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Abstract: We analyse the error induced by the approximation of a function by an interpolation function which is a 
combination of algebraic and first-order trigonometric polynomials. We prove that, under certain conditions, this error 
can be expressed in a similar form as in the purely polynomial case. As an application we establish in closed form the 
local truncation error for a class of extended linear multistep methods of the Adams’ type. 
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1. Introduction 

Recently we considered the problem of approximating a function f(x) by a combination of 
algebraic and first-order trigonometric polynomials [l], i.e., 

n-2 

f(x) =f,(x) := a cos kx + b sin kx + c cixi, n21. (1.1) 
i=O 

Herein k denotes a positive, real parameter. Let X := { xi 1 i = 0, 1,. . . , n } be a set of n + 1 
points satisfying x0 <xi < . -a <x,. 

subset I, c R + 

It can be shown that with each X, there corresponds a 
such that for each f(x) E C”([xo, x,]) and each k E I,, there exist unique 

coefficients a, b, co,. . . , c, _* such that 

f,(Xj) =f(xj), j=o, l)...) n. (1.2) 

It can also be shown that the set of functions {cos kx, sin kx, 1, x, . . . , x”-*} forms an extended 
complete Tchebycheff system (ECT-system) [3] over the interval lx,,, A,[ if 0 < k(x, - x0) -c T. 

This implies the following inclusion: 

Ix3]0, ---q. 
xn - x0 

(1.3) 
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For the particular case of equidistant interpolation nodes, namely xi = x0 + ih (i = 0, 1,. . . , n), 
we have proven in [l] that a unique interpolation function f,(x) exists if and only if 

In this case the n th-order interpolation function f,(x) can be expressed as follows: 

- k*d& - xo) v”-‘f(x,> - k*h+dx -x0> v”.fbn), (1.5) 
whereby s = (X - x,)/h and v denotes the backward difference operator defined by Vf( x) := 
f(x)-f(x- h). Al so in [l], useful properties of the function &(x) have been established. 
Among those, we list: 

This relation enables the recursive generation of the functions Gn,( x) (n >, 2) when starting 
from: 

2 
&(x) = p tan $kh sin kx, 

(1.7) 

(1.8) 

l Defining the differential operator 

L,:=(D2+k2)Dn-1, D:=-&-, 

the function +,,(x) E C”(R) is the unique solution of the inhomogeneous linear differential 
equation 

(L,~,&) = Jr-“, (1.10) 

which satisfies the n + 1 boundary conditions 

&(jh) =O, j=O ,..., n. (1.11) 

In general, 

J%(x) = &(f; x; 4 :=f(.4 -fn(x) (1.12) 

represents the error due to the approximation of the function f(x) by the interpolation function 
f,(x) of the mixed type defined by (1.1) and (1.2). In the next section, we will set up sufficient 
conditions for casting E,(x) into a form completely analogous to the well-known form of the 
error term for Lagrange interpolation. 
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2. Estimation of the error I&( f; X; x) 

With the notations introduced so far, the following holds. 

Theorem 1. For any k E 10, T/(X, - xO)[ there exists a smooth function 4, : II3 + R (depending 
only on X and k), such that if f E Cn+l([xO, x,]), then we can find for each x E [x0, xn] some 
5 E]x~, xn[ such that 

E,(x) =452(x)&f )G>. (2.1) 

Our proof of this theorem will be based on the following lemma. 

Lemma 2. Let y,, <Y, < - * - <yn <Y,+, and k ~10, ~r/(y~+~ -_I+,)[. Let g s C”“(LY~, Y,+~I) be 
such that 

g(y,)=O, j=O, l,..., n+l. (2.2) 

Then there exists some 5 E ]yO, y,, 1[ such that 

(LgW = 0. (2.3) 

Proof of Theorem 1. Fix some f E Cn+‘([xO, x,]), and let f, be its nth-order interpolation 
function, and E,(x) the corresponding error function. We have (L, f,)( x) = 0, and therefore E,, 
satisfies: 

(LEn)b) = b%f )(x)7 

E,(xj) =O, j=O, l,..., n. (2.4 

Since k E IO, O/(x, - xO)[, it follows from (1.3) that also k E Ix and therefore (2.4) has a unique 
solution. 

Next, let qn(x) E CM(R) be the unique solution of the problem 

1 

j 

VX 

= 0, 

It is then clear that (2.1) holds for x E X: we can take any 6 E]x~, xn[. To prove (2.1) for all 
other x E [x0, xn] we fix some x” E [x0, xn], with x” P X, and define g, E C”+‘([x,,, x,]) by 

g,:= \C/,(x)E&) -AA%%(x). (2.6) 

It follows immediately from the properties of qn(x) and E,(x) that 

g,(x)=0 VXEX and g,(Z)=O. 

