
Linear Algebra and its Applications 429 (2008) 1587–1605

Available online at www.sciencedirect.com

www.elsevier.com/locate/laa

Rank-deficient submatrices of Fourier matrices�

Steven Delvaux, Marc Van Barel ∗

Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200A,
B-3001 Leuven (Heverlee), Belgium

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A,
B-3001 Leuven (Heverlee), Belgium

Received 28 September 2006; accepted 17 April 2008
Available online 13 June 2008

Submitted by V. Mehrmann

Abstract

We consider the maximal rank-deficient submatrices of Fourier matrices with order a power of a prime
number. We do this by considering a hierarchical subdivision of these matrices into low rank blocks. We
also explore some connections with the fast Fourier transform (FFT), and with an uncertainty principle for
Fourier transforms over finite Abelian groups.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In Fourier analysis, several so-called uncertainty principles are known. These principles say that
a continuous-time signal cannot be concentrated in both time and frequency domain. Expressing
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this in a more exact, quantitative form, one is led to the celebrated Heisenberg–Weyl uncertainty
relations, or alternatively to uncertainty principles which are based on the concept of entropy
[11,10].

Instead of continuous-time signals, one can also consider discrete-time signals, which are
represented as a discrete vector v ∈ Cn. The Fourier transform is then defined by multipli-
cation with a suitable Fourier matrix, or more generally with a Kronecker product of Fourier
matrices.

For a more detailed discussion, let us introduce some definitions. For n ∈ N \ {0}, the Fourier
matrix of size n is defined as Fn = 1√

n
[ωij ]n−1

i,j=0, where ω = exp(2π i/n) with i :=√−1. Note

that this is a special case of a Vandermonde matrix, at least if we neglect the scaling factor 1√
n

.

We will sometimes simplify notation by just writing F instead of Fn.
For a column vector v ∈ Cn, the Hamming weight of v is defined as the number of nonzero

entries of v, and denoted by H(v).
The following theorem was first proved by Matolcsi and Szucs [7] in a group theoretical

context. For the situation at hand, we will be able to state it in matrix language.

Theorem 1 (Uncertainty principle). Given a matrix

F = Fn1 ⊗ · · · ⊗ Fnk
, (1)

where each Fni
is the Fourier matrix of size ni, and where ⊗ denotes the Kronecker product (as

defined in Eq. (28)). Define n :=n1 · · · nk. Then we have

H(Fv)H(v) � n, (2)

where v ∈ Cn denotes an arbitrary nonzero vector.

The reason why we did not use brackets in (1) is that the Kronecker product is known to be
associative.

Note that the above result is of a negative type, since it shows that for a Fourier-like matrix
F as in the statement of the theorem, it is impossible to find a nonzero vector concentrated on a
small set (having small Hamming weight), for which the matrix–vector product is concentrated
on a small set as well.

In addition to the origin of Theorem 1 in Matolcsi and Szucs [7], we refer also to Refs.
[3,13,12] for some interesting generalizations and analogues. In particular, it was shown by Smith
[13, Section 5] that equality in the uncertainty principle (2) can be reached with H(v) equal to an
arbitrary divisor d of n.

For a proof of Theorem 1, we recall two elementary properties of Fourier matrices:

(i) The Fourier matrix is unitary, i.e., ‖Fv‖2 = ‖v‖2 for all column vectors v ∈ Cn (Here we
use ‖ · ‖2 to denote the Euclidean 2-norm of a vector),

(ii) The entries of F have all the same absolute value 1√
n

.

Moreover, these properties are known to be inherited when taking Kronecker products, provided
that one updates n :=n1 · · · nk in property (ii).

The proof of Theorem 1 will now reduce to the following lemma, which is basically a matrix
formulation of the standard proof appearing in the literature. We include it here to keep the paper
self-contained.
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Lemma 2. Given a matrix A ∈ Cm×n which is (i) a dilation in the sense that ‖Av‖2 � ‖v‖2
for each column vector v ∈ Cn, and (ii) bounded entry-wise in the sense that |ai,j | � M for all
indices i, j . Then for any nonzero vector v ∈ Cn, we have the uncertainty principle

H(Av)H(v) � 1

M2
. (3)

Proof. We invoke the bound

|w · v|2 � ‖w‖2∞H(v)‖v‖2
2, (4)

where v, w ∈ Cn are arbitrary vectors, where w · v denotes the Euclidean inner product of these
vectors, and where ‖w‖∞ := maxi |wi |. Indeed

|w · v|2 =
∣∣∣∣∣
n−1∑
k=0

wkvk

∣∣∣∣∣
2

=
∣∣∣∣∣
n−1∑
k=0

wk1v,kvk

∣∣∣∣∣
2

�
n−1∑
k=0

|wk1v,k|2
n−1∑
k=0

|vk|2 � ‖w‖2∞H(v)‖v‖2
2, (5)

where we denoted with 1v the vector which takes the value 1 on all nonzero indices of v, and zero
elsewhere, and where the third transition follows from the Cauchy–Schwarz inequality.

Applying (4) with w equal to the ith row of A reveals that the ith component of the vector Av
can be bounded in modulus by

|(Av)i |2 � M2H(v)‖v‖2
2 � M2H(v)‖Av‖2

2,

where we used the assumptions in the statement of the lemma. Summing this inequality over all
nonzero indices i of Av, and subsequently dropping the factor ‖Av‖2

2 from both sides, leads to
the desired result (3). �

In what follows, we will approach the uncertainty principle from a purely linear algebra point
of view. Using the notations of Lemma 2, and assuming from now on that A is square of size n,
let us denote with I the set of indices where Av is nonzero and with J the set of indices where
v is nonzero. (Note that by definition, the cardinalities of these sets are equal to the Hamming
weights H(Av) and H(v), respectively.) Obviously, we should have

A(N \ I, J )v|J = 0, (6)

where N :={1, . . . , n}, and where v|J denotes the vector obtained by restricting v to the set of its
nonzero indices J . In other words (6) states that the submatrix A(N \ I, J ) of A is rank-deficient
in the sense that its null space is non-empty.

