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Abstract

We consider the Ginzburg–Landau functional defined over a bounded and smooth three-dimensional
domain. Supposing that the strength of the applied magnetic field varies between the first and second critical
fields, in such a way that HC1 � H � HC2 , we estimate the ground state energy to leading order as the
Ginzburg–Landau parameter tends to infinity.
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1. Introduction and main result

In the last two decades, much progress has been done in the analysis of the celebrated
Ginzburg–Landau model of superconductivity. The Ginzburg–Landau model successfully de-
scribes the behavior of a superconductor subject to an external applied magnetic field, and has
a similar structure to other models from condensed matter physics, that are being analyzed
currently, like superfluidity, Bose–Einstein condensates and liquid crystals (see [1,18] and the
references therein).
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The Ginzburg–Landau model is a rich mathematical structure and a diversity of different
mathematical tools, including linear analysis, potential theory and topological nonlinear analy-
sis, all in a variational setting, are needed in its analysis. In the pioneering work [7], Bethuel,
Brezis and Helein study a Ginzburg–Landau model without an applied magnetic field. In a spe-
cial singular limit, they identify specific singularities of the solution and call them vortices. The
approach in [7] gives what is currently the standard definition of vortices. A rich mathematical
literature develops the analysis in [7] to fit other analogous problems, especially the one in su-
perconductivity, as one can see the monograph [21] and the references therein. Linear analysis,
especially the important semi-classical methods in spectral theory, are also crucial in the under-
standing of the Ginzburg–Landau model when the intensity of the external magnetic field is very
strong. The monograph [10] (and references therein) is totally devoted to this subject (further
details and comments on these results will be given below).

The subject we discuss in this paper is the energy of the Ginzburg–Landau model in a three-
dimensional domain and in an asymptotic regime where vortices are expected to exist. Unlike
the model in a two-dimensional domain, the identification of vortices in the presence of a
magnetic field remains unclear. In [21], a very detailed study of vortices has been given in a
two-dimensional domain, and it is mentioned, in a list of open problems, that the generalization
to three-dimensional domains is quite interesting and difficult. In this paper, we obtain a result
concerning the energy of the model by a rather ‘short’ proof that does not involve the explicit
construction of ‘three-dimensional’ vortices. The proof is by combining techniques from linear
analysis that we learn from [10], together with results concerning the two-dimensional model
that we borrow from [21]. Since the Ginzburg–Landau model in three dimensions is similar to
that of the Landau–de Gennes model of liquid crystals [15,17], it is expected that the approach
of this paper will serve in the analysis of the Landau–de Gennes model as well.

Consider a bounded open and simply connected domain Ω ⊂ R
3 with smooth boundary. Sup-

pose that Ω models a superconducting sample subject to an applied external magnetic field. The
energy of the sample is given by the Ginzburg–Landau functional

E 3D(ψ,A) = E 3D
κ,H (ψ,A) =

∫
Ω

(∣∣(∇ − iκHA)ψ
∣∣2 + κ2

2

(
1 − |ψ |2)2

)
dx

+ κ2H 2
∫
R3

|curl A − β|2 dx. (1.1)

Here κ and H are two positive parameters, the wave function (order parameter) ψ ∈ H 1(Ω;C),
the induced magnetic potential A ∈ Ḣ 1

div,F(R3), where Ḣ 1
div,F(R3) is the space introduced

in (1.2) below. Finally, β is the direction of the external magnetic field that we choose con-
stant, β = (0,0,1). Here, the scaling in the functional (1.1) and its variational space are taken
as in [10]. In [21], the scaling for the intensity of the external magnetic field (denoted hex) is
different and selected so that hex = κH . We choose the scaling from [10] for purely convenience
reasons when estimating the ground state energy of the functional.

Let Ḣ 1(R3) be the homogeneous Sobolev space, i.e. the closure of C∞
c (R3) under the norm

u �→ ‖u‖Ḣ 1(R3) := ‖∇u‖L2(R3). Let further F(x) = (−x2/2, x1/2,0). Clearly div F = 0.
We define the space

Ḣ 1 (
R

3) = {
A: div A = 0, and A − F ∈ Ḣ 1(

R
3)}. (1.2)
div,F
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Critical points (ψ,A) ∈ H 2(Ω;C) × Ḣ 1
div,F(R3) of E 3D satisfy the Ginzburg–Landau equa-

tions ⎧⎪⎪⎨⎪⎪⎩
−(∇ − iκHA)2ψ = κ2(1 − |ψ |2)ψ in Ω,

curl2 A = − 1

κH
Im

(
ψ(∇ − iκHA)ψ

)
1Ω in R

3,

ν · (∇ − iκHA)ψ = 0 on ∂Ω,

(1.3)

where 1Ω is the characteristic function of the domain Ω , and ν is the pointing interior unit normal
vector of ∂Ω .

