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In this paper we investigate some algebraic and geometric con-
sequences which arise from an extremal bound on the Hilbert
function of the general hyperplane section of a variety (Green’s
Hyperplane Restriction Theorem). These geometric consequences
improve some results in this direction first given by Green and ex-
tend others by Bigatti, Geramita, and Migliore.
Other applications of our detailed investigation of how the Hilbert
polynomial is written as a sum of binomials, are to conditions that
must be satisfied by a polynomial if it is to be the Hilbert poly-
nomial of a non-degenerate integral subscheme of P

n (a problem
posed by R.P. Stanley). We also give some new restrictions on the
Hilbert function of a zero-dimensional reduced scheme with the
Uniform Position Property.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In his seminal work on Hilbert functions of standard graded algebras, Macaulay [12] discovered the
rule governing the growth of such functions. He expressed that rule in terms of certain expansions of
the values of these functions by binomial numbers. Indeed, part of the genius of Macaulay’s approach
is in the discovery of this uniform approach to the problem of understanding the nature of these
functions.
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After an initial hiatus of a few decades, the depth and value of Macaulay’s approach was again
appreciated. Indeed, in the last half century, the importance of the Hilbert function (and Hilbert poly-
nomial) to the study of algebraic varieties and to commutative rings is hard to overestimate. An
integral part of that appreciation of the importance of the Hilbert function has been accompanied
by several reappraisals of Macaulay’s original proof and significant refinements have been made to
that original argument. Most notable among these are the work of Stanley [18], Green [7], and Gotz-
mann [6].

In fact, Green’s approach to Macaulay’s Theorem included a brand new element—a comparison
between the Hilbert function of a variety and that of its general hyperplane section (see Theorem 2.4
below).

It is well known that the Hilbert function and Hilbert polynomial of an embedded algebraic va-
riety, although being natural algebraic invariants associated to the coordinate ring of the embedded
variety, also carry significant geometric information about the variety—some of the information being
connected to the embedding, like the degree of the variety, while other information is more intrinsic
(i.e., does not depend on the embedding) like the dimension and genus of the variety.

A great deal of research has been conducted with the aim of extracting other such geometric infor-
mation from the Hilbert function and Hilbert polynomial. The papers [1,3,4,6,7,10,14,17] give a small
sample of the kinds of investigations that have been carried out in this direction. The book [11] (es-
pecially Chapter 5) is an excellent “one-stop” view of most of this work, including (new and short)
proofs of both Macaulay’s and Green’s Theorems.

This paper falls into that tradition of trying to understand the geometric consequences of certain
behavior of the Hilbert function. Unlike most earlier investigations in this direction (but present al-
ready in the work of Gotzmann [6], Iarrobino and Kleiman [10], Ahn and Cho [1], and implicitly in
Kreuzer and Robbiano [11, Section 5.5]) we concentrate not only on the values of the Hilbert function
but exactly how those values are expressed by Macaulay’s original considerations.

For example, if X is an irreducible variety in Pn then the number of binomial summands that
(eventually) appear in the Hilbert function of X is an invariant of X (see Definition 2.10) denoted G(X)

and called the Gotzmann number of X. It is not difficult to show that deg X � G(X). We characterize
the varieties X for which this inequality is an equality (see Theorem 3.11). This result follows from
a detailed investigation of precisely when the inequality in Green’s Hyperplane Restriction Theorem
is an equality.

In fact, if we denote by M(X) the least integer such that the inequality in Green’s Theorem is
an equality for all d � M(X) then one easily sees that M(X) � G(X) + 1. We improve this to show
that M(X) � G(X) (see Proposition 3.1) and then go on to show that M(X) = G(X) or M(X) = 1 (see
Proposition 3.6). Connecting this to our earlier geometric discussion we show that if X is a reduced,
equidimensional closed subscheme of Pn then either G(X) = deg(X) or G(X) = M(X).

Continuing with our investigation of Macaulay’s way of writing the Hilbert polynomial of a scheme,
we prove that if X is a non-degenerate reduced equidimensional closed subscheme of Pn of codimen-
sion � 2 then Macaulay’s decomposition of the Hilbert polynomial must satisfy certain properties (see
Theorem 4.7). We use these observations to exhibit new restrictions on the Hilbert function of a set
of points in Pn with the Uniform Position Property (see Theorem 5.5).

The paper is organized in the following way: in Section 2 we recall the essential parts of
Macaulay’s Theorem on the growth of the Hilbert function of a standard graded k-algebra, k a field,
usually infinite. If more conditions on k are required we shall state so at the relevant place. In this
section one finds the definitions of the Gotzmann number and the Gotzmann coefficients. We also
recall Green’s Hyperplane Restriction Theorem in this section. After that we calculate the various
invariants we have introduced in a few special situations.

In Section 3 we investigate the possibility of equality in Green’s Hyperplane Restriction Theorem
and study this condition in detail. This is the technical heart of the paper. We also give a few of our
main consequences of this investigation in this section.

In Section 4 we investigate the nature of the Gotzmann coefficients for reduced equidimensional
closed subschemes of Pn . These are rather delicate invariants and we show that, in the relevant range
(and apart from a completely describable collection of exceptions) these coefficients are never zero.
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This investigation sets us up for the discussion in the final section, Section 5, on the Hilbert func-
tion of points with the Uniform Position Property.

2. Preliminaries

Many of the preliminaries we will discuss in this section are based on the fundamental work of
Macaulay (and subsequently that of G. Gotzmann) which describe the growth of the dimensions of
the homogeneous summands of a standard graded k-algebra.

Recall that if d > 0 and c > 0 are two integers then the d-binomial expansion of c is the unique
expression

c =
(

kd

d

)
+

(
kd−1

d − 1

)
+ · · · +

(
kδ

δ

)
(2.1)

where kd > kd−1 > · · · > kδ � δ > 0.

Example 2.1. The 4-binomial expansion of 27 is

27 =
(

6

4

)
+

(
5

3

)
+

(
2

2

)
+

(
1

1

)
.

An equivalent way to describe the d-binomial expansion of c is to construct what we define to be
the dth Macaulay difference set of c, i.e., the tuple

Md(c) = (
kd − d,kd−1 − (d − 1), . . . ,kδ − δ

)
(where we use the notation of Eq. (2.1) above). Notice that this tuple has the property

kd − d � kd−1 − (d − 1) � · · · � kδ − δ � 0.

Example 2.2. From the example above we have

M4(27) = (2,2,0,0).

We define the length of Md(c) to be the number of entries in Md(c) (e.g., the length of M4(27)

is 4).
If we are given a tuple of d − δ + 1 � d integers, say (ad,ad−1, . . . ,aδ), such that ad � ad−1 � · · · �

aδ � 0 then that tuple is Md(c) for the integer

c =
(

d + ad

d

)
+

(
(d − 1) + ad−1

d − 1

)
+ · · · +

(
δ + aδ

δ

)
.

We will see, in the ensuing sections, that when we construct these multisets for the various values
of the Hilbert function of an algebraic variety X ⊂ Pn then the entries of these multisets will signal
subtle information about geometric properties of X.

A fundamental result of Macaulay highlights the importance of the following functions, which are
defined for every integer d > 0. These functions from N to N are now called Macaulay’s functions. They
are denoted −〈d〉 (and referred to as “upper pointy bracket d”), and are defined as follows: if c > 0 and
the d-binomial expansion of c is as above in Eq. (2.1), then

c〈d〉 :=
(

kd + 1

d + 1

)
+

(
kd−1 + 1

d

)
+ · · · +

(
kδ + 1

δ + 1

)
.



J. Ahn et al. / Journal of Algebra 321 (2009) 2604–2636 2607
Remark 2.3. Notice that the dth Macaulay difference set of c and the (d + 1)st Macaulay difference
set of c〈d〉 are the same.

Another (similar) collection of functions was introduced and exploited by Green [7]. They are de-
noted −〈d〉 (and referred to as “lower pointy bracket d”), and defined by

c〈d〉 :=
(

kd − 1

d

)
+

(
kd−1 − 1

d − 1

)
+ · · · +

(
kδ − 1

δ

)

(where the convention is that
( i

j

) = 0, when i < j). We will call these functions Green’s functions.
Now, if I = ⊕

j�0 I j is a homogeneous ideal of R = k[x0, x1, . . . , xn] (k algebraically closed of char-
acteristic 0), then the graded ring

A =
⊕
j�0

A j =
⊕
j�0

(
R j

I j

)

is a standard graded k-algebra.
The function H(A,−) : N → N defined by

H(A, j) = dimk A j = dimk R j − dimk I j

is called the Hilbert function of the ring A. It is well known that there is a polynomial P (z) ∈ Q[z]
(called the Hilbert polynomial of A) with the property that, for all integers t � 0, H(A, t) = P (t). I.e., the
eventual behavior of the function H(A,−) is that of a polynomial with rational coefficients. Moreover,
the degree of the polynomial P (z) is one less than the Krull dimension of R/I .

If X is a closed subscheme of Pn with defining homogeneous ideal I = IX then we will often use
SX = R/IX , instead of A = R/I , to denote the homogeneous coordinate ring of X. In this case the
function H(A,−) will be denoted either H(SX,−) or simply HX(−), and called the Hilbert function
of X. In like fashion, the Hilbert polynomial of A is usually referred to as the Hilbert polynomial of X.
Since the Hilbert function and Hilbert polynomial of X encode a great deal of interesting geometric
information about X, these objects have long been the subject of intensive study.

The importance of both Macaulay’s and Green’s functions are a consequence of the fact that they
give significant information about Hilbert functions of standard graded k-algebras and hence about
the geometry of projective varieties. We now recall the exact roles of these functions.

