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Abstract The aims of this study were to investigate the utility of solid microneedle arrays (150 mm in length)
in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates
and D2O flux. Four model peptides were used (Gly–Gln–Pro–Arg [tetrapeptide-3, 456.6 Da], Val–Gly–Val–Ala–
Pro–Gly [hexapeptide, 498.6 Da], AC–Glu–Glu–Met–Gln–Arg–Arg–NH2 [acetyl hexapeptide-3, 889 Da] and
Cys–Tyr–Ile–Gln–Asn–Cys–Pro–Leu–Gly–NH2 [oxytocin, 1007.2 Da]). The influence of microneedle pretreat-
ment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation
across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on
peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests
that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid
microneedle arrays are effective devices to enhance skin delivery of peptides.
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1. Introduction

With rapid advances in biotechnology, a large number of peptides
have been developed as therapeutic agents1. For example, topical
application of acetyl hexapeptide-3 is used to treat facial wrinkles
and may be of value in repairing skin2,3. Acetyl hexapeptide-3 is
about 4000 times less toxic than botulin toxin4. In addition, this
drug does not require injection, and can be topically used on the
skin. However, the hydrophilic nature of these peptides limits the
efficacy of these drugs applied topically, because of poor
transdermal penetration5. Thus, the major challenges of transder-
mal peptide delivery are poor permeability, low bioavailability and
regulatory issues.

Microneedles have been proposed to be a kind of delivery
system which permits entry of small-molecule drugs, therapeutic
proteins and vaccines, with minimal skin invasiveness6,7.
Although there is a growing interest in the microneedle-based
drug delivery system and a significant development in its applica-
tion, the use of microneedles for delivery of hydrophilic peptides
with low molecular weight have not been investigated in detail.
Previously, we reported that microneedles significantly increase
the transdermal delivery of hydrophilic L-carnitine in comparison
to passive diffusion, and enhance substantially the bioavailability
of this peptide compared to oral administration8. Microneedles
have also been found to increase the skin permeation of calcein,
insulin, vaccine and liposome9,10. So far, the solid microneedles
have been proved to be an efficient and affordable approach for the
delivery of transdermal drug.

Enhancement of transdermal drug delivery is probably related
to convective solvent flow. For instance, Manabe et al.11 evaluated
the effect of convective flow on iontophoretic skin transport based
upon the hydrodynamic pore theory. Morimoto et al.12 investi-
gated the relationship between hydrophilic solute and water
transport during ultrasound application, and found that 41 kHz
ultrasound can increase the permeation of hydrophilic solutes by
inducing convective solvent flow via new routes13. Similarly,
microneedles create transient aqueous microchannels which serve
as multiple pathways for hydrophilic drug transfer14. Therefore,
convective solvent flow may be involved in enhancing skin
transport by microneedles, this possibility remains unconfirmed.

The objectives of the present study are: (1) to evaluate the
penetration of fluorescent dye into skin after application of
microneedles using confocal laser scanning microscopy, (2) to
evaluate the effect of pretreatment of puncture by microneedles
Figure 1 The microneedle array and the autoapplicator emp
with 150 μm length on in-vitro skin permeation of hydrophilic
peptides of varying molecular weight and (3) to explain the
penetration-enhancing effect caused by microneedles based on the
relationship between D2O flux and solute transport clearance.
2. Materials and methods

2.1. Chemicals and reagents

Tetrapeptide-3, hexapeptide, acetyl hexapeptide-3 and oxytocin
were all purchased from ChuanKangPaiDe Biological Technology
(Sichuan, China). HPLC-grade acetonitrile was obtained from
Dikma Technology (Beijing, China). All solutions were prepared
with ultrapure water (resistivity418 MΩ cm).

2.2. Skin preparation

Porcine ear skins (from adult pig) were purchased from a local
slaughterhouse immediately following death, and the dermatomed
skins with a thickness of 800 μm were carefully obtained with a
skin grafting knife.

2.3. Microneedle arrays

Microneedle arrays and applicator were developed by our group
and made by Nasheng Microelectronics (Suzhou) Co. Ltd., China.
Arrays of solid microneedle (Fig. 1A) were fabricated by dry and
wet etching from silicon wafers. Each microneedle array has 121
needles of 150 μm-length in an area of 4 mm� 4 mm. The array
was fixed onto a supporting column (5 mm in diameter) of
applicator (Fig. 1B), which provided insertion force of nearly
2 N. Microneedle arrays were inserted into the skin with a constant
vibration frequency for 20 s.