For a solution (ψ,A) of (1.3), the function ψ describes the superconducting properties of the
material and H curl A gives the induced magnetic field. The number κ is a material parameter,
and the number H is the intensity of a constant magnetic field externally applied to the sample.
As in [10,21], we focus on the regime of large values of κ , κ → ∞. In this regime one distin-
guishes three critical values HC1 , HC2 and HC3 for the applied field. Those critical fields are
roughly described as follows. If H < HC1 , the material is in the superconducting phase. Math-
ematically, this corresponds to |ψ | > 0 for any minimizer (ψ,A) of (1.1). If HC1 < H < HC2 ,
the magnetic field penetrates the sample in quantized vortices (corresponding to zeros of ψ ).
If HC2 < H < HC3 , superconductivity is confined to the surface of the sample (corresponding
to |ψ | very small in the bulk). Finally, if H > HC3 , superconductivity is lost, which is reflected
by ψ = 0 everywhere in Ω . In this paper, we will focus on the regime when the applied magnetic
field varies between HC1 and HC2 . In the scaling we choose in this paper, this regime corresponds
to lnκ/κ � H � κ as κ → ∞. Here, if a(κ) and b(κ) are two positive functions, the notation
a(κ) � b(κ) means that a(κ)/b(κ) → 0 as κ → ∞.

In the case of two-dimensional domains, which correspond to infinite cylindrical super-
conducting samples, there exists a quite satisfactory analysis of the critical fields HC1 , HC2

and HC3 . As we cannot give an exhaustive list of references, we invite the reader to see
the monographs [10,21], where a detailed review of the material is present. Still in the two-
dimensional setting, the most accurate available characterization of the critical field HC2 is given
in [12,11].

The situation is less understood in three dimensions, especially the regime of magnetic
fields close to the first critical field HC1 . For a superconductor occupying a ball domain,
a candidate for the expression of the critical field HC1 is given in [3]. Related results are
obtained for superconducting shells in [8]. For general domains, the analysis of the crit-
ical field HC3 started in [16], then a sharp characterization of HC3 is given in [9]. In
the papers [4,17], it is proved that superconductivity is confined to the surface of the do-
main, provided that the magnetic field is close to and below HC3 . A fine characterization
of the critical field HC2 together with leading order estimates of the ground state energy in
large magnetic fields are recently obtained in [13,14]. This paper is complementary to those
in [13,14].

The ground state energy of the functional in (1.1) is defined as follows:

C0(κ,H) = inf
{

E 3D(ψ,A): (ψ,A) ∈ H 1(Ω;C) × Ḣ 1
div,F

(
R

3)}. (1.4)

The main result of this paper is Theorem 1.1 below. It is a generalization of an analogous result
proved for the two-dimensional functional in [19].
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Theorem 1.1. Suppose that the magnetic field H is a function of κ and satisfies

lnκ

κ
� H � κ, as κ → ∞.

Then, the ground state energy in (1.4) satisfies

C0(κ,H) = |Ω|κH ln

√
κ

H
+ o

(
κH ln

√
κ

H

)
, as κ → ∞. (1.5)

As immediate consequences of Theorem 1.1 we obtain that, if (ψ,A) is a minimizer of (1.1),
then the induced magnetic field curl A is close to the applied magnetic field β , and that the mag-
nitude of the order parameter |ψ | is close to 1 almost everywhere in Ω . The physical meaning of
this is that the applied magnetic field penetrates the sample almost everywhere and concentrates
along ‘vortex lines’. On these vortex lines the order parameter ψ is expected to have zeros (this
is not rigorously proved in this paper), but away of them, the sample remains in the supercon-
ducting phase (|ψ | is close to 1). Therefore, the regime considered in Theorem 1.1 corresponds
to what is actually named in the physics literature as the mixed phase.

In the course of the proof of Theorem 1.1, we obtain the following conclusions as immediate
corollaries.