Theorem 2.4. (See [7], [11, Chapter 5], [12], [18].) Let I ⊂ R be a homogeneous ideal and let h ∈ R1 be a general
linear form. If we set A = R/I then, for all d � 1 we have the following inequalities:

(a) Macaulay’s Theorem: H(A,d + 1) � H(A,d)〈d〉 .
(b) Green’s Hyperplane Restriction Theorem: H(A/h A,d) � H(A,d)〈d〉 .

In view of Macaulay’s and Green’s Theorems, it is not surprising that we will often be discussing
binomial expansions for various values of the Hilbert function of some graded algebra A = R/I
(often when it is the coordinate ring of a closed subscheme X of Pn , in which case I = IX and
A = SX = R/IX). In this case we want to use some different terminology to describe features of the
binomial expansion.

Definition 2.5. If A is a standard graded k-algebra (or A = SX = R/IX for X a closed subscheme of Pn)
and c = H(A,d) (or c = HX(d)) then we will refer to the length of the dth Macaulay difference set
of c as the dth Gotzmann persistence number of A (or X).

In the former case the dth Gotzmann persistence number will be denoted G(A,d) while in the
latter case it will be denoted G(X,d).
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The number of elements in the multiset Md(H(A,d)) (or Md(HX(d))) which are equal to � will be
called the �th Gotzmann coefficient of H(A,d) (or of HX(d)) and denoted C�(A,d) (or C�(X,d)).

Example 2.6. (a) Let A = k[x0, x1, x2]/(x2
0, x3

1, x4
2). Then H(A,3) = 6 and the 3-binomial expansion of 6

is

6 =
(

4

3

)
+

(
2

2

)
+

(
1

1

)
.

So, the third Macaulay difference set of A is M3(H(A,3)) = (1,0,0). Thus the 3rd Gotzmann persis-
tence number of A is G(A,3) = 3. Furthermore C1(A,3) = 1 and C0(A,3) = 2.

(b) Let X be the rational normal curve in P4. Then HX(3) = 13 and the 3-binomial expansion of 13
is

13 =
(

5

3

)
+

(
3

2

)
.

So, the third Macaulay difference set of X is M3(HX(3)) = (2,1). Thus G(X,3) = 2 is the 3rd Gotz-
mann persistence number of X. The second Gotzmann coefficient of HX(3) is C2(X,3) = 1, while the
first Gotzmann coefficient of HX(3) is C1(X,3) = 1 and the zeroth Gotzmann coefficient of H X (3) is
C0(X,3) = 0.

If, for a ring A and an integer d, we have equality in Macaulay’s Theorem then we say that the
Hilbert function of A has maximal growth in degree d. The following theorem (one of the principal results
of Theorem 3.3 in [1] and proved independently in Section 5.5 in [11]) shows that maximal growth in
degree d is related to equality also in Green’s bound. More precisely:

Theorem 2.7. (See [1,11].) Let I be a homogeneous ideal in R and let A = R/I . Let

H(A,d + 1) =
(

(d + 1) + ad+1

(d + 1)

)
+ · · · +

(
δ + aδ

δ

)
(2.2)

be the (d+1)-binomial expansion of H(A,d+1). Suppose that d � sat(I) (where sat(I) denotes the saturation
degree of I , i.e., the least degree r for which I and Isat agree in all degrees j � r).

Then, the following statements are equivalent:

(a) H(A,d + 1) = H(A,d)〈d〉 .
(b) δ > 1 and H(A/h A,d + 1) = H(A,d + 1)〈d+1〉 for a general linear form h in A1 .

Note that (a) implies (b) is true without the condition d � sat(I). However, the condition “δ > 1”
is needed in Theorem 2.7, as the following corollary shows (see [1]).

Corollary 2.8. Under the hypotheses of Theorem 2.7; if δ = 1 in Eq. (2.2) and H(A/h A,d + 1) =
H(A,d + 1)〈d+1〉 , then

H(A,d)〈d〉 = H(A,d + 1) + a2 − a1 + 1.

Recall that a polynomial p(z) ∈ Q[z] is called a numerical polynomial if p(a) ∈ Z whenever a ∈ Z.
For us, the most important examples of numerical polynomials are

bi(z) =
(

z

i

)
:= z(z − 1) · · · (z − (i − 1))

i! .
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So, b0(z) = 1, b1(z) = z, b2(z) = z(z − 1)/2, . . . . Notice that bd(z) is a polynomial of degree exactly
d and hence the {bi(z) | i = 0,1, . . .} are a vector space basis for Q[z] over Q.

It is a classical theorem that a numerical polynomial p(z), of degree d, can be written

p(z) = αdbd(z) + αd−1bd−1(z) + · · · + α1b1(z) + α0

where the αi are all in Z.
Typical examples of numerical polynomials are the Hilbert polynomials of standard graded

k-algebras and one of the main questions which we will consider in this paper concerns such poly-
nomials. That question is:

Question 2.9. Let X ⊂ Pn be a non-degenerate integral (or sometimes just reduced) scheme with
Hilbert polynomial PX(z) ∈ Q[z]. What can we say about PX(z)?

An important ingredient in trying to answer this question is the concept of maximal growth, which
we defined above. It is not difficult to see (it follows from Macaulay’s Theorem and a good look at
Pascal’s triangle) that: given an ideal I ⊂ R and A = R/I , there is an integer d (which depends on I)
such that for all j � d we have maximal growth in degree j, i.e.,

H(A, j + 1) = H(A, j)〈 j〉.

It follows from Remark 2.3 that for all j � d the jth Macaulay difference set of H(A, j) does not
change.

In view of this last observation, the following definitions all make sense.

Definition 2.10. (a) If I is a homogeneous ideal of R and A = R/I then the eventually constant
Macaulay difference sets for the numbers H(A, t) will be called the Gotzmann difference set of A. Since
the Hilbert polynomial of A, P A(z), eventually always takes on the values of H(A,−), we also refer
to the Gotzmann difference set of A as the Gotzmann difference set of P A(z).

(b) The number of elements in the Gotzmann difference set of A will be called the Gotzmann
number of A and denoted G(A).

(c) The number of times that the integer i appears in the Gotzmann difference set of A will be
denoted Ci(A) and called the ith Gotzmann coefficient of A.

(d) If I = IX is the homogeneous ideal of a closed subscheme X ⊂ Pn then these objects will
be referred to as the Gotzmann difference set of X, the Gotzmann number of X, and the ith Gotzmann
coefficient of X respectively (see Iarrobino and Kleiman [10]). We will write G(X) for the Gotzmann
number of X and Ci(X) for the ith Gotzmann coefficient of X.

Remark 2.11. Let A = R/I be as above and suppose that d is an integer with the property that we
have maximal growth for the Hilbert function of A in degree j for all j � d.

Let H(A,d + 1) be as in Eq. (2.2). Let us suppose (for the moment) that δ = 1 in that expression.
Since we are in the range where H(A,−) has maximal growth, we can write

H(A,d + 2) =
(

d + 2 + ad+1

d + 2

)
+ · · · +

(
δ + 1 + aδ

δ + 1

)

and then rewrite it as

H(A,d + 2) =
(

d + 2 + a′
d+2

d + 2

)
+ · · · +

(
(δ + 1) + a′

δ+1

δ + 1

)
.

But now δ + 1 > 1 and so the condition of Theorem 2.7(b) on “δ” is now satisfied.
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There is another observation we can make when the Hilbert function of A = R/I has maximal
growth in degrees j � d. This observation shows us how to compute P A(z), the Hilbert polynomial
of A, from the Gotzmann difference set of A. To explain this, let c = H(A,d) and write the d-binomial
expansion of c as

c =
(

kd

d

)
+

(
kd−1

d − 1

)
+ · · · +

(
kδ

δ

)
, kd > kd−1 > · · · > kδ > 0.

Now rewrite this, first as

c =
(

d + ad

d

)
+

(
(d − 1) + ad−1

d − 1

)
+ · · · +

(
δ + aδ

δ

)
, ad � ad−1 � · · · � aδ � 0,

and then as

c =
(

d + ad

ad

)
+

(
d − 1 + ad−1

ad−1

)
+ · · · +

(
d − (d − δ) + aδ

aδ

)
.

Since we are assuming we have maximal growth in degree d, we have

H(A,d + 1) =
(

d + 1 + ad

d + 1

)
+

(
d + ad−1

d

)
+ · · · +

(
d − (d − δ) + 1 + aδ

δ + 1

)

which we can rewrite as

H(A,d + 1) =
(

d + 1 + ad

ad

)
+

(
d + ad−1

ad−1

)
+ · · · +

(
d − (d − δ) + 1 + aδ

aδ

)
.

Note that {ad,ad−1, . . . ,aδ} is the dth Macaulay difference set of H(A,d) and also of H(A,d + 1).
But now, consider the numerical polynomials

bad (z + ad), bad−1 (z − 1 + ad−1), . . . , baδ

(
z − (d − δ) + aδ

)
and let

L(z) =
d∑

i=δ

bai

(
z + ai − (d − i)

)
.

Clearly L(d) = c = H(A,d) and L(d + 1) = c〈d〉 = H(A,d + 1). I.e., the polynomial L(z) describes the
value of the Hilbert function in both degrees d and d + 1.

We can obviously continue this argument for as long as the growth of H(A,−) is maximal. So,
given our assumption that we have maximal growth in degree j for all integers j � d, we obtain that
L(z) = P A(z), the Hilbert polynomial of A = R/I .

Notice also that since we have only made a linear changes of variables on the polynomials bai (z),
the polynomial bai (z + ai − (d − i)) is again a polynomial of degree ai .