The uncertainty principle tells then that such a rank-deficient submatrix A(N \ I, J ) cannot
have an arbitrarily large number of rows, assuming that its number of columns is fixed, since we
must have the restriction |I | · |J | � 1

M2 . This result is negative since it restricts the size of the
rank-deficient submatrices, and hence the structure of A.

Interestingly, this negative result turns out to be complemented by a positive result, in which
the existence of rank-deficient submatrices containing many rows in comparison to their number
of columns is answered affirmatively when F :=A is a Kronecker product of Fourier matrices as
in the statement of Theorem 1. Let us illustrate this for n = 4 and H(v) = 2. Then there are two
possibilities for F :
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F4 = 1√
4

⎡
⎢⎢⎣

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦ , or F2 ⊗ F2 = 1√

4

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦

with i :=√−1. Now in both cases it is easy to obtain a non-trivial rank-deficient submatrix
F(N \ I, J ) with |I | · |J | = n. This can be achieved e.g. by taking submatrices of the form[

1 1
1 1

]
. Note, however, that the number and the positions of these submatrices are different for

F4 and F2 ⊗ F2. The underlying reason for this is that the Abelian groups Z4 and Z2 × Z2 have
a different pattern of subgroups.

In this paper, we treat the uncertainty principle from a linear algebra point of view. To this
end, we are going to search the rank-deficient submatrices containing a maximal number of rows,
assuming that the number of columns is fixed, of our matrices of interest. For the present paper
we will restrict ourselves to the case where F = Fpm is a Fourier matrix with order a power
of a prime number; the case of a general Kronecker product of Fourier matrices is handled in
[1].

Using this approach, we can obtain more precise connections between H(v) and H(Fv) than
the one in (2). It turns out that the size and position of the maximal rank-deficient submatrices
of F = Fn depends directly on the prime number factorization of n. For example, for a prime
number it turns out that the relation (2) can be made more precise, based on the fact that the
Fourier matrix Fp does not have any singular submatrix (see [5] for a historical overview about
this statement, and see also [16]). A generalization of this fact will be established in Theorem 9,
which is the main theorem of this paper.

The paper is organized as follows. Section 2 collects some results in the literature concerning
the rank-deficient submatrices of Fp with p prime. Section 3 considers the case of a Fourier
matrix with order a power of a prime number. Section 4 shows some connections with the FFT.
Section 5 considers a connection with the block diagonalization of Fourier matrices. Finally, some
conclusions are provided in Section 6.

2. Fourier matrices with prime order

We start with the case of a Fourier matrix with prime order. We need some auxiliary definitions.
We define the generalized Vandermonde matrix induced by two vectors x ∈ Cn, m ∈ Nn as the
matrix

V = [xmj

i ]n−1
i,j=0.

Here x is called the vector of data points and m is called the vector of exponents.
Note that for exponents mj = j , the generalized Vandermonde matrix reduces to a classical

Vandermonde matrix V = [xj−1
i ]i,j . As it is commonly known, the determinant of such a matrix

is given by

det V =
∏
i>j

(xi − xj ).

A generalization of this result was already proved in the 19th century by Mitchell [9], and is
stated now. Recall that a polynomial in several variables is called symmetric if it is invariant under
the interchange of any two of its variables. The following result is nowadays well-known in the
literature (see the footnote below for more information).
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Theorem 3. Let V = [xmj

i ]i,j be a generalized Vandermonde matrix of size n by n. Then its
determinant can be factorized as

det V =
⎛
⎝∏

i>j

(xi − xj )

⎞
⎠ S(x), (7)

where S(x) = ∑
k ckx

pk,0
0 · · · xpk,n−1

n−1 is a symmetric polynomial in x0, . . . , xn−1. Moreover, the
sum of coefficients of S(x) is given by 1

∑
k

ck =
∏

n>i>j�0(mi − mj)∏
n>i>j�0(i − j)

. (8)

Proof. For completeness of this paper, let us provide here the main steps of the proof of Theorem
3, as suggested in [9]. We compute the determinant of V by the following series of row operations:
for each i � 1, we subtract from the ith row the zeroth row and then divide each element of the
ith row by the factor xi − x0. Next, for each i � 2, we subtract from the ith row the 1st row and
then divide each element of the ith row by the factor xi − x1, and so on.

Let us illustrate this process for m = (1, 2, 3). Then the generalized Vandermonde matrix

V =
⎡
⎢⎣

x0 x2
0 x3

0

x1 x2
1 x3

1

x2 x2
2 x3

2

⎤
⎥⎦ (9)

reduces under the influence of the above described series of row operations to⎡
⎣x0 x2

0 x3
0

1 x0 + x1 x2
0 + x0x1 + x2

1
0 1 x0 + x1 + x2

⎤
⎦ . (10)

The entries of this matrix can now be recognized to be the so-called complete symmetric polyno-
mials of fixed homogeneous degree. Indeed, also in general, we claim that V transforms into the
new matrix⎡

⎢⎢⎢⎣
Sm0(x0) · · · Smn−1(x0)

Sm0−1(x0, x1) · · · Smn−1−1(x0, x1)
...

...