Corollary 1.2. Under the assumptions made in Theorem 1.1, if (ψ,A) ∈ H 1(Ω;C) × Ḣ 1
div(R

3)

is a minimizer of the energy in (1.1), then, as κ → ∞,

curl A − β → 0 in H 1(
R

3;R
3), (1.6)

eκ,H (ψ,A) → dx in D′(Ω), (1.7)

μκ,H (ψ,A) → (0,0, dx) in D′(Ω;R
3). (1.8)

Here, dx is the Lebesgue measure in Ω , the measure eκ,H (ψ,A) and the current μκ,H (ψ,A) are
respectively

eκ,H (ψ,A) = (|(∇ − iκHA)ψ |2 + κ2

2 (1 − |ψ |2)2)

κH ln
√

κ/H
dx, (1.9)

μκ,H (ψ,A) = curl

(
− 1

κH
Im

(
ψ(∇ − iκHA)ψ

)) + curl A. (1.10)

In two dimensions, μκ,H is a measure and it is proved that it gives the density of vortices,
hence it is called the vorticity measure, see [21].

The proof of Theorem 1.1 is obtained as follows. First we start by the analysis of an approx-
imate problem in a ‘large’ cube. The cube geometry allows us to link this problem to another
two-dimensional problem in a square. The later is analyzed using tools from [21].

Using a ground state of the approximate problem, we construct a test configuration whose
energy provides an upper bound of the ground state energy C0(κ,H). As a consequence of this
upper bound, we obtain that, for a minimizer (ψ,A) of (1.1), the induced magnetic field curl A
is close to the applied field β in L2-norm. Using this and the regularity of the curl–div system
in R

3, we get an estimate of A − F in C0,1/2-norm.
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The a priori estimates obtained for minimizers allow us to determine a lower bound of the
energy that matches with the obtained upper bound. Actually, we use the ‘semi-classical’ local-
ization techniques developed in [10] to reduce the problem to that of the approximate problem in
a cube. Then the analysis of the later problem is used to obtain the matching lower bound.

An interesting aspect of the analysis is that we do not use constructions involving vortices,
i.e. we do not localize the set where {x ∈ Ω: |ψ(x)| � 1/2} (as this is certainly difficult in
three dimensions). This is a significant difference between the strategy of our proof and the one
given in [19] for the two-dimensional functional. However, the construction of ‘vortex-balls’
for the two-dimensional functional ‘implicitly’ appears in the analysis of the three-dimensional
approximate problem, as we refer to results of [21,19]. In the context of the Ginzburg–Landau
model, the implementation of ‘semi-classical’ techniques to address situations where vortices
exist seems rather new.

The analysis presented in Section 2 combined with a recently proved estimate in [13] enables
us to prove a theorem of independent interest (Theorem 2.4 below), which concerns the asymp-
totic behavior of a limiting constant appearing in [20], thereby answering a question raised by
the authors of the aforementioned paper.

The paper is organized as follows. Section 2 is devoted to the analysis of the approximate
problem. In Section 3, an upper bound of the ground state energy is obtained. In Section 4,
interesting estimates are obtained for minimizers of (1.1). Section 5 is devoted to the proof of the
lower bound.

Remark on notation.

• The letter C denotes a positive constant that is independent of the parameters κ and H , and
whose value may change from line to line.

• If a(κ) and b(κ) are two functions with b(κ) = 0, we write a(κ) ∼ b(κ) if a(κ)/b(κ) → 1
as κ → ∞.

2. The approximate problem

2.1. Two-dimensional energy

Let K = (−1/2,1/2)× (−1/2,1/2) be a square of unit side length, hex and ε be two positive
parameters. Consider the functional defined for all u ∈ H 1(K;C),

E2D(u) =
∫
K

(∣∣(∇ − ihexA0)u
∣∣2 + 1

2ε2

(
1 − |u|2)2

)
dx. (2.1)

Here A0 is the vector potential:

A0(x1, x2) = 1

2
(−x2, x1), (x1, x2) ∈ R

2, (2.2)

whose curl is equal to 1.
Notice that the functional E2D is a simplified version of the full Ginzburg–Landau functional

considered in [19], as the magnetic potential in (2.1) is given and not an unknown of the prob-
lem.
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We introduce the ground state energy

m0(hex, ε) = inf
{
E2D(u): u ∈ H 1(K;C)

}
. (2.3)

Since E2D is bounded from below, there exists a ground state (minimizer) associated to
m0(hex, ε). If u is such a ground state, then it results from a standard application of the max-
imum principle that

|u| � 1 in K. (2.4)

Consider the regime of magnetic fields hex as in Theorem 2.1 below. We can obtain a lower
bound of m0(hex, ε) (or rather of E2D(u), with u a ground state) exactly as in [21, Section 8.2],
by using a scaling argument that reduces the situation to magnetic fields of lower order (precisely
of order |ln ε|). In this way, we get the following theorem.