By standard results about Hilbert polynomials it then follows that if

(ad,ad−1, . . . ,aδ)

is the Gotzmann difference set of the ring A = R/I , then ad is one less than the Krull dimension of A.
In the case where I = IX is the defining ideal of a closed subscheme X of dimension r then ad = r

and all the numbers in the Gotzmann difference set of X are � r. In particular the ith Gotzmann
coefficient of X can be non-zero only if 0 � i � r.
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Since, as we noted above, the polynomials
(z

i

)
, i = 0,1, . . . , are a Z-basis for the free Z-module

of numerical polynomials in Q[z] and since the degree of X is the integer coefficient of the term of
highest degree when PX(z) is written in terms of this basis, it follows that if G = (ad, . . . ,aδ) is the
Gotzmann difference set of X then the degree of X is nothing more than the number of elements
in G equal to r = ad , i.e.,

Cr(X) = deg X. (2.3)

We can use these remarks to observe, for example, that if X is a finite set of s points in Pn then
the Gotzmann difference set of X is {0,0, . . . ,0} where C0(X) = G(X) = s.

Let us look at another example, this time when X is a curve. We know, in this case, that all the
elements in the Gotzmann difference set are either 0 or 1 and that the number of 1’s is the degree
of X.

Example 2.12. (a) Let C be the rational normal curve in P3. Since that curve has degree 3, we know
that the Gotzmann difference set has its first three entries equal to 1 since 3 = deg C = C1(X) is
the 1st Gotzmann coefficient of C . The only question that remains is: what is the 0th Gotzmann
coefficient of C , i.e., what is C0(C)?

Recall that the Hilbert function of the rational normal curve in P3 is given by the sequence

1, 4, 7, 10, 3z + 1, . . .

where the notation gives the first few values of the Hilbert function and then the eventual behavior
of the succeeding terms.

Since

13 =
(

5

4

)
+

(
4

3

)
+

(
3

2

)
+

(
1

1

)

we can easily see that maximal growth begins in degree 4. It follows that the Hilbert polynomial of
the rational normal curve in P3 is

P C (z) = 3z + 1 =
(

z + 1

1

)
+

(
z

1

)
+

(
z − 1

1

)
+

(
z − 3

0

)
.

Thus, the Gotzmann difference set of C is (1,1,1,0) and the 0th Gotzmann coefficient of C is 1.
(b) Now let C be a plane cubic curve in P3. In this case the Hilbert function of C is

1, 3, 6, 9, 3z, . . .

and so the Hilbert polynomial of C is P C (z) = 3z. It follows that the Gotzmann difference set of C is
(1,1,1) and so the 1st Gotzmann coefficient of C is 3 but C0(C) = 0.

As one can see from these considerations about maximal growth, it is important to know when
we can be sure that maximal growth persists. In [17] Presser made the following definition:

Definition 2.13. Let I be a homogeneous ideal of R and let A = R/I . The persistence index of A is the
least integer d such that the Hilbert function of A has maximal growth in all degrees � d.

There are some very interesting characterizations of the persistence index, which we summarize
in the following theorem.
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Theorem 2.14. Let I ⊂ R be a homogeneous ideal and let A = R/I . Then

(a) the persistence index of A is the maximum degree of a minimal generator for the lex-segment ideal J with
the property that B = R/ J has the same Hilbert function as A;

(b) if I is a saturated ideal, the persistence index of A is G(A), the Gotzmann number of A;
(c) if X ⊂ Pn is a closed subscheme and HX its Hilbert function, then the least integer d for which

HX( j)〈 j〉 = HX( j + 1) for all j � d

is d = G(X), the Gotzmann number of X.

Observe that (c) is an immediate consequence of (b) and both (a) and (b) are proved in [1]
and [11].

We saw earlier that if there is maximal growth in the Hilbert function of A for all t � d then
the Macaulay difference set of H(A,d) determines the Hilbert polynomial, P A(z), and, moreover,
H(A, t) = P A(t) for all t � d. This last condition is strongly connected with the notion of Castelnuovo–
Mumford regularity, which we now recall.

Let M be a finitely generated graded R-module and let

0 → En → ·· · → E1 → E0 → M → 0

be a minimal graded free resolution of M , where

E p =
⊕

j

R(− j)βp, j .

We call βp, j the pth Betti number of degree j. We say that M is �-regular if, whenever βp, j 
= 0 we
have j − p � �. The Castelnuovo–Mumford regularity of M (or simply the regularity of M) is the least
integer � so that M is �-regular. We will write reg(M) = �.

One of the more useful (for us) properties of the regularity of a saturated ideal I in the polynomial
ring R is the following:

Theorem 2.15. Let I be a saturated ideal in the polynomial ring R. If H(R/I,−) and P (R/I,−) are the Hilbert
function and polynomial, respectively, of R/I then

H(R/I,d) = P (R/I,d) for all d � reg(I) − 1. (2.4)

There is a wonderful theorem of G. Gotzmann which relates the regularity of the defining ideal of
a closed subscheme X ⊂ Pn to what we have discussed above. More precisely

Theorem 2.16 (Gotzmann’s Regularity Theorem). Let X be a closed subscheme of Pn with defining ideal IX .
If G(X) is the Gotzmann number of X then IX is G(X)-regular.

Remark 2.17. Although we obtain equality between the Hilbert function and the Hilbert polynomial
for all d � reg(I) − 1, this does not force the Gotzmann number to be � reg(I) − 1. Indeed, for the
rational normal curve in P3 we see that its defining ideal has regularity 1 but the Gotzmann number
of the rational normal curve in P3 is 4.

We also need to recall how the Gotzmann number and ith Gotzmann coefficients change when we
pass from a variety X ⊂ Pn to its general hyperplane section in Pn−1.
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Remark 2.18. Let X be a closed subscheme of Pn defined by the ideal I = IX and let H be a general
hyperplane of Pn defined by the general linear form L. Since IX is a saturated ideal, multiplication
by L is an injective linear transformation on the homogeneous pieces of the coordinate ring of X. It
follows that, for large degrees d,

PX∩H(d) = PX(d) − PX(d − 1) := �PX(d).

On the other hand, for large degrees the growth of the Hilbert function is the maximum permit-
ted by Macaulay’s Theorem. Thus by Theorem 2.7(b) (and noting that δ > 1 for d large enough—see
Remark 2.11) we obtain that

PX∩H(d) = PX(d)〈d〉. (2.5)

It follows that

PX∩H(d) = �PX(d) = PX(d)〈d〉, for all d � 0. (2.6)

We obtain the following easy consequences of these observations (see e.g., [1]).

Theorem 2.19. Let X ⊂ Pn be a closed subscheme of dimension r > 0 and H a general hyperplane of X then

(a) Ci(X) = Ci−1(X ∩ H)

as long as i − 1 � 0;
(b) G(X) − G(X ∩ H) = C0(X).

Remark 2.20. Of course one can continue this line of argument for successive hyperplane sections.
One no longer necessarily has that the ideal under consideration is saturated, but that is not really
important since our interest is only in the multiplication map by a general linear form in high degrees.
That multiplication, in high degrees, is injective as long as the ideal we are considering does not have
radical equal to the irrelevant ideal of R . That was really the only thing we used in the discussion
above. So, let Λi be a general linear variety of dimension n − i. We define

Gi(X) := G(X ∩ Λi).

It follows from our remarks above, that

Ci(X) = C0(X ∩ Λi)

and, if we set Gr+1(X) = 0 (recall r = dim X) we obtain, for i = 0,1, . . . , r,

Ci(X) = Gi(X) − Gi+1(X).

It follows that

deg(X) � Gr(X) � Gr−1(X) � · · · � G0(X) = G(X). (2.7)

Moreover, by Eq. (2.3) and the remark above, we have

deg(X) = Gr(X) = Cr(X).

In the case of varieties of low dimension we can reinterpret some of these results in terms of
things already known and defined. For example, it is easy to prove the following result.
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Theorem 2.21. (See [1, Theorem 4.7].) Let X be a closed subscheme in Pn of dimension r and let pa(X) be the
arithmetic genus of X. If we let Gi denote Gi(X) for 0 � i � r + 1. Then:

(a) If X is a zero-dimensional scheme in Pn, G(X) = C0(X) = deg(X).
(b) If X is a projective curve in Pn then,

C0(X) =
(

deg(X) − 1

2

)
− pa(X).

(c) If r = dim(X) � 2 then

C0(X) = (−1)r+1
[(

Gr − 1

r + 1

)
− pa(X)

]
−

r−1∑
s=1

(−1)s
[(

Gs − 1

s + 1

)
−

(
Gs+1 − 1

s + 1

)]
.

We will finish this section of preliminaries by recalling a property that certain sets of points in Pn

might enjoy.

Definition 2.22. Let X be a set of s distinct points in Pn . We say that X has the uniform position prop-
erty (abbreviated UPP) if for every integer d � s, every d subset of X has the same Hilbert function.

The importance of this notion comes from the fact that if X is a non-degenerate irreducible closed
subvariety of dimension d and degree s in Pn(k) (k algebraically closed of characteristic 0) then the
points obtained from X by successively cutting X with d general hyperplanes gives us a set of s points
in Pn−d with UPP (Eisenbud and Harris [4]). It is a long outstanding problem to characterize the
Hilbert functions of set of points with UPP. A complete characterization is only known for points
in P2 (see Maggioni and Ragusa [13], Geramita and Migliore [5]).

3. Extremal behavior in the Hyperplane Restriction Theorem

In this section we define a new numerical invariant, M(X) (derived from Green’s Hyperplane Re-
striction Theorem (Theorem 2.4(b))) for any closed subscheme X of Pn . Lemma 3.3 is the key to the
main results of this section. Using it we can prove Theorem 3.10, a slight generalization of Theorem 4
in [7], and Theorem 3.11. The latter gives a necessary and sufficient condition for a scheme X to
satisfy G(X) = deg(X).

Let X be a closed subscheme in Pn with homogeneous saturated ideal IX and set SX := R/IX .
Then, by Theorem 2.4,

H(SX/hSX,d) � H(SX,d)〈d〉, (3.1)

for a general linear form h in R and for all d � 1. By analogy with the notion of the Persistence Index,
we define the numerical invariant M(X) to be the minimum degree where the equality begins to
persist in Eq. (3.1), that is

M(X) = min
{

d
∣∣ H(SX/hSX, t) = H(SX, t)〈t〉 for all t � d

}
.