Sm0−n+1(x0, . . . , xn−1) · · · Smn−1−n+1(x0, . . . , xn−1)

⎤
⎥⎥⎥⎦ , (11)

where

Sm(x0, x1, . . . , xi) :=
∑

p∈Ni+1,
∑

pk=m

(∏
k

x
pk

k

)
.

The proof follows by an induction argument, using the easily verified identity:

Sm(x0, . . . , xi; xk) − Sm(x0, . . . , xi; xi+1) = (xk − xi+1)S
m−1(x0, . . . , xi, xi+1; xk)

as suggested in [9, p. 344].

1 The symmetric polynomial S(x) in (7) is nowadays often called the Schur function or S-function: see e.g. [6,15,2],
among many others. According to [6, Section 1.3], the introduction of the Schur function can be traced back to the work
of Jacobi. The property referred to in (8) can be interpreted as giving the value of the Schur functions at (1, 1, . . . , 1), see
e.g. [14, Theorems 1.2 and 5.4].
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We are now interested in the determinant of (11), and more precisely in the sum of coefficients
of this determinant. Still following [9, p. 344], this means that we have to evaluate this determinant
for x = (1, . . . , 1). Note that for the above example (10), this yields∣∣∣∣∣∣

1 1 1
1 2 3
0 1 3

∣∣∣∣∣∣ . (12)

The entries in the determinant (12) can now be recognized as a series of subsequent binomial
numbers. Indeed, also in the general case, it is straighforward that the sum of coefficients in the
determinant of (11) equals∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m0
0

)
· · ·

(
mn−1

0

)
(

m0
1

)
· · ·

(
mn−1

1

)
...

...(
m0

n − 1

)
· · ·

(
mn−1
n − 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (13)

Now the ith row of this determinant (13) contains the entries

(
mj

i

)
:= mj ···(mj −i+1)

i! , i.e.,
mi

j

i!
plus some powers of lower degree of mj . But these lower degree powers can be eliminated by
subtracting multiples of previous rows in (13). The above determinant reduces then to∣∣∣∣∣∣∣∣∣

m0
0 · · · m0

n−1
1
1!m

1
0 · · · 1

1!m
1
n−1

...
...

1
(n−1)!m

n−1
0 · · · 1

(n−1)!m
n−1
n−1

∣∣∣∣∣∣∣∣∣
,

which is up to the scaling factor 1!2! · · · (n − 1)! in the denominator just a classical Vandermonde
determinant in the vector of exponents. This leads to the desired formula (8), hereby finishing the
proof of Theorem 3. �

According to [5], the following result was first proved by Chebotarev in 1926 using p-adic
number theory.

Theorem 4. Let p be a prime number. Then the Fourier matrix Fp does not contain any singular
square submatrix.

Proof. We use the proof suggested in [4]. By definition of Fp = [ωij ]i,j (where we neglected the
irrelevant scaling factor 1√

p
), any k × k submatrix of Fp can be written as a generalized Vander-

monde matrix V = [xmj

i ]i,j , with data points themselves of the form xi = ωm̃i for suitable choice
of exponents m̃i, mj ∈ {0, 1, . . . , p − 1}. We consider then the determinant of this generalized
Vandermonde matrix, and more precisely the polynomial S(x) = ∑

k ckx
pk,0
0 · · · xpk,n−1

n−1 in the

statement of Theorem 3. Clearly, this polynomial can be rearranged into the form
∑p−1

k=0 c̃kω
k

with c̃k ∈ Z (this follows by using that ωap+b = ωb for all a, b). Now this polynomial can only
vanish if it is divisible by 1 + ω + · · · + ωp−1, the minimal polynomial of ω over Z. (See Lemma
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8 for a more general version of this result.) In particular, this polynomial can only vanish if the
sum of coefficients of S(x) is divisible by p. But from (8), it follows that the sum of coefficients
of S(x) can only be divisible by p if there are two exponents with mi ≡ mj mod p, i /= j . The
latter is impossible since 0 � {mi, mj } < p for all i, j , hence yielding a contradiction. �

Remark 5. Let us call a matrix A ∈ Cm×n rank-deficient if Rank A < n, or equivalently, if there
exists a nonzero vector v ∈ Cn such that Av = 0. It follows then from Theorem 4 that the Fourier
matrix Fp with p prime can have only rank-deficient submatrices of a trivial type, i.e., for which
the number of rows is strictly smaller than the number of columns.

3. Fourier matrices with non-prime order

We move now to the case of a Fourier matrix with non-prime order. To this end, note first that
Theorem 4 is of a negative type, since it excludes the existence of any non-trivial rank-deficient
submatrix of Fp with p prime.

Interestingly, it turns out that one can obtain positive results in case of a Fourier matrix of the
form Fmn, with m, n ∈ N.

We start with some generalities. Given a permutation P defined on the set {0, . . . , mn − 1}, the
associated matrix of this permutation is defined as the matrix whose j th column contains an entry
1 on its P(j)th position, and zeros elsewhere. The action of P on a vector x ∈ Cmn is defined as
the matrix–vector product P x. We will use the same symbol P to denote both the permutation
and its associated matrix.

Note that multiplying a permutation matrix with a vector on the left, allows an interpretation
in terms of the inverse permutation, since

xTP = (P Tx)T = (P −1x)T (14)

for any column vector x ∈ Cn, where the second transition expresses that permutation matrices
are unitary.

Now we specify to a particular instance of a permutation. The sort-modulo-m permutation
induced by m, n ∈ N is defined as the permutation map Pm,mn on {0, . . . , mn − 1} such that

Pm,mn: an + b 	→ bm + a.