2.4. In vitro skin permeation studies

The experiments were performed with a system employing Franz
vertical diffusion cells. After pretreatment by microneedles for
20 s, the skin samples were clamped in vertical Franz diffusion
cells (2.5 mL) with the stratum corneum side facing the donor
compartment, giving an effective permeation area of 0.66 cm2. The
receptor and donor compartments were filled with phosphate
loyed in this study. (A) Microneedle array; (B) autoapplicator.
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buffer (pH 7.4). After equilibrium for 1 h, the receptor compart-
ment was filled with PBS. The donor compartments were replaced
with 300 μL peptides dissolved in PBS prepared with either H2O
or D2O. Diffusion cells were stirred by a magnetic bar at 280 rpm
at 37 1C. The samples of receptor cell were sampled at predeter-
mined time intervals and the receptor phase was immediately
refreshed by equal volume of PBS buffer to keep a constant
volume. The samples were centrifuged (4000� g for 7 min), and
the supernatant analyzed by HPLC/UV. Results are expressed as
the mean7S.D. (n¼3–4 independent samples). The osmotic
concentration differential was adjusted to 3.08, 0, –3.08 mol/L
by adding NaCl to donor or receiver compartments15.

2.5. Microneedle insertion imaging

Confocal laser scanning microscopy (CLSM) was used to observe
the microconduits created by microneedle. Skin was pierced by
microneedles coated with calcein hydrogel, and removed imme-
diately and placed upon a glass slide. The stratum comeum side at
20 μm was scanned at high speed through the Z axis (Z, defined as
perpendicular distance to the skin surface from the dermis) of a
ZEISS PASCAL inverted confocal laser scanning microscope
(LSM 510 with an attached Zeiss Axiovert 200 M microscope).

2.6. Quantitation of the peptides

The quantitative determination of tetrapeptide-3, hexapeptide,
acetyl hexapeptide-3 and oxytocin were conducted by LC-
2010 A HPLC/UV (Shimadzu, Japan). The experiments were
carried out under gradient elution mode using a mobile phase
consisting of 0.1% (v/v) trifluoroacetic acid aqueous solution and
0.1% (v/v) trifluoroacetic acid acetonitrile solution at a flow rate of
1 mL/min. The analysis was performed on a YMC-Pack ODS-A
Figure 2 Calcein fluorescence across the porcine ear skin at Z¼0, 20, 40
defined as perpendicular distance to the skin surface from the dermis. Flu
C18 column (250 mm� 4.6 mm i.d., 5 μm, YMC Inc., USA). The
injection volume was 20 μL. The column eluant was monitored at
220 nm. D2O were analyzed by measuring the intensity of the O-D
stretching vibrational band at 2512 cm�1 in infrared spectroscopic
spectra (Shimadzu, Japan).
2.7. Data analysis

The accumulative amount (μmol/cm2) of drug permeating across a
unit diffusion surface into the receptor compartment was calcu-
lated and plotted as a function of time. Steady-state skin permea-
tion rates were determined by linear regression analysis of the
amount of peptides penetrated against time. The permeation
clearance (CL, μL/h) was calculated using the following equation:
CL¼ (dCR/dt)VR/CD, where CR and CD are the drug concentration
in the receiver and donor solution, respectively, VR is the volume
of the receiver solution, and t is time.
3. Results

3.1. Fluorescence microscopic observations

In order to directly verify the formation of microconduits in the
skin, microneedles with 150 μm length were used with an insertion
system designed to pierce the skin at a constant speed. Fig. 2
shows the distribution of calcien fluorescence at skin depths of 0,
20, 40, 60, 80 and 100 μm after microneedle pretreatment.
Confocal images confirmed the formation of microconduits by
microneedle pretreatment. Calcein fluorescence was confined to
microconduits, while dots correspond to sites of microconduits
from the array. Calcein could diffuse into deeper skin layers.
At Z¼80 μm, the fluorescence of calcein around microconduits
, 60, 80 and 100 μm following microneedle pretreatment. Z direction is
orescence-emission signal of calcein is represented by green color.
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are still visible, but at Z¼100 μm, there is trace amount of calcein
fluorescence and microconduits is disappeared.
3.2. Permeation studies with hydrophilic peptides varying in
molecular weight

To assess whether microneedle pretreatment resulted in an increased
skin transport of hydrophilic peptides, the permeabilities of acetyl
hexapeptide-3 through untreated and microneedle-treated porcine ear
skin were compared. Experiments were conducted under mode of
microneedle application (auto) and the acetyl hexapeptide-3 solution
(90 mmol/L). Fig. 3 shows the cumulative amount permeated through
porcine ear skin during 24 h. The passive flux of acetyl hexapeptide-3
across untreated skin was 0.01470.002 μmoL/cm � h. After micro-
needle treatment, the flux increased to 0.4470.12 μmoL/cm � h, an
enhancement of more than 31-fold.