Since IX is a saturated ideal, we have the following equality for any general linear form h:

�HX(d) = H(SX/hSX,d), ∀d � 1.

Hence, by Eq. (3.1),

�HX(d) = H(SX/hSX,d) � H(SX,d)〈d〉 = HX(d)〈d〉, i.e., �HX(d) � HX(d)〈d〉 (3.2)
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for such d, and thus, by Eq. (3.2), we can rewrite M(X) as

M(X) = min
{

d
∣∣ H(SX/hSX, t) = H(SX, t)〈t〉, ∀t � d

}
= min

{
d

∣∣ �HX(t) = HX(t)〈t〉, ∀t � d
}
. (3.3)

Recall that by Theorem 2.14

G(X) = min
{

d
∣∣ HX(t + 1) = HX(t)〈t〉, ∀t � d

}
.

So, applying Theorem 2.7(b), for every t � G(X), we get

H(SX/hSX, t + 1) = H(R/IX, t + 1)〈t+1〉
‖ ‖

�HX(t + 1) = HX(t + 1)〈t+1〉.

In other words, M(X) � G(X) + 1. We can, however, improve this inequality.

Proposition 3.1. Let X be a closed subscheme in Pn. Then

M(X) � G(X).

Proof. It suffices to show, by Eq. (3.3), that for g = G(X)

�HX(g) = HX(g)〈g〉.

Let (as,as−1, . . . ,aδ) be the Gotzmann difference set of the Hilbert polynomial PX . Then

PX(d) =
(

as + d

d

)
+

(
as−1 + (d − 1)

d − 1

)
+ · · · +

(
aδ + (d − s + 1)

d − s + 1

)
.

Then, by Theorem 2.14 (see also Theorem 2.6(ii) in [1]), we have s−δ+1 = g , and thus IX is g-regular
by Gotzmann’s Regularity Theorem 2.16.

Note that HX(d) = PX(d) for any d � g − 1 (Theorem 2.15, or see also Lemma 2.5(iii) in [1]). Hence
we have

�HX(g) = �PX(g), and

HX(g)〈g〉 = PX(g)〈g〉.

Now, it is enough to show that

�PX(g) = PX(g)〈g〉.

Recall Pascal’s identity
(ai+i−1

i−1

) + (ai+i−1
i

) = (ai+i
i

)
.

Let C0(X) = c0 � 0 and consider

PX(z) =
(

as + z

as

)
+ · · · +

(
ac0+δ + z − (s − δ − c0)

ac0+δ

)
+ c0.

Since s − δ + 1 = g , we see that
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PX(g) =
(

as + g

as

)
+ · · · +

(
ac0+δ + g − (s − δ − c0)

ac0+δ

)
+ c0

=
(

as + g

as

)
+ · · · +

(
ac0+δ + c0 + 1

ac0+δ

)
+ c0 and

PX(g − 1) =
(

as + g − 1

as

)
+ · · · +

(
ac0+δ + g − 1 − (s − δ − c0)

ac0+δ

)
+ c0

=
(

as + g − 1

as

)
+ · · · +

(
ac0+δ + c0

ac0+δ

)
+ c0

where ac0+δ � 1. Applying Pascal’s identity again,

�PX(g) =
(

as + g − 1

as − 1

)
+ · · · +

(
ac0+δ + c0

ac0+δ − 1

)

= PX(g)〈g〉

as we wanted. �
Lemma 3.2. Let X be as above. Then

�HX(d) − (
�HX(d)

)
〈d〉 � �HX(d − 1) � HX(d − 1)〈d−1〉

for every integer d � 1.

Proof. Since the second inequality is always true (see Theorem 2.4(b)), it is enough to verify the first
inequality.

Let J = (L1, L2) be the ideal generated by any two general linear forms in R = k[x1, . . . , xn] and let
K = IX + (L1). Then, multiplication by L2 gives the exact sequence

0 → (
(K : L2)/K

)
d−1 → (R/K )d−1

×L2−−−→ (R/K )d → (
R/(IX + J )

)
d → 0.

Since R/K is the coordinate ring of the general hyperplane section of X and its Hilbert function is
�H(X,−), we have (by taking the alternating sum of the dimensions of the graded pieces of this
exact sequence)

�HX(d) − �HX(d − 1) = H(R/K ,d) − H(R/K ,d − 1)

= H
(

R/(IX + J ),d
) − dimk

(
(K : L2)/K

)
d−1

� H
(

R/(IX + J ),d
)

= H
(

R/
(

K + (L2)
)
,d

)
� H(R/K ,d)〈d〉

= (
�HX(d)

)
〈d〉,

i.e.,

�HX(d) − (
�HX(d)

)
〈d〉 � �HX(d − 1),

which proves the first inequality and thus finishes the proof of the lemma. �
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The following lemma is the pivotal result of this section.

Lemma 3.3. Suppose that �HX(d) = HX(d)〈d〉 and C0(X,d) = 0. Then,

�HX(d − 1) = HX(d − 1)〈d−1〉 and C0(X,d − 1) = 0.

Proof. Let IX ⊂ S = k[x0, . . . , xn] and write SX = S/IX . We first write the dth binomial expansion
of HX(d):

HX(d) =
(

ad + d

d

)
+

(
ad−1 + (d − 1)

d − 1

)
+ · · · +

(
aδ + δ

δ

)

with ad � ad−1 � · · · � aδ � 1 and δ � 1. Note that aδ � 1 since we are assuming that C0(X,d) = 0.
First we will prove that C0(X,d − 1) = 0. We divide this argument into two cases: δ > 1 and δ = 1.
Now assume δ > 1. With the notation as above and with the hypothesis that �HX(d) = HX(d)〈d〉

(which we can rewrite as H(SX/hSX,d) = H(SX,d)〈d〉) Theorem 2.7 gives us

HX(d) = HX(d − 1)〈d−1〉,

i.e.,

HX(d − 1) =
(

ad + (d − 1)

d − 1

)
+ · · · +

(
aδ + (δ − 1)

δ − 1

)
. (3.4)

Moreover, since aδ � 1, we have C0(X,d − 1) = 0 in Eq. (3.4), as we wanted to prove.
Now assume δ = 1. Then, by Corollary 2.8 we have

HX(d − 1)〈d−1〉 = HX(d) + a2 − a1 + 1

=
(

ad + d

d

)
+

(
ad−1 + (d − 1)

d − 1

)
+ · · · +

(
a2 + 2

2

)
+

(
a1 + 1

1

)
+ a2 − a1 + 1

=
(

ad + d

d

)
+

(
ad−1 + (d − 1)

d − 1

)
+ · · · +

(
a2 + 2

2

)
+

(
a2 + 2

1

)
.

Note that since we are assuming that C0(X,d) = 0, we get that a2 = α � 1. Let β = max{� | a� =
a2 = α}. Then β � 2 and

HX(d − 1)〈d−1〉 =
(

ad + d

d

)
+ · · · +

(
aβ+1 + β + 1

β + 1

)
+

(
α + β

β

)
+ · · · +

(
α + 2

2

)
+

(
α + 2

1

)

which, by repeated use of the identities in Pascal’s triangle, gives

=
(

ad + d

d

)
+ · · · +

(
aβ+1 + β + 1

β + 1

)
+

(
(α + 1) + β

β

)
.

This last equation is precisely the d-binomial expansion of HX(d − 1)〈d−1〉 , and so we deduce that

HX(d − 1) =
(

ad + d − 1

d − 1

)
+ · · · +

(
aβ+1 + β

β

)
+

(
α + 1 + (β − 1)

(β − 1)

)
, (3.5)

and hence C0(X,d − 1) = 0.
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That completes the proof that C0(X,d − 1) = 0 and so all that remains to prove is that

�HX(d − 1) = HX(d − 1)〈d−1〉. (3.6)

We already have, from Lemma 3.2 that

�HX(d − 1) � HX(d − 1)〈d−1〉

so it remains only to show the reverse inequality.
Suppose we could show that

HX(d − 1)〈d−1〉 = HX(d)〈d〉 − (
HX(d)〈d〉

)
〈d〉 (3.7)

then

HX(d − 1)〈d−1〉 = HX(d)〈d〉 − (
HX(d)〈d〉

)
〈d〉

= �HX(d) − (
�HX(d)

)
〈d〉

(
since �HX(d) = HX(d)〈d〉

)
� �HX(d − 1) (by Lemma 3.2).

That would establish Eq. (3.6) and we would be done.
It remains to show that Eq. (3.7) is true.
From Eqs. (3.4) (covering the case when δ > 1) and (3.5) (covering the case when δ = 1), we have

that

HX(d − 1)〈d−1〉 =
{(ad+d−2

d−1

) + · · · + (aβ+1+β−1
β

) + (α+β−1
β−1

)
, if δ = 1,(ad+d−2

d−1

) + · · · + (aδ+δ−2
δ−1

)
, if δ > 1.

(3.8)

Now, we compute

HX(d)〈d〉 − (
HX(d)〈d〉

)
〈d〉.

