,10,12,15,17,21,24,27,28,29,30,32\} \\
& A_{15}=\{6,7,9,13,14,15,17,19,26,29,31,32\} \\
& B_{15}=\{4,6,10,15,18,19,20,21,24,25,27,28,32\} \\
& A_{3}
\end{aligned}
$$

TABLE I-Continued

```
\(A_{4}=\{5,7,11,12,14,15,18,23,26,28,32\}\)
\(B_{4}=\{6,7,8,12,13,17,19,20,21,22,23,24,27,30,32\}\)
\(A_{5}=\{5,7,10,11,14,17,21,26,30,31,32\}\)
\(B_{5}=\{6,8,9,10,11,12,14,16,17,21,22,24,25,30,32\}\)
\(A_{6}=\{5,11,15,16,17,20,23,24,25,27,32\}\)
\(B_{6}=\{6,8,10,11,12,14,17,21,22,24,25,27,30,31,32\}\)
\(A_{7}=\{5,6,7,10,14,17,20,21,26,30,32\}\)
\(B_{7}=\{8,9,11,13,17,18,19,22,24,25,26,27,29,30,32\}\)
\(A_{8}=\{6,9,11,12,13,18,22,24,29,30,32\}\)
\(B_{8}=\{4,5,9,12,13,16,17,18,19,20,21,23,27,29,32\}\)
\(A_{9}=\{6,13,14,16,17,21,22,23,26,28,32\}\)
\(B_{9}=\{4,7,8,9,10,13,16,20,22,24,27,28,29,30,32\}\)
\(A_{10}=\{6,11,15,17,21,23,24,25,27,28,32\}\)
\(B_{10}=\{4,6,9,11,12,13,14,19,22,23,24,25,28,31,32\}\)
\(A_{11}=\{6,10,13,17,22,23,25,26,27,28,32\}\)
\(B_{11}=\{4,5,9,11,13,17,18,19,20,21,24,27,29,30,32\}\)
\(A_{12}=\{6,10,11,12,16,18,21,27,30,31,32\}\)
\(B_{12}=\{4,5,7,12,15,19,21,22,24,25,26,28,29,30,32\}\)
\(A_{13}=\{6,11,14,16,17,23,24,25,26,28,32\}\)
\(B_{13}=\{4,5,8,10,12,14,17,18,21,22,24,25,26,27,32\}\)
\(A_{14}=\{6,8,9,10,14,15,19,26,27,29,32\}\)
\(B_{14}=\{5,7,9,12,15,16,17,18,19,21,23,24,27,31,32\}\)
\(A_{15}=\{6,8,11,12,16,20,26,27,29,31,32\}\)
\(B_{15}=\{5,7,10,14,15,16,17,18,19,21,24,25,27,31,32\}\)
```


References

1. W. G. Bridges, M. Hall, Jr., and J. L. Hayden, Codes and designs, J. Combin. Theory Ser. A 31 (1981), 155-174.
2. T. Chadifantelis and S. Kounias, Supplementary difference sets and D-optimal designs for $n \equiv 2 \bmod 4$, Discrete Math. 57 (1985), 211-216.
3. T. Chadilpantelis, S. Kounias, and C. Moyssiadis, Construction of D-optimal designs for $n \equiv 2 \bmod 4$ using block-circulant matrices, J. Combin. Theory Ser. A 40 (1985), 125-135.
4. J. H. E. Cohn, On determinants with elements \pm 1, II, Bull. London Math. Soc. 21 (1989), 36-42.
5. J. H. E. Cohn, A D-optimal design of order 102, Discrete Math. 102 (1992), 61-65.
6. H. Ehlich, Determinantenabschätzung für binäre Matrizen, Math. Z. 83 (1964), 123-132.
7. H. Kharaghani, A construction of D-optimal designs for $n \equiv 2 \bmod 4, J$. Combin. Theory Ser. A. 46 (1987), 156-158.
8, C. Koukouvinos, S. Kounias, and J. Seberry, Supplementary difference sets and optimal designs, Discrete Math. 88 (1991), 49-58.
8. T. van Trung, The existence of a symmetric block design with parameters $(41,16,6)$ and (66, 26, 10), J. Combin. Theory Ser. A 33 (1982), 201-204.
9. A. L. Whiteman, A family of D-optimal designs, Ars Combin. 30 (1990), 23-26.
10. C. H. Yang, Some designs for maximal $(+1,-1)$-determinant of order $n \equiv 2(\bmod 4)$, Math. Comp. 20 (1966), 147-148.
11. C. H. Yang, A construction for maximal $(+1,-1)$-matrix of order 54, Bull. Amer. Math. Soc. 72 (1966), 293.
12. C. H. Yang, On designs of maximal $(+1,-1)$-matrices of order $n \equiv 2(\bmod 4)$, Math. Comp. 22 (1968), 174-180.
13. C. H. Yang, On designs of maximal $(+1,-1)$-matrices of order $n \equiv 2(\bmod 4), \mathrm{II}$, Math. Comp. 23 (1969), 201-205.
14. C. H. Yang, Maximal binary matrices and sum of two squares, Math. Comp. 30 (1976), 148-153.