Theorem 2.1. Assume that hex is a function of ε such that

|ln ε| � hex � 1

ε2
, as ε → 0.

Then the ground state energy m0(hex, ε) satisfies

m0(hex, ε) � hex ln
1

ε
√

hex

(
1 + o(1)

)
,

as ε → 0.

Minimization of the functional E2D over ‘magnetic periodic’ functions appears naturally as
well. Let us introduce the following space

Ehex = {
u ∈ H 1

loc

(
R

2;C
)
: u(x1 + 1, x2) = eihexx2/2u(x1, x2),

u(x1, x2 + 1) = e−ihexx1/2u(x1, x2)
}
, (2.5)

together with the ground state energy

mp(hex, ε) = inf
{
E2D(u): u ∈ Ehex

}
. (2.6)

Theorem 2.2. Assume that hex is a function of ε such that

|ln ε| � hex � 1

ε2
, as ε → 0.

Then the ground state energy mp(hex, ε) satisfies

mp(hex, ε) = hex ln
1

ε
√

hex

(
1 + o(1)

)
,

as ε → 0.
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Proof. Since the restriction of a function in Ehex to K is a function in H 1(K), we get that
mp(hex, ε) � m0(hex, ε), where m0(hex, ε) is the ground state energy in (2.3). Theorem 2.1 then
gives us a lower bound of mp(hex, ε).

We prove the upper bound by computing the energy of a test function u constructed in [6]. Let
N be the largest positive integer satisfying N �

√
hex/2π < N + 1. Divide the square K into N2

disjoint squares (Kj )0�j�N2−1 each of side length equal to 1/N and center aj .
Let h be the unique solution of the problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−
h + hex = 2πδa0 in K0,

∂h

∂ν
= 0 on ∂K0,∫

K0

hdx = 0.

Here ν is the unit outward normal vector of K0. By uniqueness of h as solution of the afore-
mentioned problem, h is symmetric with respect to the axes of the square K0 and hence satisfies
periodic conditions on the boundary of K0. Moreover, the function v(x) = h(x) − ln|x − a0| is
smooth in K0, since −
v + hex = 0. Consequently, through a scaling argument, it is easy to
check that, as ε → 0, ∫

K0\B(a0,ε)

|∇h|2 dx � 2π ln
1

εN
+ O(1)

� 2π ln
1

ε
√

hex
+ O(1).

We extend h by periodicity in the square K . Let φ be a function (defined modulo 2π ) satisfying
in K \ {aj : 0 � j � N2 − 1},

∇φ = −∇⊥h + hexA0.

Here ∇⊥ = (−∂x2 , ∂x1) and A0 is the magnetic potential in (2.2).
If x ∈ K0, let ρ(x) = min(1, |x − a0|/ε). We extend the function ρ by periodicity in the

square K . We put u(x) = ρ(x)eiϕ(x) for all x ∈ K . Then u can be extended as a function in the
space Ehex in (2.5), see [5, Lemma 5.11] for details.

The energy of u is easily computed, since u is ‘magnetic periodic’. Actually,

E2D(u) = N2 ×
∫
K0

(
ρ2|∇h|2 + |∇ρ|2 + 1

2ε2
(1 − ρ)2

)
dx

� N2 ×
(

2π ln
1

ε
√

hex
+ O(1)

)
.

Since, N = √
hex/2π(1 + o(1)) as ε → 0, and mp(hex, ε) � E2D(u), we deduce that

mp(hex, ε) � hex ln
1

ε
√

hex

(
1 + o(1)

)
,

as ε → 0. �
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Since m0(hex, ε) � mp(hex, ε), we get as a corollary of Theorems 2.1 and 2.2:

Corollary 2.3. Let m0(hex, ε) be the ground state energy introduced in (2.3) above. Suppose that
hex is a function of ε and |ln ε| � hex � 1/ε2 as ε → 0. Then

m0(hex, ε) = hex ln
1

ε
√

hex

(
1 + o(1)

)
,

as ε → 0.