Here the involved numbers are in Euclidean division form, i.e., we assume a ∈ {0, . . . , m − 1}
and b ∈ {0, . . . , n − 1}.

For example, P3,6 transforms the sequence 0, 1, 2, 3, 4, 5 into the sequence 0, 3, 1, 4, 2, 5,
sorting these integers according to the subsequent residue classes modulo 3.

A way of visualizing the permutation Pm,mn is by arranging the given numbers 0, . . . , mn − 1
in an m by n table, e.g.⎡

⎣0 3
1 4
2 5

⎤
⎦ .

Now we claim that Pm,mnFmnPm,mn can be partitioned in a natural way in an n by m grid
consisting of blocks of rank one, e.g.

P3,6F6P3,6 =
[

Rk 1 Rk 1 Rk 1
Rk 1 Rk 1 Rk 1

]
,
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where each Rk 1 is a block of rank one. (For notational simplicity, we represent here each block
by the same notation Rk 1, but these different blocks do not have to be equal to each other!)

To show the validity of this claim, note that the multiplication with Pm,mn causes the columns
in Pm,mnFmnPm,mn to be sorted modulo m, while the rows are sorted modulo n; the latter follows
from (14) with x = ei , the ith standard basis vector, combined with the fact that P −1

m,mn = Pn,mn.
If follows that for any a ∈ {0, . . . , n − 1} and b ∈ {0, . . . , m − 1}, the (a, b)th block element

of Pm,mnFmnPm,mn is given by

1√
mn

[ω(a+in)(b+jm)]i,j
with i running through {0, . . . , m − 1}, and j running through {0, . . . , n − 1}. We can rewrite
this as 1√

mn
[ωab+bin+ajm]i,j and thus 1√

mn
ωab[ωbinωajm]i,j , so that we obtain a factorization

1√
mn

ωab

⎡
⎢⎢⎢⎢⎢⎢⎣

1
...

ωbin

...

ωb(m−1)n

⎤
⎥⎥⎥⎥⎥⎥⎦
[
1 · · · ωajm · · · ωa(n−1)m

] =: Rk 1, (15)

which is indeed a matrix of rank one.
For example, since ω4 = exp(π i/2) = i, the imaginary unit, the Fourier matrix F4 can be

written as

F4 = 1√
4

⎡
⎢⎢⎣

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦ (16)

and after permutation this becomes

P2,4F4P2,4 = 1√
4

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 i −i
1 −1 −i i

⎤
⎥⎥⎦ , (17)

which can indeed be subdivided in 2 × 2 blocks of rank equal to 1.
As a final example, the partition in rank-one blocks of P5,25F25P5,25 is shown in Fig. 1.
Recall that a matrix A ∈ Cm×n is called rank-deficient if Rank A < n, or equivalently, if there

exists a nonzero vector v ∈ Cn such that Av = 0.
The above discussion (cf. Fig. 1) indicates that a Fourier matrix Fmn should have a lot of

non-trivial rank-deficient submatrices. To make this more concrete, we introduce the following
definition.

Definition 6. For a matrix A ∈ Cn×n and an integer d ∈ {1, . . . , n}, we define the Hamming num-
ber HA(d) as the minimal cardinality of all index sets I for which A(N \ I, J ) is rank-deficient,
under the restriction that |J | � d . Here we denote N :={1, . . . , n}.

It may seem odd that the above definition works with the number of row indices in the com-
plement of a maximal rank-deficient submatrix, rather than the number of row indices of the
rank-deficient submatrix itself. However, we do this to stay close to the formulation of the uncer-
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5
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Fig. 1. The figure shows a partition of P5,25F25P5,25 in a 5 by 5 grid of rank-one submatrices.
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Fig. 2. The left part of the figure shows some rank-deficient submatrices of P5,25F25P5,25 with 2, 3, 4 and 5 columns.
The complementary sets contain 20, 15, 10 and 5 rows, respectively. Similarly, the right part of the figure shows some
rank-deficient submatrices of P5,25F25P5,25 with 5, 10, 15, 20 and 25 columns, and with complementary sets containing
5, 4, 3, 2 and 1 rows, respectively.

tainty principle. Indeed, it can be noted that Definition 6 allows the following reformulation of
Theorem 1:

d · HF (d) � n, (18)

where F is any matrix of the form (1).
We already observed in Section 1 that (18) is a result of a negative type, since it restricts the size

of the rank-deficient submatrices of any Fourier-like matrix F . The idea is now to complement
this by a result of a constructive type, where we actually construct rank-deficient submatrices of
a Fourier matrix of non-prime order Fmn by suitably collecting the rank-one building blocks of
Pm,mnFmnPm,mn. The idea is shown in the case of P5,25F25P5,25 in Fig. 2.

Let us comment in Fig. 2. To this end, let us start with the submatrix of size 5 by 2, which is
highlighted on the extreme left of Fig. 2. (It is the smallest of all the highlighted submatrices.)
Since this submatrix has been chosen to be part of a rank-one block, it must itself have rank at
most 1. But since 1 < 2, the rank of this submatrix is smaller than its number of columns, and
hence this submatrix is indeed rank-deficient.

We conclude that for d = 2, one can obtain a rank-deficient submatrix having 5 rows, and thus
with cardinality of the complementary set consisting of 25 − 5 = 20 rows. Hence, HF25(d) � 20.

One can then repeat this argument to construct rank-deficient submatrices having at most d

columns, for any d. To this end, it suffices to choose each time a maximal submatrix whose entries
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can be divided in at most d − 1 rank-one blocks, for each d. Indeed, since such a submatrix must
obviously have rank at most d − 1, and since d − 1 < d, it must be rank-deficient.