Assume δ = 1 and let a2 = α � 1 and β = max{� | a� = a2 = α} as above. Note that
(a1

1

)− (a1−1
1

) = 1
for a1 � 1. Then we have

HX(d)〈d〉 − (
HX(d)〈d〉

)
〈d〉

=
[(

ad + d − 1

d

)
+ · · · +

(
aβ+1 + β

β + 1

)
+

(
α + β − 1

β

)
+ · · · +

(
α + 1

2

)
+

(
a1

1

)]

−
[(

ad + d − 2

d

)
+ · · · +

(
aβ+1 + β − 1

β + 1

)
+

(
α + β − 2

β

)
+ · · · +

(
α

2

)
+

(
a1 − 1

1

)]

=
(

ad + d − 2

d − 1

)
+ · · · +

(
aβ+1 + β − 1

β

)
+

(
α + β − 2

β − 1

)
+ · · · +

(
α

1

)
+ 1

=
(

ad + d − 2

d − 1

)
+ · · · +

(
aβ+1 + β − 1

β

)
+

(
α + β − 1

β − 1

)
. (3.9)

This last (by Eq. (3.8) for δ = 1) is = HX(d − 1)〈d−1〉 , and we are done in this case.
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Now assume δ > 1. Then we have

HX(d)〈d〉 − (
HX(d)〈d〉

)
〈d〉

=
[(

ad + d − 1

d

)
+ · · · +

(
aδ + δ − 1

δ

)]
−

[(
ad + d − 2

d

)
+ · · · +

(
aδ + δ − 2

δ

)]

=
(

ad + d − 2

d − 1

)
+ · · · +

(
aδ + δ − 2

δ − 1

)
. (3.10)

This last (by Eq. (3.7) for δ > 1) = HX(d − 1)〈d−1〉 .
This finishes the proof that Eq. (3.7) is always true and finishes the proof of the lemma. �

Remark 3.4. The lemmata above establish the following strange sounding result: suppose there exists
a positive integer d such that �HX(d) = HX(d)〈d〉 and C0(X,d) = 0. Then we have

�HX(�) = HX(�)〈�〉, and C0(X, �) = 0 for any � � d.

I.e., for every � � d, H(X, �) is determined by H(X,d) using Theorem 2.7 and Corollary 2.8. We will
use this several times in the sequel.

Our first use for Lemma 3.3 comes out of a reflection about Proposition 3.1, which asserted that
M(X) � G(X). This inequality raises the following natural question:

Question 3.5. What does M(X) 
= G(X) mean? I.e., what is the significance of M(X) < G(X)?

Using Lemma 3.3, we obtain the following surprising result.

Proposition 3.6. Let X be a closed subscheme of Pn: if M(X) < G(X) then M(X) = 1.

Proof. Suppose that M(X) < G(X) and write G(X) = t + 1.
Recall that

G(X) = min
{

d
∣∣ HX(n + 1) = HX(n)〈n〉, ∀n � d

}
, and

M(X) = min
{

d
∣∣ �HX(n) = HX(n)〈n〉, ∀n � d

}
.

In view of Theorem 2.14 (see also Lemma 2.5 in [1]) we obtain

HX(t + 1) = PX(t + 1).

Since M(X) < G(X) it follows that

�HX(t) = HX(t)〈t〉.

If we knew that C0(X, t) = 0 we could apply Lemma 3.3 and Remark 3.4 to conclude that M(X) = 1.
We now seek to show exactly that.

Now, it also follows from M(X) < G(X) that

�HX(t + 1) = HX(t + 1)〈t+1〉.

So, let the (t + 1)st binomial expansion of HX(t + 1) have the form:
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HX(t + 1) = PX(t + 1)

=
(

at+1 + t + 1

t + 1

)
+ · · · +

(
aδ + δ

δ

)
. (3.11)

If δ > 1, then, by Theorem 3.3 in [1], we have

HX(t + 1) = HX(t)〈t〉,

i.e., G(X) � t , a contradiction.
Hence we must have δ = 1, and so we can rewrite Eq. (3.11) as

HX(t + 1) = PX(t + 1)

=
(

at+1 + t + 1

t + 1

)
+ · · · +

(
a1 + 1

1

)
.

Let a2 = α � 0 and β = max{� | a� = a2 = α}. Then, by Corollary 2.8

HX(t)〈t〉 = HX(t + 1) + a2 − a1 + 1

=
(

at + t + 1

t + 1

)
+ · · · +

(
aβ+1 + β + 1

β + 1

)

+
(
α + β

β

)
+ · · · +

(
α + 2

2

)
+

(
a1 + 1

1

)
+ α − a1 + 1

=
(

at + t + 1

t + 1

)
+ · · · +

(
aβ+1 + β + 1

β + 1

)

+
(
α + β

β

)
+ · · · +

(
α + 2

2

)
+

(
α + 2

1

)

=
(

at + t + 1

t + 1

)
+ · · · +

(
aβ+1 + β + 1

β + 1

)
+

(
(α + 1) + β

β

)
.

Hence,

HX(t) =
(

at+1 + t

t

)
+ · · · +

(
aβ+1 + β

β

)
+

(
(α + 1) + (β − 1)

(β − 1)

)
. (3.12)

Since α + 1 > 0 we get that C0(X, t) = 0 and hence M(X) = 1, as we wished. �
From Proposition 3.6 one sees that it is important to understand the situation when M(X) = 1. In

case X is a reduced and equidimensional subscheme of Pn we will obtain a complete description for
when M(X) = 1 occurs (see Corollary 4.6).

What is required for that characterization is an understanding of when equality occurs between
two other invariants of X, namely G(X) and deg(X). By definition (see also Eq. (2.3)) we always have
G(X) � deg(X), so a natural question is: when is G(X) = deg(X)?

The following examples are instructive.

Example 3.7. (a) Let X be a finite set of points in Pn such that |X| = d > 1. It can be easily verified,
using Lemma 3.3 and Proposition 3.6, that the following are equivalent:

(a) the points of X are collinear;
(b) d = G(X) and 1 = M(X).
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In fact, if the points of X are collinear and |X| = d, then we have

HX(t) =
{(t+1

t

) = t + 1, for t = 0,1, . . . ,d − 1,

d, for t � d,

i.e.,

G(X) = d 
= 1 = M(X)

(in view of Lemma 3.3, Remark 3.4 and Proposition 3.6).
Conversely, assume G(X) 
= M(X). Then M(X) = 1 and since |X| = d, we have that

HX(t) = d, ∀t � d − 1.

Moreover, since HX(d − 1)〈d−1〉 = ( d
d−1

)
〈d−1〉 = 1, we have that

1 = HX(d − 1)〈d−1〉

= �HX(d − 1)
(
since M(X) = 1

)
= HX(d − 1) − HX(d − 2)

= d − HX(d − 2),

and so

HX(d − 2) = d − 1.

By continuing this process with Lemma 3.3 and Remark 3.4, we see that

HX(t) = t + 1, ∀t � d − 1,

which means that the points of X are collinear, as we desired.
(b) Let X be a closed subscheme in Pn where dim X = r. Recall that

G0(X) := G(X) and Gi(X) := G(X ∩ Λi)

where Λi is a general linear subspace of dimension r − i for i = 1, . . . , r.
For a curve X in Pn , it is well known that X is a plane curve of degree d if and only if the

arithmetic genus of X, pa(X), is pa(X) = (d−1
2

)
. Indeed, note that, by Theorem 2.21,

C0(X) =
(

d − 1

2

)
− pa(X).

If we assume C0(X) = 0 we conclude that X is a plane curve, and so

G(X) = C0(X) + C1(X) = C1(X) = deg(X)
(
because C0(X) = 0

)
.

It follows that

C0(X) = 0 ⇔ G(X) = deg(X)

⇔ X is a plane curve.
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Remark 3.8. Notice that d points on a line of Pn (n � 2) and a plane curve in Pn (n � 3) are special
degenerate varieties defined by an appropriate collection of linearly independent linear forms and
a form of degree d, i.e., IX is a very special kind of complete intersection variety, namely a hypersurface
in a proper linear subspace of Pn . Our next goal is to show that the examples above are indicative. Such
varieties are characterized by the equality G(X) = deg(X).

We begin our investigation of this equality between G(X) and deg(X) by recalling a lovely result
of Green in [7].

Proposition 3.9. (See [7, Theorem 3].) Let X be a closed subscheme of Pn.

(i) If

HX(d) =
(

r + d

d

)
and �HX(d) =

(
(r − 1) + d

d

)

for some d � 1 and r � 1, then

(IX)d = (IΛ)d

for some r-dimensional linear space Λ in Pn.
(ii) If there are integers d � � � 0 such that

HX(d) =
(

1 + d

d

)
+ · · · +

(
1 + (d − � + 1)

(d − � + 1)

)

and

� = �HX(d) = HX(d)〈d〉

then

(IX)d = (IC )d,

where C is a plane curve of degree �.

We now generalize Proposition 3.9 using Lemma 3.3.

Theorem 3.10. Let X be a closed subscheme of Pn. If there are integers d, �, r, where 1 � � � d and r � 1 for
which

HX(d) =
(

r + d

d

)
+ · · · +

(
r + (d − � + 1)

(d − � + 1)

)

and

�HX(d) = HX(d)〈d〉

then

(IX)d = (I FΛ)d
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where FΛ is a hypersurface of degree � in some (r + 1)-dimensional linear subspace Λ of Pn. In other words,
there exist linear forms L1, . . . , Ln−(r+1) and a homogeneous form F of degree � such that

(IX)d = (L1, . . . , Ln−(r+1), F )d.

Proof. If r = 1, this is precisely Proposition 3.9.
Now suppose r � 2. If d > �, then, by Theorem 2.7, we have

HX(d) = HX(d − 1)〈d−1〉.

Using the description of the d-binomial expansion of HX(d) given in the statement of the theorem,
we thus deduce that

HX(d − 1) =
(

r + (d − 1)

(d − 1)

)
+ · · · +

(
r + (d − �)

(d − �)

)

which we rewrite as

=
[(

r + (d − 1)

(d − 1)

)
+ · · · +

(
r + (d − �)

(d − �)

)
+

(
r + (d − �)

d − � − 1

)]
−

(
r + (d − �)

d − � − 1

)

=
(

(r + 1) + (d − 1)

(d − 1)

)
−

(
(r + 1) + (d − � − 1)

(d − � − 1)

)
.

In exactly the same way we find

HX(d) =
(

(r + 1) + d

d

)
−

(
(r + 1) + (d − �)

(d − �)

)
.