Hence g:(x) vanishes in n + 2 different points, and since also k ~10, T/(X, - x,)[, we can apply 
Lemma 2 to conclude that there exists some 5 E 1x0, xn[ such that 

V,g,)(8 = 0. 

Using (2.4) and (2.5) this gives 

EB) - Az(x”)~Lf HO = 03 
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i.e., we have (2.1) for x = x”. Since the point X E [x0, x,] can be chosen 
Theorem 1. 

arbitrarily this proves 

It remains to prove Lemma 2. Suppose the hypotheses of Lemma 
g( yi) = g( yj+r) = 0 (j = 0, 1,. . . , n), there exists for each j = 0, 1,. . . , n 

2 are satisfied. Since 

a point zj Elyj, yj+d 
such that (Dg)( zj) = 0. Repeating this argument n - 1 times we arrive at three different points 
a, b, c E]Y~, yn+J, with a < b < c, and such that 

(D”-‘g)( a) = (D”- ig)( b) = (D”-‘g)( c) = 0. (2.7) 

We will show that this implies that 

(D2 + k’)(D”-ig)(<) = 0 (2.8) 

for some 5 E]a, c[. Since L, = (D2 + k2)D”-‘, this proves Lemma 2. 0 (Lemma 2) 

To prove (2.8) we define u E C2([0, IT]) and ii E C’([O, ~1) by 

.(x):=(D”-‘g)(a+x(y)), XE[O, 71, 

and 

ii(x) := (D2 + /%‘)u(x), /% = yk, 

= (~)2(D2+k2)(Dn-1g)(a+x(~)). (2.10) 

Since 0 < k-c ~/(y~+~ -y,) c IT/( c. - a), it follows that 0 < k < 1, and proving (2.8) is equiv- 

alent to showing that 

ii{63 = 0 (2.11) 

for some [E IO, IT[. Moreover (2.7) implies that 

(2.9) 

U(0) = 24(Z) = U(T) = 0, with Z:= (G)TE]O, IT[. 

It follows from the first equality in (2.10) and from u(0) = 0, that 

A 1 x 
U(X) = x sin ix + f 

J 
sin L(x-y) ii(y) dy, 

0 
(2.12) 

for some constant A. The condition U(T) = 0 gives then 

1 A=-_ 
J 

= sin &r-y) ii(y) dy, 
sin kq o 

and hence 

U(X) = - - 
1 n 

/ k sin I& o 
sin &(T -y) sin Lx ii(y) dy 

+Z k ox sin i(x-y) ii(y) dy 
/ 

= ,,kx, Y);(Y) dy, J 
(2.13) 
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with 

G(x, Y) = g s& * sin k(7r-X) sin iy ifO<y<xxT, 

-1 

= K sin KIT 
sin ix sin L(T-y) ifO<x<y<a. (2.14) 

It follows that G E C’([O, ~1 x [0, ~1) and that 

G(x, y) -co vb, Y) do, dxhd. (2.15) 

Now suppose that (2.11) does not hold, i.e., we have either ii(x) > 0 for all x E IO, IT[ or 
G(x) < 0 for all x ~10, IT[. In both cases it then follows from (2.13) and (2.15) that u(a) f 0, 
which contradicts our earlier condition u( 2) = 0. Hence i7( x) must vanish at some point 
{E IO, IT[, and the proof is complete. 0 

Remarks. (i) It should be mentioned that within the framework of the theory of ECT-systems [3], 
an alternative but less elementary proof of Theorem 1 could be given. Moreover, it is readily seen 
from our proof that Theorem 1 can be extended in the following way: 

Let a, b be two points such that - 00 < a < x0 < . - . <x,<b< +oo. ForanykE]O, T/(b- 

a)[ there exists a smooth function I,!J, : R + R (depending only on X and k), such that if 
f E C”+‘([a, b]), then we can find for each x E [a, b] some 5 E]a, b[ such that (2.1) holds. 
(ii) The function q,,(x) does not change sign in each of the intervals ]xi, xi+J (i = 0, 1,. . . , n 

- l), i.e., we have q,,(x) # 0 for all x E [x0, x,]\X. To see this, suppose the contrary; then 
Lemma 2 would imply that (L,+,)(E) = 0 for some 6 E]x,, x,[, which contradicts (L,+,)(x) = 1. 
A similar argument shows that also (D+,)(x) # 0 for x E X. Indeed, suppose that (D$,)(xj) = 0 
for some j E (0, 1,. . . , n}. Since also (D+,)(zi) =0 for some z~E]x,, xi+r[ and for all i= 
0, l,..., n - 1, we conclude that (D$,)( ) x vanishes in n + 1 points. An application of Lemma 2 
then implies that (L,_,DJ/,)( x) = (L,J/,)( x vanishes at some intermediate point [, which again ) 
contradicts (L,+,)(x) = 1. 