The idea how to do this in practice is shown in Fig. 2. Note that for each of the highlighted
rank-deficient submatrices in this figure, the number of rows in the complementary subset is
indicated in the bottom leftmost corner of the submatrix. This number is greater than or equal to
HF25(d).

Collecting all the relevant information from Fig. 2 leads to the following upper bounds for the
Hamming numbers for F25:

d 1 2 3 4 5 10 15 20 25
HF25(d) 25 20 15 10 5 4 3 2 1

. (19)

We note that (19) lists only the relevant values of d, i.e., only those values of d where the
Hamming number makes a jump w.r.t. the one for d − 1.

It can be shown that the bounds in (19) are indeed correct, in the sense that it is impossible
to obtain smaller Hamming numbers (or equivalently, larger rank-deficient submatrices) than the
ones obtained in Fig. 2. This will be shown in Theorem 9.

Note that (19) is compatible with the uncertainty principle (18), i.e., d · HF25(d) � 25. More-
over, it can be seen that equality in the uncertainty principle is reached whenever d is a divisor of
n, in the present case when d ∈ {1, 5, 25} (see also [13]).

In case of a matrix Fn with dimension n containing at least three prime divisors, we want to
apply the above ideas in an iterative way. We will do this under the assumption that n is a power
of a prime number n = pm.

We need an auxiliary definition. The digit-reversing permutation induced by a power of a
prime number pm is defined as the permutation map Ppm on {0, . . . , pm − 1} which maps

Ppm : cm−1p
m−1 + · · · + c0p

0 	→ c0p
m−1 + · · · + cm−1p

0.

Here the involved numbers are expressed in the p-based number system, i.e., we assume ck ∈
{0, . . . , p − 1} for all k.

For example, P8 transforms the sequence 0, 1, 2, 3, 4, 5, 6, 7 into the sequence 0, 4, 2, 6,

1, 5, 3, 7.
Note that in the above example of P8, the digit-reversing permutation sorts both modulo 4

and modulo 2, at least up to some ordering of the residue classes. Also in general, the digit-
reversing permutation Ppm has a close affinity with each of the sort-modulo-pk permutations
Ppk,pm , k = 1, . . . , m − 1, which we introduced earlier, with the only difference that the order in
which the residue classes modulo pk are sorted may differ. We can then use the same argument
leading to (15) to show the following result.

Lemma 7. If pm denotes a power of a prime number, and if Ppm denotes the digit-reversing per-
mutation introduced above, then the permuted Fourier matrix PpmFpmPpm allows a subdivision
in a pm−k by pk grid of rank-one blocks, for any k = 1, . . . , m − 1.

As an example we consider the Fourier matrix of size n = 33 = 27, see Fig. 3.
These rank-one partitions can again be used as building blocks for constructing greater rank-

deficient submatrices. For the example in Fig. 3, this leads to the table (only the relevant values
of d are shown):

d 1 2 3 6 9 18 27
HF27(d) 27 18 9 6 3 2 1

. (20)
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Fig. 3. The figure shows a partition of P27F27P27 in a 3 by 9 grid of rank-one submatrices on the left, and a partition in
a 9 by 3 grid of rank-one submatrices on the right.

Rk 1Rk 1Rk 1Rk 1Rk 1Rk 1Rk 1Rk 1Rk 1
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Fig. 4. The figure shows some rank-deficient submatrices of P27F27P27 with 3, 6 and 9 columns. The complementary
sets contain 9, 6 and 3 rows, respectively. Note that rank-deficient submatrices are built from rank-one blocks of both of
the types of Fig. 3, i.e., from both blocks of size 3 by 9 and of size 9 by 3.

For example, the way how to obtain the Hamming numbers HF27(d) for the cases d = 3, 6 and 9
is illustrated in Fig. 4.

Note that the above table (20) is again compatible with the uncertainty principle, and that it
shows that equality in the uncertainty principle can be reached for each divisor of n.

We want now to formalize the above results, in particular showing that the depicted bounds
for the Hamming numbers in tables (19) and (20) are indeed the best possible.

The theorem requires the following well-known lemma.

Lemma 8. For a power of a prime number pm, the minimal polynomial over Z of the corre-
sponding root of unity ω equals2

1 + ωpm−1 + · · · + ω(p−1)pm−1
. (21)

Proof. We include the proof of this well-known lemma for completeness of this paper. The
factorization

1 − ωpm = (1 − ωpm−1
)(1 + ωpm−1 + · · · + ω(p−1)pm−1

)

2 The minimal polynomial of the nth root of unity ωn over Z is often called the cyclotomic polynomial of degree n.
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shows that (21) is an annihilating polynomial for ω. The fact that it is precisely the minimal
polynomial follows then since its degree equals Euler’s phi-function of pm, i.e., the number of
roots of unity ωk whose exponent k ∈ {0, . . . , pm − 1} is relatively prime to pm. (The fact that
the minimal polynomial of ω over Z must have degree precisely equal to Euler’s phi-function is
well-known and usually attributed to Gauss.) �

The following is the main theorem of this paper.

Theorem 9. Let pm be a power of a prime number. Let d ∈ {1, 2, . . . , pm} be such that

cpk � d < (c + 1)pk (22)

for certain c ∈ {1, . . . , p − 1}, k ∈ {0, . . . , m − 1}. Then we have that

HFpm (d) = (p − c + 1)pm−k−1. (23)

Proof. First we will show that the bound in (23) cannot be sharpened. Suppose by contradiction
that we can find subsets I, J for which the submatrix Fpm(N \ I, J ) is rank-deficient, such that
|J | � d, and |I | is strictly less than the number in (23). We will prove a contradiction by showing
that Fpm(N \ I, J ) must have a square nonsingular submatrix.