Notice that both HX(d − 1) and H X (d) are the values of the Hilbert function of an ideal of the
form I = (F , L1, . . . , Ln−(r+1)) (where the forms F , L1, . . . , Ln−(r+1) are a regular sequence) in degrees
d − 1 and d. Thus, by Corollary 3.2 in [3], we obtain that (IX)d is the degree d component of the
saturated ideal of a hypersurface of degree � inside a linear subspace Λ ∼= Pr+1 of Pn .

Now assume d = �, then by Corollary 2.8 (since a2 = a1 = r), we get

HX(d − 1)〈d−1〉 = HX(d) + 1

=
(

r + d

d

)
+ · · · +

(
r + 2

2

)
+

(
r + 1

1

)
+ 1

=
(

r + d

d

)
+ · · · +

(
r + 2

2

)
+

(
r + 2

1

)

=
(

(r + 1) + d

d

)
,

and thus

HX(d − 1) =
(

(r + 1) + (d − 1)

(d − 1)

)
. (3.13)

This implies that C0(X,d − 1) = 0.
Moreover, one of our assumptions is that

�HX(d) = HX(d)〈d〉,
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and so, by Lemma 3.3 and Eq. (3.13), we have

�HX(d − 1) = HX(d − 1)〈d−1〉 =
(

r + (d − 1)

(d − 1)

)
. (3.14)

Hence, using Proposition 3.9 with Eqs. (3.13) and (3.14), we obtain an (r + 1)-dimensional linear
subspace Λ of Pn such that

(IX)d−1 = (IΛ)d−1. (3.15)

Since the Hilbert function of Λ has maximal growth in degree d − 1, we have that

HΛ(d) − HX(d) = HΛ(d − 1)〈d−1〉 − HX(d)

= HX(d − 1)〈d−1〉 − HX(d)
(
in view of Eq. (3.15)

)
=

(
(r + 1) + d

d

)
− HX(d)

(
by Eq. (3.13)

)

=
(

(r + 1) + d

d

)
−

[(
r + d

d

)
+ · · · +

(
r + 2

2

)
+

(
r + 1

1

)]

= 1,

and hence IX has one new generator in degree d = �. This means that there exists a hypersurface FΛ

of degree � in Λ such that (IX)d = (I FΛ)d , in the coordinate ring of Λ, as we wished. �
We now generalize the examples in Example 3.7 as promised. Those examples are now seen to be

a special case of the following theorem.

Theorem 3.11. Let X be a closed subscheme of Pn such that dim(X) = r and deg(X) = d. Then the following
are equivalent:

(a) G(X) = deg(X) = d;
(b) X is a hypersurface FΛ of degree d in some (r + 1)-dimensional linear subspace Λ of Pn;
(c) for a general linear space Λi of dimension n − i in Pn and for 0 � i � r − 1,

pa(X ∩ Λi) =
(

d − 1

r − i + 1

)
.

Proof. (a) ⇒ (b) Note that if G(X) = deg(X), then

G(X) = Cr(X) + Cr−1(X) + · · · + C1(X) + C0(X)

= deg(X) + Cr−1(X) + · · · + C1(X) + C0(X)
(
using Corollary 4.4 of [1]

)
= deg(X)

= d,

i.e., we have that

Cr(X) = d and Cr−1(X) = · · · = C1(X) = C0(X) = 0.
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Hence we see that

PX(z) =
(

r + z

z

)
+ · · · +

(
r + (z − d + 1)

(z − d + 1)

)
. (3.16)

By Theorem 3.10, (IX)d = (I FΛ)d for a hypersurface FΛ of degree d in some (r + 1)-dimensional linear
subspace Λ of Pn . Since IX is d-regular by Gotzmann’s Regularity Theorem, that is, (IX)t = (I FΛ)t for
every t � d, IX has to be an ideal of FΛ .

(b) ⇒ (a) This is immediate since the Hilbert polynomial of a hypersurface of degree d in some
(r + 1)-dimensional linear space of Pn is of the form:

PX(z) =
(

r + z

z

)
+ · · · +

(
r + (z − d + 1)

(z − d + 1)

)
.

(a) ⇒ (c) Recall that for a general linear space Λi of dimension n − i in Pn

Gi(X) := G(X ∩ Λi),

Ci(X) := C0(X ∩ Λi)

for every i = 1, . . . , r. If we apply Eqs. (2.5) and (3.16) inductively, we see that

PX∩Λi (z) =
(

(r − i) + z

z

)
+ · · · +

(
(r − i) + (z − d + 1)

(z − d + 1)

)

for every i = 1, . . . , r, and thus

C0(X) = C1(X) = · · · = Cr−1(X) = 0, and

G(X) = G1(X) = · · · = Gr−1(X) = deg(X) = d.

Hence, by Theorem 2.21, it is obvious that

pa(X ∩ Λi) =
(

d − 1

r − i + 1

)

for 0 � i � r − 1.
(c) ⇒ (a) We will show this by induction on dim(X) = r. If r = 1, then i = 0, and so

pa(X) =
(

d − 1

2

)
.

Thus X is a plane curve, and hence G(X) = deg(X) = d (see Example 3.7(b)).
Now suppose r > 1. Let Y be a general hyperplane section of X. Then, dim(Y) = r − 1 and Y sat-

isfies the given condition. Thus, by induction on r, we have that G(Y) = deg(Y) = d. It follows from
Theorem 2.19(b) and Remark 2.20 that

Gi(Y) = Gi+1(X)

for 0 � i � r − 1. Moreover, since Gi(Y) = G(Y) = deg(Y) = d by induction on r, we see that

Gi+1(X) = Gi(Y) = d
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for 0 � i � r − 1. Therefore, by Theorem 2.21(c) with the condition pa(X) = (d−1
r+1

)
, we have

C0(X) = 0,

i.e.,

G(X) = G(Y) + C0(X)
(
see Theorem 2.19(b)

)
= G(Y)

= deg(X),

as we desired. �
4. Gotzmann coefficients of reduced equidimensional schemes

In this section, we prove that if X is a reduced equidimensional scheme (or integral scheme)
of dimension r in Pn which is not a hypersurface in some proper linear subspace, then M(X) is
equal to G(X). (As a consequence we get a characterization of when M(X) = 1.) Using this result, we
can also prove Theorem 4.7 and Corollary 4.8, which provide a necessary condition for a numerical
polynomial to be the Hilbert polynomial of a reduced equidimensional scheme X in Pn . In fact, what
we prove is that none of the Gotzmann coefficients of such a scheme vanish, i.e.,

C�(X) 
= 0 for any 0 � � � r.

Before we state and prove the main result of this section (Theorem 4.7), we recall the Gotzmann
Persistence Theorem and prove Theorem 4.2. They will both be used often in what follows. Notice
that the proof of Theorem 4.2 requires that k be an algebraically closed field. The version of Bertini’s
Theorem that we are using allows us, according to [15], to obtain the results for any characteristic.

Theorem 4.1 (Gotzmann’s Persistence Theorem). (See [8].) Let I be a homogeneous ideal of R generated in
degree � d + 1 and set A = R/I . If we have maximal growth for H(A,−) in degree d, i.e.,

H(A,d + 1) = H(A,d)〈d〉,

then

(a) I is d-regular, and
(b) H(R/I, � + 1) = H(R/I, �)〈�〉 for all � � d.

Theorem 4.2. Let

HX(d) =
(

ad + d

d

)
+ · · · +

(
aδ + δ

δ

)

be the d-binomial expansion of HX(d). Assume that d > 0 is an integer for which

�HX(d) = HX(d)〈d〉 and C0(X,d) = 0 (i.e., aδ > 0). (4.1)

Then,

(a) if G(X,d) > Cad (X,d) we have (IX)ad = (IΛ)ad for some (ad + 1)-dimensional linear subspace Λ in Pn

containing X ;
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(b) furthermore, if δ > 1, there is a homogeneous polynomial F of degree Cad (X,d) such that

(IX)� ⊂ (
(F ) + IΛ

)
�

for every � � d. In other words, (IX/IΛ)� has a common factor F in R/IΛ for every � � d. Moreover, F is
reduced if X is a reduced scheme.

Proof. (a) Recall that we are assuming that G(X,d) > Cad (X,d). Then by Theorem 2.7 and Corol-
lary 2.8, with notation as in the proof of Lemma 3.3 (see Eq. (3.5)), we obtain

HX(d − 1) =
⎧⎨
⎩

(ad+(d−1)
(d−1)

) + · · · + (aβ+1+β

β

) + (
(α+1)+(β−1)

(β−1)

)
, if δ = 1,(ad+(d−1)

(d−1)

) + · · · + (aδ+(δ−1)
(δ−1)

)
, if δ > 1.