Four peptides (tetrapeptide-3, hexapeptide, acetyl hexapeptide-3
and oxytocin, 0.09 mol/L) were used to study the relationship
between permeability rate and molecular weight with and without
microneedle pretreatment. All of the peptides have been widely
used in medical and cosmetic industries. Table 1 summarizes the
in vitro cumulative delivery of peptides across porcine ear skin
over 24 h. Microneedle pretreatment significantly enhanced the
penetration of all peptides.

Fig. 4 shows the cumulative amount of these peptides after
application of the microneedles during 24 h. Besides the dipeptides
studied here, transport for L-carnitine (161.2 Da) was also studied.
The permeation rates of L-carnitine, tetrapeptide-3, hexapeptide,
acetyl hexapeptide-3 and oxytocin were 1.9570.21, 0.9070.09,
0.8470.11, 0.4270.14, 0.1670.05 μmoL/cm � h, respectively.
Figure 3 The permeation profiles of acetyl hexapeptide-3 across
porcine ear skin with and without pretreatment by microneedles.

Table 1 Transdermal accumulation of peptides with and
without microneedle pretreatment.

Peptides Cumulative amount (μmol/cm2)

Microneedle Passive diffusion Ratio

Oxytocin 6.6970.57 0.1270.008 55.75
Acetyl hexapeptide-3 11.1173.1 0.2970.073 38.31
Hexapeptide 17.7672.38 0.4970.12 36.24
Tetrapeptide-3 18.9675.19 0.5870.16 32.69
Fig. 5 shows an inverse relationship between permeability and
molecular weight of the peptides.

3.3. Effect of microneedles on the permeability of D2O and
hydrophilic drugs

The enhancing effects of ultrasound and iontophoresis on skin
permeation of hydrophilic compound can be explained by inducing
convective solvent flow13. In the present study, we analyzed how the
transport of the hydrophilic compound acetyl hexapeptide-3 was
improved by microneedles based on the relationship between
hydrophilic solute and vehicle (D2O) transport. To assess the skin
permeability of D2O and acetyl hexapeptide-3, the time course of
D2O flux and permeation clearance of acetyl hexapeptide-3 under
various osmotic concentrations were determined (Fig. 6). A good
correlation was observed between the acetyl hexapeptide-3 clearance
and the D2O flux (r¼0.96, slope of the regression line: 0.2370.037).
The results suggest that convection generated by microneedles plays
an important role in skin permeability of hydrophilic drugs.
4. Discussion

The present results found that pretreatment with solid micronee-
dles with a length of 150 μm create visible microconduits in a
“poke and patch” approach. The presence of microconduits created
by microneedles was in accordance with our intended purpose, i.e.
Figure 4 In vitro transdermal permeation of a series of peptides in
solution across porcine ear skin 24 h after pretreatment by microneedles.

Figure 5 Relationship between the permeation rate of five model
peptides and their corresponding molecular weight.



Figure 6 Relationship between D2O flux and permeation clearance
of acetyl hexapeptide-3.
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to puncture the epidermis without reaching nerves in the dermis. In
the “poke and patch” approach, it is very important for the
microconduits to remain open at least 72 h under occlusive
conditions16. Many microneedle-base studies have shown that
the permeability for different compounds is increased up to four
orders in magnitude17,18. As observed from Fig. 4, transdermal
permeation of all peptide was sustained for 24 h after treatment of
microneedles. Therefore, solid microneedles could be conveniently
incorporated into a transdermal patch to prolong peptide release.

Among various therapeutic peptide-delivery techniques,
microneedle-assisted peptide delivery is currently believed to be
the most efficient method. Most published studies have focused on
the high molecular weight compounds, such as protein, vaccine
and insulin19–23. Hitherto, there are few studies examining whether
microneedles could deliver peptides with various molecular
weights, especially those with low molecular weight. Even less
is known about the permeation mechanisms for these compounds.
In the present study, in vitro results on the permeation of peptides
with different molecular weights indicate that microneedles can
remarkably enhance the transdermal delivery of all hydrophilic
peptides. The skin permeation of peptides depends on their
molecular weight and decreases as the molecular weight increases.
In addition, the enhanced skin permeation of peptides produced by
microneedle pretreatment may be caused by the generation of
convection. This study demonstrates that microneedles provide an
attractive route to deliver low molecular weight peptides to the
skin. The transdermal administration of such compounds is of
significant current interest in clinical medicine and the cosmetic
industry.
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