To construct this submatrix, we are going to choose d row indices mi ∈ N \ I that are simul-
taneously uniformly distributed modulo each power pr of p, r ∈ {1, . . . , k + 1}. This means
that each residue class modulo pr, r ∈ {1, . . . , k + 1}, should contain either �d/pr� or 
d/pr�
of the elements mi . Assuming that we can do this, then all factors p in the numerator of (8)
are cancelled by those in the denominator, and hence the sum of coefficients of the determinant
of the constructed submatrix cannot be divisible by p. If follows then from Lemma 8 that this
determinant cannot vanish, yielding the desired contradiction.

Thus we should show that it is possible to assign the row indices mi, i = 1, . . . , d to be
uniformly distributed modulo each power pr of p, r ∈ {1, . . . , k + 1}. Consider first the values
r = k + 1 and r = k. The uniform distribution property requires us to choose in each residue class
modulo pk+1 at most 
d/pk+1� = 1 representative mi , and to choose in each residue class modulo
pk (obtained by stacking p of the residue classes modulo pk+1 together) either �d/pk� = c or

d/pk� � c + 1 representatives mi .

To show that this is possible, we recall our assumption on the size of N \ I . More precisely, we
recall that we are assuming (by contradiction) that |I | is strictly less than the number in (23). This
implies that there can be at most p − c residue classes modulo pk+1 which have no representative
in N \ I . It follows that we have at least c + 1 representatives to choose from in each of the
residue classes modulo pk , except for at most one “exceptional” residue class modulo pk (in the
worst case), for which c representatives is the best possible. Without loss of generality, we can
assume that this exceptional residue class (if it exists) corresponds to the last residue class, i.e.,
the numbers which equal pk − 1 modulo pk .

Define now d̃ :=dmod pk . In each of the first d̃ residue classes modulo pk , choose exactly
c + 1 representatives mi , and in each of the last pk − d̃ residue classes modulo pk , choose exactly
c representatives mi . It is easy to check that with this construction, we have a total number of

d̃(c + 1) + (pk − d̃)c = d̃ + pkc = d

representatives mi , and moreover, that for all choices of r ∈ {1, . . . , k + 1}, the row indices mi are
uniformly distributed modulo pr . (Indeed: the values r = k + 1 and r = k have been discussed
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above. The uniform distribution property for the other values r ∈ {1, . . . , k − 1} follows since
modulo pk , we have assigned the indices mi according to an exact Vandermonde distribution.)
This finishes the proof that the bound in (23) cannot be sharpened, i.e., we established now the
inequality � in (23).

Conversely, the fact that the bounds in (23) can indeed be realized (i.e., the inequality � in
(23)) follows easily from the discussion in the paragraphs before the statement of this theorem; cf.
Lemma 7. See also [1, Corollary 16] for a more formal and more general argument establishing
the inequality � in (23). �

Remark 10. The proof of Theorem 9 shows in fact a slightly stronger statement: a rank-deficient
submatrix Fpm(N \ I, J ) such that |J | � d and |I | equals the number HFpm (d) in (23) is only

possible if I equals precisely the union of p − c + 1 residue classes modulo pk+1, all of them
contained in the same residue class modulo pk .

Remark 11. By choosing m = 1, the statement of Theorem 9 reduces to

HFp(d) = (p − d + 1)

for any prime number p and d ∈ {1, . . . , p}. It follows that for a Fourier matrix of prime order
Fp, a rank-deficient submatrix of Fp with d columns can contain at most d − 1 rows. We retrieve
in this way Theorem 4; see also Remark 5.

Remark 12. Given a matrix F as in (1), let us consider the points (d, HF (d)), d ∈ {1, . . . , n} as
grid points in N2. The uncertainty principle tells that these grid points must be situated above the
hyperbola d · HF (d) = n. Following a suggestion in [16], a stronger version of this result was
shown in [8], where it was essentially proved that these grid points must be situated above the
polyline formed by the grid points (d, HF (d)) where d ranges over the subsequent divisors of n.
Note that Theorem 9 shows that this bound is rather tight in case of Fn where n = pm is a power
of a prime number.

Remark 13. Theorem 9 characterizes the Hamming numbers for the case of a Fourier matrix
Fn with n = pm a power of a prime number. The generalization to the case of an arbitrary
n = p

m1
1 · · · pmi

i is the subject of [1]. In the latter paper we also show how to obtain an alternative
proof of Theorem 9 using ideas from multilinear algebra. However, we were not able to retrieve
the result of Remark 10 using that multilinear approach.

4. Fast Fourier transform

In this section, we pay some attention to the connection with Fast Fourier transform (FFT)
factorizations of Fourier matrices.

The reader should first recall the partition in rank-one blocks of PpmFpmPpm , as in Lemma
7. The presence of these rank-one blocks allows then the entries of this matrix to be gradually
annihilated by means of Givens transformations Gi,j , i.e., elementary unitary matrices which
equal the identity matrix, except for the submatrix formed by rows and columns i, j . (We assume
here the case of a radix-2 Fourier matrix, i.e., Fpm with p = 2.)