(4.2)

As we have done before, using Theorem 2.7, Corollary 2.8, and Lemma 3.3, we can obtain
HX(t) for every t � d − 2 from HX(d − 1) inductively. In particular, the Hilbert function in degree
d0 = Cad (X,d) + 1 � d is of the form

H X (d0) =
(

ad + d0

d0

)
+ · · · +

(
ad + 2

2

)
+

(
γ + 1

1

)
(4.3)

for some 1 � γ < ad . Moreover, by Lemma 3.3 again, we have

�HX(d0) = HX(d0)〈d0〉,

that is,

HX(d0) − HX(d0 − 1) = �HX(d0)

= HX(d0)〈d0〉 (by assumption)

=
[(

ad + d0

d0

)
+ · · · +

(
ad + 2

2

)
+

(
γ + 1

1

)]
〈d0〉

=
(

ad + (d0 − 1)

d0

)
+ · · · +

(
ad + 1

2

)
+

(
γ

1

)
,

and thus

HX(d0 − 1) = HX(d0) −
[(

(d0 − 1) + ad

d0

)
+ · · · +

(
1 + ad

2

)
+

(
γ

1

)]

=
[(

d0 + ad

d0

)
+ · · · +

(
2 + ad

2

)
+

(
1 + γ

1

)]

−
[(

(d0 − 1) + ad

d0

)
+ · · · +

(
1 + ad

2

)
+

(
γ

1

)]

=
(

(d0 − 1) + ad

(d0 − 1)

)
+ · · · +

(
1 + ad

1

)
+

(
γ

0

)

=
(

(d0 − 1) + ad

(d0 − 1)

)
+ · · · +

(
2 + ad

1

)

=
(

(ad + 1) + (d0 − 1)

(d − 1)

)
. (4.4)
0
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Note that �HX(d0 − 1) = HX(d0 − 1)〈d0−1〉 by Lemma 3.3. It follows from Eq. (4.4) and Proposi-
tion 3.9 that

(IX)d0−1 = (IΛ)d0−1 ⇒ (IX)ad = (IΛ)ad

for some (ad + 1)-dimensional linear subspace Λ in Pn containing X.
(b) Now suppose δ > 1. Then, by Theorem 2.7

HX(d) = HX(d − 1)〈d−1〉,

which means that the Hilbert function of X has maximal growth in degrees d − 1 and d. Moreover,
by Theorem 4.1 (see also Lemma 1.4 in [3]), the ideal ((IX)�d−1) is saturated, and thus the ideal

(
(IX)�d−1

) = IY

for a closed subscheme Y ⊂ Pn . Note that (IX)� = (IY)� for every � � d − 1, and

HY(� + 1) = HY(�)〈�〉, ∀� � d − 1. (4.5)

In particular, since

HY(d) = HY(d − 1)〈d−1〉

= HX(d − 1)〈d−1〉 (
since HX(d − 1) = HY(d − 1)

)
= HX(d)

(
by Eq. (4.2)

)
=

(
ad + d

d

)
+ · · · +

(
aδ + δ

δ

)
,

we have that by Eq. (4.5)

HY(�) =
(

ad + �

�

)
+

(
ad−1 + (� − 1)

(� − 1)

)
+ · · · +

(
aδ + (� − d + δ)

(� − d + δ)

)

for every � � d, and hence

dim(Y) = ad and deg(Y) = Cad (X,d).

Note that by (a), (IΛ)� ⊆ (IX)� = (IY)� for every � � d. Hence we see that Y is contained in a linear
subspace Λ of dimension ad + 1.

Now let S := k[x0, x1, . . . , xn]/IΛ = R/IΛ � k[x0, x1, . . . , xad+1] and

ĪX = IX/IΛ and ĪY = IY/IΛ.

Considering the unmixed part of Y in Proj(S), its defining ideal has to be a principal ideal in S . Since
codim(S/ ĪY) = 1 and deg(Y) = Cad (X,d) we see that there is a polynomial F ∈ R of degree Cad (X,d),
such that

IY ⊆ IΛ + (F ).

Furthermore, since (IX)� = (IY)� for every � � d, we have

(IX)� ⊆ (
IΛ + (F )

)
�

for such �, as we wished. �
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Remark 4.3. Because of condition (4.1) in Theorem 4.2 we have that, for every k � d, the value of
HX(k) is completely determined by HX(d). If there exists an integer k, with Cad (X,d) < k � d, such
that the k-binomial expansion of HX(k),

HX(k) =
(

bk + k

k

)
+ · · · +

(
bδ(k) + δ(k)

δ(k)

)

has δ(k) > 1 then, by Theorem 4.2, we see that (IX)�k is contained in an ideal generated by n −ad −1
linear forms and a homogeneous polynomial of degree Cad (X,d). Since we know how to obtain HX(k)

from HX(d) for all k � d, we can check the fact that δ(d − i + 1) > 1 if ai � ai−1 + 1 and ai+1 � ai + 1
for some 0 � i � d − Cad (X,d) + 1.

Corollary 4.4. Let X be a reduced equidimensional subscheme of dimension r in Pn. Let

HX(d) =
(

ad + d

d

)
+ · · · +

(
aδ + δ

δ

)

be the d-binomial expansion of HX(d) and suppose that ad = r. If

�HX(d) = HX(d)〈d〉, and C0(X,d) = 0

for some positive integer d, then X is a hypersurface in a linear subspace Λ ⊂ Pn.

Proof. By Theorem 4.2, X is contained in an (r + 1)-dimensional linear subspace Λ in Pn . If X is
a reduced equidimensional subscheme, then

IX/IΛ = ℘̄1 ∩ · · · ∩ ℘̄�

where ℘̄i is a prime ideal in R/IΛ of height one for every i = 1, . . . , �, and thus

℘̄i = (F i), for some Fi ∈ R, for all i = 1, . . . , �,

where Fi is an irreducible polynomial in R for such an i. In other words,

IX/IΛ = (F1 · · · F�),

which means that X is a hypersurface in Λ ⊂ Pn . �
Corollary 4.5. Let X be a reduced equidimensional closed subscheme in Pn. Then, either G(X) = deg(X) or
G(X) = M(X).

Proof. Let d = G(X)− 1. If M(X) < G(X), then �HX(d) = HX(d)〈d〉 . Furthermore, by Eq. (3.12), we see
that C0(X,d) = 0, and so G(X) = deg(X) by Corollary 4.4, as we wished. �

As an immediate corollary of this, we get (for reduced and equidimensional closed subschemes
of Pn) a characterization of the equality M(X) = 1.

Corollary 4.6. Let X be a reduced equidimensional closed subscheme of Pn. M(X) = 1 if and only if X is
a hypersurface in a linear subspace of Pn.

Proof. From Corollary 4.5 we obtain that either M(X) = G(X) = 1 or G(X) = deg(X). In the first case
X is a linear subspace of Pn (see Proposition 3.9). The second case was characterized in Theorem 3.11,
and is precisely the assertion of the corollary. �
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Theorem 4.7. Let X be a reduced equidimensional closed subscheme in Pn. If X is not a hypersurface in a linear
subspace (i.e., G(X) 
= deg(X)) then

C�(X) 
= 0

for every 0 � � � r.

Proof. Let r = dim(X). First of all, note that

Cr(X) = deg(X) 
= 0.

Moreover, by Corollary 4.5 if G(X) 
= M(X), X cannot be a reduced equidimensional subscheme
in Pn since G(X) 
= deg(X), which is a contradiction. In other words,

G(X) = M(X).

If C0(X) = 0, then 1 = M(X) < G(X) by Lemma 3.3, which is also a contradiction. Hence C0(X) 
= 0.
Now suppose C�(X) = 0 for some 0 < � < r. Since X is a reduced equidimensional closed sub-

scheme in Pn , for an (n − �)-dimensional general linear subspace Λ� in Pn ,

Y := X ∩ Λ�

is also a reduced equidimensional closed subscheme in Pn by Bertini’s Theorem. But then, by Re-
mark 2.20,

C0(Y) = C0(X ∩ Λ�) = C�(X) = 0,

and

dim(Y) = dim(X) − � = r − �.

If G(Y) 
= deg(Y), then, by the same argument as above, C0(Y) 
= 0, and thus

G(Y) = deg(Y). (4.6)

By Theorem 3.11, we see that Y is a hypersurface contained in an (r − � + 1)-dimensional linear sub-
space Λ in Λ� ⊂ Pn . Since X is a reduced equidimensional closed subscheme and Y = X∩Λ� , X must
be contained in an (r + 1)-dimensional linear subspace Λr+1 in Pn . Hence X is also a hypersurface
contained in Λr+1 and thus, by Theorem 3.11,

G(X) = deg(X),

a contradiction. Therefore,

C�(X) 
= 0

for every 0 � � � r, as we wished. �
Corollary 4.8. Let X be a non-degenerate reduced equidimensional closed subscheme of codimension � 2
in Pn. Then, C�(X) 
= 0 for every 0 � � � dim(X).

Proof. Since X is a non-degenerate closed subscheme of codimension � 2, G(X) 
= deg(X) by Theo-
rem 3.11, and hence the statement immediately follows from Theorem 4.7. �
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5. Gotzmann coefficients for schemes containing points with UPP

In this section, we will give another situation for which the Hilbert polynomial of a projective
scheme has non-vanishing Gotzmann coefficients. These results give a partial answer to the conjecture
proposed by Bigatti, Geramita and Migliore (Conjecture 4.9 in [3]). Note that a reduced, finite set
of points Z is said to have the Uniform Position Property (UPP) if for any subset Y of Z having
cardinality r we have

HY(�) = min
{

HZ(�), r
}

for all �.

In [3], the authors showed how the imposition of uniform position on a set of points is reflected
in both the ideal of the points and in the values of the Hilbert function of the points. For example,

Lemma 5.1. (See [3, Lemma 4.4].) Let Z be a finite reduced set of points in Pn with UPP and suppose that the
forms in (I Z )d have a common factor F . Then F is irreducible and ((IZ)�d) = (F ).

The next lemma will be used to prove Theorem 5.3 and also to illustrate a property of schemes
for which some Gotzmann coefficient is 0.

Lemma 5.2. Let I be a homogeneous ideal in R = k[x0, x1, . . . , xn] such that reg(I) < d. For general linear
forms L1, . . . , L� ∈ R, suppose that all elements of

Id + (L1, . . . , L�)d

(L1, . . . , L�)d

have a common factor of positive degree in R/(L1, . . . , L�). Then all elements of Id also have a common factor
of positive degree in R.

Proof. Let J be a homogeneous ideal of R/(L1, . . . , L�−1) defined by

J = I + (L1, . . . , L�−1)

(L1, . . . , L�−1)
.

We let L� denote the image of L� in R/(L1, . . . , L�−1). Since

Id + (L1, . . . , L�)

(L1, . . . , L�)
∼= Jd + (L�)

(L�)
, and reg( J ) � reg(I) < d,

it is enough to consider the case � = 1 by induction on �.
Now suppose � = 1 and I is a saturated ideal. Then we may assume that a general linear form L1

is a non-zero divisor of R/I . Let S := R/(L1). Then we have

dim(R/I) = dim(S/ J ) + 1.