Theorem 2.2 serves in answering a question of independent interest arising in [20]. Consider
two constants b ∈ (0,1) and R > 0. Let KR = (−R/2,R/2) × (−R/2,R/2). If u ∈ H 1(KR),
we define the energy

FKR
(u) =

∫
KR

(
b
∣∣(∇ − iA0)u

∣∣2 + 1

2

(
1 − |u|2)2)

dx,

together with the ground state energy

ep(b,R) = inf
{
FKR

(u): u ∈ ER

}
.

Here A0 is the magnetic potential introduced in (2.2) and ER is the space introduced in (2.5)
(with hex = R and xi + 1 replaced by xi + R). It is proved that, for all b ∈ (0,1), there exists
a constant f (b) such that

f (b) = 1

2
lim

R→∞
ep(b,R)

R2
. (2.7)

The limiting constant f (b) appeared in [20,2], then it is recently studied with different tools
in [13]. This limiting constant describes the ground state energy of both two- and three-
dimensional superconductors subject to high magnetic fields (see [13]).

The behavior of the function f (b) as b → 1− is analyzed in details in [13]. However, the
behavior as b → 0+ remains open. Only a non-optimal estimate on f (b) is given as b → 0+
in [20]. Here, using Theorem 2.2 and an estimate in [13], we describe the leading order asymp-
totic behavior of f (b) as b → 0+.

Theorem 2.4. Let f (b) be as defined in (2.7). Then, as b → 0+, f (b) satisfies

f (b) = b

2
ln

1√
b

(
1 + o(1)

)
.

Remark 2.5. In [20], it is proved that

b − b2

2
� f (b) � b

2
ln

1√
b

(
1 + o(1)

)
,

as b → 0+.
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Proof of Theorem 2.4. It is proved in [13, Theorem 2.1 and Proposition 2.8] that there exist
universal constants C and R0 such that

∀b ∈ (0,1), ∀R � R0,

∣∣∣∣2f (b) − ep(b,R)

R2

∣∣∣∣ � C

R
. (2.8)

Let hex = R2 and ε = √
b/R. A scaling argument shows that

ep(b,R) = bmp(hex, ε). (2.9)

We select R = 1/b so that as b → 0+ we have ε → 0 and |ln ε| � hex � ε−2. Theorem 2.2 then
tells us that

mp(hex, ε) = hex ln
1

ε
√

hex

(
1 + o(1)

)
.

We insert this estimate into (2.9) then we substitute the values hex = R2 and ε
√

hex = √
b.

Finally, inserting the resulting estimate into (2.8) finishes the proof of the proposition. �
2.2. Three-dimensional energy

If D is an open set of R
3 and u ∈ H 1(D;C), we define the energy

GD(u) =
∫

QR

(
b
∣∣(∇ − iF)u

∣∣2 + 1

2

(
1 − |u|2)2

)
dx. (2.10)

Here F is the magnetic potential:

F(x1, x2, x3) = (−x2/2, x1/2,0), (x1, x2, x3) ∈ R
3, (2.11)

whose curl is equal to 1.
Let b and R be two positive parameters. Consider a cube QR of side length R defined as

follows:

QR = (−R/2,R/2) × (−R/2,R/2) × (−R/2,R/2). (2.12)

We introduce the ground state energy

M0(b,R) = inf
{
GQR

(u): u ∈ H 1(QR;C)
}
. (2.13)

In the next theorem, we give an asymptotic lower bound of the ground state energy M0(b,R) as
b → 0 and R → ∞ simultaneously, in such a way that ln(Rb−1/2) � R2.

Theorem 2.6. Suppose that the positive parameters b = b(ε) and R = R(ε) are functions of
a parameter ε such that

b(ε) → 0, R(ε) → ∞, and
1

R(ε)2
ln

R(ε)√
b(ε)

→ 0,

as ε → 0.
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Then, the ground state energy M0(b,R) satisfies

M0(b,R)

R3
= b ln

1√
b

(
1 + o(1)

)
,

as ε → 0.

Proof. Let hex = R2 and ε = √
b/R. By the assumption on b and R, it is easy to see that ε → 0

and |ln ε| � hex � 1/ε2.
Consequently, Theorem 2.1 tells us that the ground state energy m0(hex, ε) in (2.3) satisfies

m0(hex, ε) = hex ln
1

ε
√

hex

(
1 + o(1)

)
.