More precisely, a Givens transformation acting on rows and columns i, j is defined as a
matrix
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Gi,j =

⎡
⎢⎢⎢⎢⎣

I

c s

I

−s̄ c̄

I

⎤
⎥⎥⎥⎥⎦ ,

where the I denote identity matrices of suitable sizes, where c and s are suitable complex numbers
such that |c|2 + |s|2 = 1, and where the non-trivial entries are positioned in rows and columns i

and j . When such a Givens transformation Gi,j acts on the columns of a matrix, then all elements
will be preserved, except for the elements in columns i and j , which are acted upon according to
the 2 by 2 core of the Givens transformation[

c s

−s̄ c̄

]
. (24)

More generally, one can allow the second row of (24) to be multiplied by a complex sign, i.e., by
a complex number eiθ for some θ ∈ R.

To allow a graphical representation, we will often denote a Givens transformation acting on
the columns of a given matrix by means of a wedge, where the two legs of the wedge are placed
on the position of the columns i, j on which the Givens transformation acts (see further).

The idea of compressing the (permuted) Fourier matrix by means of Givens transformations
is depicted for the matrix P8F8P8 in Fig. 5.

Let us comment on this figure. In the first step of the compression process, we consider the
partition of the matrix P8F8P8 in a 2 by 4 grid of rank-one blocks: see Fig. 5a. Since the two
columns of such a rank-one block are obviously linearly dependent, it is possible to find Givens
transformations G0,1, G2,3, G4,5, G6,7, chosen to annihilate the elements in columns 1, 3, 5, 7 of
the topmost collection of rank-one blocks.

From the unitarity of the Fourier matrix, it follows then that simultaneously the elements in
columns 0, 2, 4, 6 of the bottommost collection of rank-one blocks must be annihilated under this
process: see Fig. 5c.

Indeed: note that after applying a Givens transformation to a couple of columns, the submatrix
formed by these two columns takes the form[

u 0
av bv

]
(25)

for suitable vectors u, v ∈ C4 and scalars a, b ∈ C. (We expressed here that the bottom block must
still be of rank one, and hence must have row space spanned by a single vector v.) Now since both
the Fourier matrix and the applied Givens transformation are unitary, the columns of (25) should
be orthonormal to each other. It follows that ab̄‖v‖2 = 0. But since both b = 0 and ‖v‖ = 0 are
impossible since they would imply the matrix to be singular, it follows that necessarily a = 0,
which was to be demonstrated.

We can summarize the resulting sparsity pattern of Fig. 5c by

(0, 1, 2, 3, 4, 5, 6, 7) 	→ (0, 1, 0, 1, 0, 1, 0, 1),

where we have k 	→ 0 when the weight of the kth column is completely concentrated in its four
topmost rows, and k 	→ 1 when it is concentrated in the four bottommost rows.

We consider now the partition in a 4 by 2 grid of rank-one blocks: see Fig. 5d. Note that
the row grid is refined by this operation. Now for each of the rank-one blocks positioned on an
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Fig. 5. FFT interpretation for P8F8P8.

even block row 0, 2 of this new row grid, we choose Givens transformations G0,2, G1,3, G4,6,

G5,7 to eliminate the elements in the rightmost nonzero column. Again, the unitarity of the
matrix will require simultaneously the elements in the left most nonzero columns of the rank-
one blocks positioned on an odd block row 1,3 of the new row grid to be annihilated: see
Fig. 5f.

We can summarize the resulting sparsity pattern of Fig. 5f by

(0, 1, 2, 3, 4, 5, 6, 7) 	→ (0, 2, 1, 3, 0, 2, 1, 3),

where we have k 	→ 0 when the weight of the kth column is completely concentrated in its two
topmost rows, and similarly for the other values 1, 2, 3.
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Finally, we consider the grid formed by the partition in rank-one blocks of size 1 by 8: see Fig.
5g. Note that the row grid is again refined by this operation. Proceeding in exactly the same way
as before, we choose Givens transformations G0,4, G1,5, G2,6, G3,7, to eliminate the rightmost
nonzero columns of each of the blocks positioned on an even block row 0, 2, 4, 6 of the new row
grid: see Fig. 5i.

We can summarize the sparsity pattern of Fig. 5(i) by

(0, 1, 2, 3, 4, 5, 6, 7) 	→ (0, 4, 2, 6, 1, 5, 3, 7), (26)

where k is mapped to the index of the only remaining nonzero entry of the kth column.
From the above description of the compression process, it follows that the matrix resulting

at the end of this process, will have precisely the same sparsity pattern as the digit-reversing
permutation P2m , cf. (26).

In fact, by the unitarity of the matrix, each of the columns of the compressed matrix must still
have norm equal to one, and hence by suitable choice of the complex signs of the used Givens
transformations, the resulting matrix can be chosen to be precisely equal to the digit-reversing
permutation P2m : see Fig. 6.

Summarized, we obtain

P2mF2mP2mG = P2m,

where G denotes the product of all the Givens transformations used in the compression process.
Hence

F2mP2m = GH . (27)

The factorization (27) allows the Fourier matrix Fn, with n = 2m, to be described using only
1
2n log n Givens transformations. In fact, it is nothing but the well-known Cooley–Tukey FFT
factorization [17]; see Fig. 7.

Remark 14. It is possible to carry this example one step further, by deriving the exact values of
the Givens transformations used in the FFT-process. But it is not our intention to re-derive here all
the well-known formulae for the Cooley–Tukey FFT factorization [17]. Instead, our only concern
was to show that the FFT factorization can be interpreted in the sense of a product of elementary

1

1

1

1

1

1

1

1

Fig. 6. The figure shows the resulting permutation matrix P8 obtained at the end of Fig. 5.