Moreover, since the ideal J has a common factor in S , there exists an irreducible polynomial F in R
such that J ⊂ (F ). This means that

n − 1 = dim
(

S/(F )
)
� dim(S/ J ) = dim(R/I) − 1 � n − 1

(
since height(I) � 1

)
.

Hence, dim(R/I) = dim(S/ J ) + 1 = n, and so there is an associated prime P of I such that
dim(R/P ) = n. Furthermore, since dim(R/P ) = n,

P = (G)
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for some irreducible polynomial G in R . In other words, I ⊂ P = (G), and thus I has a common
divisor G .

For a homogeneous ideal I in R , note that

Im = (
Isat)

m

for a sufficiently large m � 0 and the saturation degree is � reg(I). Therefore

(
I + (L)

(L)

)
m

=
(

Isat + (L)

(L)

)
m
,

for such m, and thus Id has a common factor as above. This completes the proof. �
Theorem 5.3. Let Z be a finite non-degenerate reduced set of points in Pn with UPP and suppose that
0 
= ((IZ)�d) is saturated for some d > 0. If X is the closed subscheme defined by ((IZ)�d) in Pn then, either

(1) IX = (F ) for some irreducible polynomial F , or
(2) C�(X) 
= 0 for every 0 � � � dim(X).

Proof. First of all, note that

(1) �HX(s) = HX(s)〈s〉 for sufficiently large s � 0,
(2) Cdim(X)(X) = deg(X) 
= 0.

For sufficiently large s � 0, let

HX(s) =
(

as + s

s

)
+ · · · +

(
aδ + δ

δ

)

be the s-binomial expansion of HX(s). Then it is obvious that

�HX(s) = HX(s)〈s〉

for such an s.
Suppose that Ci(X) = 0 for some 0 � i < dim(X).

Case 1. C0(X) = 0.

We separate this case into two sub-cases, according as G(X) > Cas (X) = deg(X) or G(X) = deg(X).
We first consider G(X) > deg(X).

Then by Theorem 4.2(a), (IX)as = (IΛ)as for some (as + 1)-dimensional linear space Λ. But, since
X ⊃ Z and Z is a non-degenerate set of points, Λ = Pn . So, dimΛ = as + 1 = n. Thus, dim X = as =
n − 1 and so X is a hypersurface in Pn . By Lemma 5.1, F is irreducible and has degree � d and
IX = (F ) and we are done in this sub-case.

Let us now suppose that G(X) = Cas (X) = deg X. By Theorem 3.10 we have (IX)s = J s for all s � 0,
where J = (L1, . . . , Ln−(as+1), F ) and where � = deg F = Cas (X). Since the zeroes of J contain Z, there
can be no linear forms in IX and hence (IX)s = (F )s for all s � 0. But this implies that IX = (F ) and
we are done by Lemma 5.1. That completes this sub-case and finishes the case in which C0(X) is the
Gotzmann coefficient which is 0.

Case 2. C�(X) = 0 for some 0 < � < dim X.
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Then, by Remark 2.20, for a general linear subspace Λ� in Pn of dimension n − �,

C0(X ∩ Λ�) = C�(X) = 0.

Since we are assuming that s � 0 we can assume that δ > 1 and so we can apply Theorem 4.2(b)
(using Remark 2.20) to X ∩ Λ� .

Thus, by Theorem 4.2(b) and Lemma 5.2 (and since s � 0) we obtain that (IX)s has a common
factor F . By Lemma 5.1 F is irreducible and

(F ) = (
(IX)�s

) = ((
(IZ)�d

)
�s

) = (
(IZ)�d

) = IX ⇔ G(X) = deg(X) (by Theorem 3.11),

which completes the proof. �
Before we finish this section, we prove a lemma which will be used for the proof of Theorem 5.5.

Recall that although our definition of persistence index (see Definition 2.13) was for any quotient ring
of R = k[x0, . . . , xn], we only gave information on it in case A = R/I when I = IX was the ideal of
a closed subschemes of Pn , i.e., only for saturated ideals. Our next lemma calculates the persistence
index in general.

Lemma 5.4. Let I be a homogeneous ideal of R = k[x0, . . . , xn]. Then,

G(R/I) = max
{

G
(

R/Isat), sat(I)
}
.

Proof. Suppose that d � G(R/I). Then, by definition,

H(R/I, t + 1) = H(R/I, t)〈t〉

for all t � d. Consider the lex-segment ideal I lex of I . Since we have the maximal growth of Hilbert
function in degrees greater than d, I lex does not have monomial generators whose degree is larger
than d, i.e., for all t > d,

β0,t
(

I lex) = 0.

From the result given by Bigatti, Hulett, and Pardue in [2,9,16], we have that βp, j(I) � βp, j(I lex) for
all p, j. Hence it follows that I is d-regular from Theorem 4.1, i.e., d � reg(I). On the other hand, we
know that, by Proposition 2.6 in [8],

reg(I) = max
{

reg
(

Isat), sat(I)
}
.

Hence, for all t � d,

It = Isat
t

and so

H
(

R/Isat, t
)〈t〉 = H(R/I, t)〈t〉

(
since t � sat(I)

)
= H(R/I, t + 1)

(
since t � G(R/I)

)
= H

(
R/Isat, t + 1

) (
because t � sat(I)

)
,

and this means d � max{G(R/Isat), sat(I)}.
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Conversely, suppose that d � max{G(R/Isat), sat(I)}. Then, for all t � d,

H(R/I, t + 1) = H
(

R/Isat, t + 1
) (

since t � sat(I)
)

= H
(

R/Isat, t
)〈t〉 (

since t � G
(

R/Isat))
= H(R/I, t)〈t〉

(
because t � sat(I)

)
.

Hence we obtain that d � G(R/I), as we wished. �
Let h and d be positive integers. For the d-binomial expansion of

h =
(

ad + d

d

)
+ · · · +

(
aδ + δ

δ

)
,

and for some 0 � i � ad , we define

Ci(h,d) = ∣∣{� | a� = i}∣∣.
Let Z be a non-degenerate finite reduced set of points Pn with UPP. The following theorem says what
happens if the Hilbert function of Z has a maximal growth in degree d.

Theorem 5.5. Let Z be a non-degenerate finite reduced set of points with UPP in Pn and let �H =
(h0,h1, . . . ,ht) be the first difference of the Hilbert function H of Z. Suppose that

hd =
(

ad + d

d

)
+ · · · +

(
aδ + δ

δ

)
,

and that hd+1 = h〈d〉
d for some d. Let (IZ)�d = (IX)�d.

Then, either X is an irreducible hypersurface or

C�(hd,d) 
= 0

for every 0 � � � ad.

Proof. First, note that I = ((IZ)�d) is a saturated ideal defining a closed subscheme X since

hd+1 = h〈d〉
d . Let L be a general linear form in R = k[x0, x1, . . . , xn] and J = (I + (L))/(L). If H is

the hyperplane defined by the vanishing of L, then J sat is the defining ideal of X ∩ H in S = R/(L).
Moreover, since

hd+1 = h〈d〉
d and H

(
R/

(
I + (L)

)
, s

) = hs

for every s � d, we see that, by Theorem 4.1 (Gotzmann’s Persistence Theorem),

H(S/ J , s + 1) = H(S/ J , s)〈s〉

for such s. Note that, by Lemma 5.4,

G(S/ J) = max
{

G
(

S/ J sat), sat( J )
}
.

Hence we have

d � G(S/ J ) � G(X ∩ H) = G
(

S/ J sat). (5.1)
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From the d-binomial expansion of hd , given above, we have C�(hd,d) = C�(X∩ H) for every 0 � � � ad
since d � G(X ∩ H). Thus C�(hd,d) = C�+1(X) for every 0 � � � ad (see Theorem 2.19). Therefore it
follows from Theorem 5.3 that

C�(hd,d) 
= 0

for 0 � � � ad if X is not a hypersurface. �
Remark 5.6. Theorem 5.5 gives us a condition on the Hilbert function that prohibits the existence
of points with UPP from having that Hilbert function. If we have maximal growth of the h-vector
of a finite reduced set of points Z in degree d such that Ci(hd,d) = 0 and C j(hd,d) 
= 0 for some
0 � i 
= j < dim(X) (where X is a closed subscheme in Pn defined by the saturated ideal ((IZ)�d))
then Z cannot have UPP.

Example 5.7. (a) Let Z be a non-degenerate set of points in P5 and let �HZ = (1,5,12,22,37,57,82,

112,147) be the first difference of the Hilbert function HZ of Z. Then �HZ has maximal growth in
degree 7. Moreover, since

h7 = 112

=
(

2 + 7

7

)
+

(
2 + 6

6

)
+

(
2 + 5

5

)
+

(
2 + 4

4

)
+

(
2 + 3

3

)
+

(
2

2

)
+

(
1

1

)
,

we have

C2(h7,7) = 5, C1(h7,7) = 0, and C0(h7,7) = 2.

However, the saturated ideal ((IZ)�7) cannot define an irreducible hypersurface and C1(h7,7) = 0,
i.e., Z cannot have UPP.

(b) Let Z be a set of non-degenerate reduced points in Pn (n � 3) with h-vector (1,h1, . . . ,ht ).
Let d be an integer such that 0 < d < t and suppose that Z does not lie on any hypersurfaces of
degree d − 1. Let hd be given by

hd =
(

2 + d

d

)
+ · · · +

(
2 + (d − γ + 1)

(d − γ + 1)

)
+

(
d − γ

d − γ

)
+ · · · +

(
d − � + 1

d − � + 1

)

for some � < γ < d and define hd+1 := h〈d〉
d . Then Z cannot have UPP since the saturated ideal ((IZ)�d)

does not define an irreducible hypersurface (there is more than one form in (IZ)d and none in degree
d − 1) but C1(hd,d) = 0.

One can easily construct lots of other examples of h-vectors which are not the h-vectors of points
with UPP.
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