We will prove that

M0(b,R) = bRm0(hex, ε),

which will immediately give us the asymptotic estimate in Theorem 2.6.
Let u ∈ H 1(QR;C), K = (−1/2,1/2)× (−1/2,1/2) and Q1 = K × (−1/2,1/2). Define the

rescaled function ũ ∈ H 1(Q1;C) as follows:

∀x ∈ Q1, ũ(x) = u(Rx).

It is easy to check that

GQR
(u) = bR

1/2∫
−1/2

(∫
K

(∣∣(∇ − ihexF)̃u
∣∣2 + 1

2ε2

(
1 − |̃u|2)2

)
dx⊥

)
dx3

� bR

1/2∫
−1/2

(∫
K

(∣∣(∇x⊥ − ihexF)̃u
∣∣2 + 1

2ε2

(
1 − |̃u|2)2

)
dx⊥

)
dx3.

Here, if x = (x1, x2, x3) ∈ R3, we write x⊥ = (x1, x2) and ∇x⊥ = (∂x1 , ∂x2). Then, recalling the
definition of m0(hex, ε), we get

GQR
(u) � bR

1/2∫
−1/2

m0(hex, ε) dx3 = bRm0(hex, ε).

Taking the infimum over all functions u ∈ H 1(QR;C), we get that M0(b,R) � bRm0(hex, ε).
Let uhex,ε be a ground state of E2D, i.e. E2D(uhex,ε) = m0(hex, ε). Define the function

u :QR � x �→ uhex,ε(x⊥/R).

Then, GQR
(u) = bRE2D(uhex,ε), thereby showing that M0(b,R) � bRm0(hex, ε). �
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3. Upper bound of the energy

The aim of this section is to give an upper bound on the ground state energy C0(κ,H) in (1.4).

Theorem 3.1. Assume that the magnetic field H satisfies lnκ/κ � H � κ as κ → ∞. Then the
ground state energy C0(κ,H) in (1.4) satisfies

C0(κ,H) � |Ω|κH ln

√
κ

H

(
1 + o(1)

)
, (3.1)

as κ → ∞.
Furthermore, there exists a constant κ0 such that, if κ � κ0 and (ψ,A) is a minimizer of the

functional in (1.1), then

∥∥curl(A − F)
∥∥

L2(R3)
� 2|Ω|√

κH

√
ln

√
κ

H
. (3.2)

Proof. Notice that if (ψ,A) is a minimizer of (1.1), then E 3D(ψ,A) = C0(κ,H). Consequently,
the estimate in (3.2) follows immediately from the upper bound in (3.1).

Let b = H/κ and � = ( κH
lnκ

)1/4 1√
κH

. Then, as κ → ∞, we have

b � 1, � � 1, �
√

κH � 1.

Let hex = 1/�2 and ε = √
b�. Then, as κ → ∞, we have ε � 1 and |ln ε| � hex � 1/ε2.

Recall the ground state energy mp(hex, ε) and the space Ehex introduced in (2.6) and (2.5)
respectively. Let u ∈ Ehex be a ground state corresponding to mp(hex, ε), i.e.

∫
K

(∣∣(∇ − ihexA0)u
∣∣2 + 1

2ε2

(
1 − |u|2)2

)
dx = mp(hex, ε).

For all x = (x⊥, x3) ∈ R
3, we introduce the function

v(x) = u(�
√

κHx⊥).

Let (Qj ) be a lattice of R
3 generated by the cube

Q =
(

− 1

2�
√

κH
,

1

2�
√

κH

)
×

(
− 1

2�
√

κH
,

1

2�
√

κH

)
×

(
− 1

2�
√

κH
,

1

2�
√

κH

)
.

It is easy to check that

∫ (∣∣(∇ − iκHF)v
∣∣2 + κ2

2

(
1 − |v|2)2

)
dx = 1

�
√

κH
mp(hex, ε).
Q
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Here F is the magnetic potential in (2.11). Let J = {Qj : Qj ∩ Ω = ∅} and N = Card J . Then,
as κ → ∞, we have

N = |Ω| × (�
√

κH )3(1 + o(1)
)
.