Fig. 7. The figure shows the resulting (Hermitian transposed) Cooley–Tukey FFT factorization for the matrix F8P8.
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Rk 1

Rk 1

Rk 1

Rk 1

Rk 1

Rk 1

Fig. 8. Using elementary unitary operations in the FFT-factorization in the radix-3 case. Given the partition in 3 rank-one
blocks as in (a), one can choose an elementary unitary operation to bring these columns to block lower triangular form:
see (c). But since the columns in (c) must still be orthonormal to each other, the upper triangular shape implies the block
diagonal form in (d), in a similar way as in the radix-2 case (25).

Givens transformations used to compress the subsequent rank-one blocks of the Fourier matrix.
Moreover, obtaining the precise value of the Givens transformations can be more easily done
using the more standard, recursive approach to the FFT [17].

Finally, we point out that similar ideas can be applied also in the general radix case, i.e., in
the case Fpm with p not necessarily equal to 2. For example, when p = 3 the role of Givens
transformations should be replaced by elementary unitary operations of the form Gi,j,k , which
differ from the identity matrix only in 3 different rows and columns i, j, k. If such an operation
acts on the columns of a given matrix, it can again be represented as a wedge, this time having
three different legs pointing to the columns on which it acts.

The main point that one should be cautious for is then how to show how these elementary
unitary operations can be chosen to create zeros simultaneously in the several rank-one blocks of
the rank-one grid of the Fourier matrix. This topic is illustrated in Fig. 8.

5. Block diagonalization of Fourier matrices

In the previous sections, it was shown that the Fourier matrix Fn might have non-trivial rank-
deficient submatrices, depending on the prime factorization of n. We recall that the elemen-
tary building blocks were the matrices Fp with p prime, which do not have any non-trivial
rank-deficient submatrix.

However, we want to use the present section to show that even these Fourier matrices Fp with p

prime are not completely without structure, provided that the structure is defined in an appropriate
way. This follows from the next result, which might be well-known, although we could not find
a reference for it. It is stated here only for Fourier matrices of odd size.

Theorem 15. Given the Fourier matrix Fn with n an odd integer. Then this matrix can be brought
to block diagonal form by means of a unitary similarity operation⎛

⎜⎝
n−1

2∏
k=1

Gk,n−k

⎞
⎟⎠Fn

⎛
⎜⎝

n−1
2∏

k=1

GH
k,n−k

⎞
⎟⎠ = diag(C, S),



1604 S. Delvaux, M. Van Barel / Linear Algebra and its Applications 429 (2008) 1587–1605

0 0 0
0 0 0

0 0
0 0
0 0=

C

SF

Fig. 9. The figure shows how the Fourier matrix Fn with n odd can be transformed to block diagonal form, based on a
similarity operation by means of a set of Givens transformations Gk,n−k, k = 1, . . . , n−1

2 (denoted by the wedges in the
figure).

where C and S are matrices specified in the proof of this theorem. Here we denoted with each
Gk,n−k the Givens transformation acting on rows and columns k, n − k, where it is defined to act

as 1√
2

[
1 1

−1 1

]
, k = 1, . . . , n−1

2 . See Fig. 9.

Proof. It is easily checked that the matrix (
∏ n−1

2
k=1 Gk,n−k)

√
nFn has (i, j)th entry given by

ω
0j
n = 1, i = 0,

1√
2

(
ω

ij
n + ω

i(n−j)
n

)
= √

2 cos
2πij

n
, i ∈

{
1, . . . ,

n − 1

2

}
,

1√
2

(
ω

ij
n − ω

i(n−j)
n

)
= √

2 sin
2πij

n
, i ∈

{
n + 1

2
, . . . , n

}
.

If we now apply the Hermitian transposes of the Givens transformations Gk,n−k to the columns,
it is easy to check that the (i, j)th entry becomes

1, (i, j) = (0, 0),

√
2, i = 0, j ∈

{
1, . . . ,

n − 1

2

}
,

√
2, i ∈

{
1, . . . ,

n − 1

2

}
, j = 0,

2 cos
2πij

n
, {i, j} ∈

{
1, . . . ,

n − 1

2

}
,

0, i ∈
{

0, . . . ,
n − 1

2

}
, j ∈

{
n + 1

2
, . . . , n − 1

}
,

0, i ∈
{

n + 1

2
, . . . , n − 1

}
, j ∈

{
0, . . . ,

n − 1

2

}
,

2 sin
2πij

n
, {i, j} ∈

{
n + 1

2
, . . . , n − 1

}
,

which was to be demonstrated (see Fig. 9). �

6. Conclusions and future work

We considered the maximal rank-deficient submatrices of Fourier matrices with order a power
of a prime number. In doing so, it turned out to be more appropriate to characterize the number
of rows in the complement of such a maximal rank-deficient submatrix, giving rise to what we
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called the Hamming numbers for the given matrix. We made use of a hierarchical subdivision of
the matrix in a grid of rank-one submatrices, and it was shown how this is connected to the FFT,
which can be considered as a product of elementary Givens transformations used to compress the
rank-one blocks on the different levels.

In the follow-up paper [1] we consider some topics which were left open here. We recall that
for A ∈ Cm×n and B ∈ Cp×q , the Kronecker product of A and B is defined as the block matrix

A ⊗ B =
⎡
⎢⎣

a0,0B · · · a0,n−1B
...

...

am−1,0B · · · am−1,n−1B

⎤
⎥⎦ . (28)

Using Kronecker products, we are able in [1] to cover some topics which were left open in the
present paper. For example, we show in [1] how to obtain the precise Hamming numbers for a
Fourier matrix Fn with arbitrary n ∈ N (which needs not be a power of a prime number), and for
a general Kronecker product of Fourier matrices F = Fn1 ⊗ · · · ⊗ Fnk

. We also show in [1] how
to obtain an alternative proof of Theorem 9; cf. Remark 13 above.
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