It follows from these properties of q,(x) that the function (L, f )( x) defined by 

&f )<x> = 

I 

J%(f; X; x) 

&z(x) 
for x E [x0, xn] \X, 

WJ(f; X; x> 

PY4J(x> 

forxEX 
9 

(2.16) 

is a continuous function. From Theorem 1 we can then conclude that for each x E [x0, xn] there 
exists some 71 E [x0, xn] such that 

Under 
(iii) 

define 

(2.4)) 

(L,f )(x1 = &If )(d- (2.17) 

the same assumptions as in (i) we can replace the interval [x0, x,] by the interval [a, b]. 
The function #,,(x) appearing in (2.1) can easily be determined for given X. Indeed, if we 
the particular function f”(x) := x”-‘/k*(n - l)!, then (L,f”)(x) = 1 and hence (using 

G,(x) =E,(f:, X; x). 
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For the particular case of equidistant nodes xi = x0 +jh (j = 0, 1,. . . , n) the function qn(x) 
turns out to be proportional to the function +,,( x - x0) introduced in (1.5). This can be verified 
by comparing (2.5) with (1.10) and (1.11); this shows that the proportionality factor is h”-‘. 

Hence we have in this case that 

E,(~)=h”-~$,(x-x,,)(L,f)(5), x0(,$(x,, ifO<nhk<r. (2.18) 

Again, under the assumptions of (i) we also have 

E,(x)=h”-*+,(x-x,,)(L,f)(S), ac$<b, ifO<(b-a)k<T. (2.19) 

3. Application 

An interesting application of polynomial interpolation is the construction of multistep 
methods for ODES. Using our mixed type of interpolation and the corresponding error, new 
multistep methods and their local truncation errors can be derived. We illustrate this by 
considering methods of the Adams’ type for first order ODES. It can be verified that the new 
methods are superior when one exploits the particular form of the appearing error terms. 

We want to calculate numerically the value in the equidistant nodes xi = x,, +jh ( j = 0, 1,. . .) 

of the solution y(x) of the following first-order initial-value problem: 

y’=fk Y>, Y(XO) = a. 

The first step consists in integrating (3.1) over the interval [xP, x,+r]: 

P-1) 

Ybp+l > -Y(x,) = /-Xp+‘f(x, Y(X)> dx- (34 

The classical Adams-Bashforth formulae [2] are obtained by replacing under the integral sign 
the function f(x, y(x)) by the interpolation polynomial p,(x) passing through the points 
(x,, f(xp, .Y(x,))), (+r, f(xp-r, Y(x,-r))), . . . Jxp-nr f(x,-,,, Y(+,))). For n = 3, e.g., this 
results in the following explicit formula: 

y,+t -YP = h[ f(x,, Y,) + : TJf(+ Y,) + & v2f(x,> Y,) + $ v3f(xP, Y,,] 9 (3.3) 

where yP is the calculated approximation of y( xP). The local truncation error for this method is 
known [2] to be given by 

%h4fi”(n), xp-3 < 17 < Xp+l* (3.4) 

An analogous formula, which we call “extended” Adams-Bashforth formula, is obtained 
by replacing f(x, Y(x)) in the right-hand side of (3.2) by the mixed interpolation function 
f,(x) through the n + 1 points (x4’ f(x,, Y(X,))), (xp4 f(+rIr Y(X,-I))), . . . 2 
(x~_~, f(x,_,, y(x,_,))). Using expression (1.5) and definition (2.16) in the extended form 
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whereby a = xp_,, and b = x~+~, (3.2) can be rewritten as: 

Ybptl ) -Y(X,) = ,g+ V’fb,~ Yp)/,‘( -j’) dt 

-k* on-‘f(x,, Yp)JX’+‘%b - Xp-n) dx 
XP 

-k* v”f(x,, Yp)JXp+‘%+*(x - +n) dx 
XP 

+ h”-1 
J XP+‘~n(~ - +J(~nf)(x) dx 
XP 

if 0 c (n + 1)kh < T. (3.5) 

We mention explicitly the results for n = 3. The (explicit) extended Adam-Bashforth formula 
becomes in backward difference form: 

y,+t =yP + hf(x,, yP) + +h vf(x,, Y,) 

2 sin*kh - 1 3 cos kh - 2 
kh sin kh + 2(1 - cos kh) 1 v*“KQ Yp) 

-1-2~0s kh 3 
2kh sin kh + 4(1 - cos kh) 1 v3f(xp Y,L (3.6) 

which is the counterpart of (3.3). On account of the midvalue theorem and of property (2.17) the 
local truncation error takes on following interesting form: 

h* 23 

[ 

kh sin kh - 2 cos 2kh (1 - cos kh ) =- -- 
k* 12 2(1 - cos kh) kh sin kh 1 (L3fhL 

X p-3< %<Xp+l, if 0 < 4kh -c IT, (3.7) 

since c$~( x - x~_~) does not change sign in the integration interval. 
We can also derive implicit methods of the Adams’ type, which are called Adams-Moulton 

formulae. The classical ones are obtained by approximating f(x, y(x)) in (3.2) by the interpola- 
tion polynomial based on the n + 1 interpolation nodes xP + r, x,,, . . . , xp_,,+ 1. For n = 3, the 
Adams-Moulton method gives the equations: 

Yp+l-Yp=h[f(Xp+l, Yp+,H Vf(Xp+l, Yp+J 

-A v *f &+I, Yp+,) - ii v3f (Xp+l, Yp+d] 9 (3.8) 

with a local truncation error of the same order as (3.4): 

- %ih4fiv(t'), x,-2<17<x,+,. (3.9) 
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The same approach, but using our mixed type of interpolation, gives the equations: 

VP+1 -r,= t (-lYh Vjfbp+l, Yp+lqJj dl 
j=O 

- k2 on-‘f (x p+1> Yp+l)~X’+‘+n(x - xpn+A dx 
xP 

- k2 v"f (+,+l, Yp+l)JXp+‘a+lb - Xp-n+l) dx, 
*P 

with local truncation error 

HXp+’ 
+n(x-xp_n+l)(inf)(x) dx, ifO<nkh<rr. 

xP 

In particular, the “extended” Adams-Moulton method for n = 3 reads 

~,+i =yP + hf (xp+l, ~p+d - :h of (xp+l, Y,+,) 

cos kh cos kh 
- kh sin kh + 2(1 - cos kh) 1 v2f( Xp+l, Yp+l > 

[ 

1 1 
i-h -2khsinkh+4(1-coskh) 1 v3f(x,+1, Yp+A 

with local truncation error 

(3.10) 

(3.11) 

(3.12) 

kh sin kh - 2(1 - cos kh) cos kh 

2(1 - cos kh) kh sin kh 1 (L3f h2L 

x~__~ < q2 < xP+i, if 0 < 3kh -C n, 

which is completely analogous to (3.7). 

(3.13) 

The appearance of the particular linear combination of higher-order derivatives taken in one 
intermediate point vi in (3.7) or q2 in (3.13), allows us to make an optimal choice of k2 for the 
prediction and correction of y,+i. Indeed, if we choose k2 such that 

f iv(d + k2f “(d = 0, 

to predict yP+ i and 

f Yd + k2f “(d = 0, 

(3.14) 

(3.15) 

to correct this estimate, then we make no additional error in the calculation of 
previously calculated values. Of course, we do not know the intermediate 
calculate k2 by demanding for instance that 

f iv(xp, yp) + k2f “(xp, Y,) = 0, 

yP + 1 starting from 
points, but if we 

the local truncation error will be small if the derivatives of f (x, y(x)) do not 

(3.16) 

behave badly. The 
derivatives required in (3.16) are calculated by means of finite-difference formulae which only 
inyolve previously calculated values yP_j ( j > 0). Therefore, no additional function evaluations 
in comparison with the classical methods are needed for the calculation of k2. Numerical 
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experiments show that for ODES, with a solution carrying some oscillatory character in it, this 
procedure gives much better results than those obtained by the classical methods [5,6]. The same 
conclusion holds for second-order ODES when linear multistep methods of the Numerov type are 
extended on the basis of mixed type interpolation [4]. These methods can also be used for solving 
systems of differential equations. One then has to use, according to the prescription (3.16), 
different values of k for different components. 

It can happen that the calculated value of k does not satisfy the bounds which guarantee the 
particular form (e.g., (3.7) or (3.13)) of the local truncation error. It should, however, be 
emphasized that these bounds on k are only sufficient conditions, and in practice one finds that 
the accuracy of the results obtained by our method does not depend on whether or not the 
bounds are systematically satisfied. 

Finally, it should be mentioned that in numerical applications the value of k* which is the 
solution of an equation of the type (3.16) can become negative. If such is the case, it is allowed to 
formally replace in all foregoing formulae k by ik (i* = - l), an operation which in particular 
turns all trigonometric functions into their hyperbolic equivalents. Moreover, all restrictions on 
the value of k reduce to the unique condition k # 0. 
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