Recall the functional E 3D in (1.1). We compute the energy of the test configuration (v,F). Since
curl F = β and the function v is magnetic periodic with respect to the lattice Qj , we get

E 3D(v,F) = N ×
∫
Q

(∣∣(∇ − iκHF)v
∣∣2 + κ2

2

(
1 − |v|2)2

)
dx

= N × 1

�
√

κH
mp(hex, ε).

We use Theorem 2.2, the definitions of hex and ε, and the asymptotic behavior of N to get

N × 1

�
√

κH
mp(hex, ε) = κH ln

√
κ

H

(
1 + o(1)

)
,

as κ → ∞. This proves the upper bound of Theorem 3.1. �
4. A priori estimates of minimizers

The aim of this section is to give a priori estimates on the solutions of the Ginzburg–Landau
equations (1.3). Those estimates play an essential role in controlling the error resulting from
various approximations.

The starting point is the following L∞-bound resulting from the maximum principle. Actually,
if (ψ,A) ∈ H 1(Ω;C) × Ḣ 1

div,F(R3) is a solution of (1.3), then

‖ψ‖L∞(Ω) � 1. (4.1)

Next we prove an estimate on the induced magnetic potential.

Proposition 4.1. Suppose that the magnetic field H is a function of κ such that lnκ � κH � κ2

as κ → ∞. There exist positive constants κ0 and C such that, if κ � κ0 and (ψ,A) ∈ H 1(Ω;C)×
Ḣ 1

div,F(R3) is a minimizer of the energy in (1.1), then

‖A − F‖H 2(Ω) � C√
κH

√
ln

√
κ

H
,

‖A − F‖C0,1/2(Ω) � C√
κH

√
ln

√
κ

H
.

Here F is the magnetic potential introduced in (2.11).
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Proof. The estimate in C0,1/2-norm is a consequence of the Sobolev embedding of H 2(Ω) in
C0,1/2(Ω).

Notice that it follows from Theorem 3.1 that

∥∥curl(A − F)
∥∥

L2(R3)
� 2|Ω|√

κH

√
ln

√
κ

H
,

∥∥(∇ − iκHA)ψ
∥∥

L2(Ω)
� 2|Ω|√κH

√
ln

√
κ

H
. (4.2)

Let a = A − F. We will prove that ‖a‖H 2(Ω) � C√
κH

√
ln

√
κ
H

. Since diva = 0, we get by

regularity of the curl–div system (see e.g. [10, Theorem D.3.1]),

‖a‖L6(R3) � C‖curla‖L2(R3). (4.3)

The second equation in (1.3) reads as follows:

−
a = 1

κH
Im

(
ψ(∇ − iκHA)ψ

)
1Ω.

Select a positive constant M such that the open ball K = B(0,M) contains Ω . By elliptic esti-
mates (see e.g. [10, Theorem E.4.2]),

‖a‖H 2(Ω) � C
(‖a‖L2(K) + ‖
a‖L2(K)

)
.

Using the embedding of L2(K) into L6(K), the estimate in (4.3) and the bound |ψ | � 1, we get
that

‖a‖H 2(Ω) � C

(
‖curla‖L2(R3) + 1

κH

∥∥(∇ − iκH)ψ
∥∥

L2(Ω)

)
.

Inserting the estimates in (4.2) into this upper bound finishes the proof of the proposition. �
5. Lower bound of the energy

In this section, we suppose that D is an open set with smooth boundary such that D ⊂ Ω . We
will give a lower bound of the energy

E0(ψ,A;D) =
∫
D

(∣∣(∇ − iκHA)ψ
∣∣2 + κ2

2

(
1 − |ψ |2)2

)
dx, (5.1)

where (ψ,A) is a minimizer of the functional in (1.1). The precise statement is the subject of the
next theorem.
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Theorem 5.1. Suppose that the magnetic field H is a function of κ such that lnκ � κH � κ2 as
κ → ∞. If (ψ,A) ∈ H 1(Ω;C) × Ḣ 1

div,F(R3) is a minimizer of the function in (1.1), then

E0(ψ,A;D) � |D|κH ln

√
κ

H
+ o

(
κH ln

√
κ

H

)
,

as κ → ∞. Here E0(ψ,A;D) is introduced in (5.1).

Proof. Let � ∈ (0,1) be a parameter (depending on κ) that will be chosen later in such a way
that (

√
κH )−1 � � � 1 as κ → ∞. Consider a lattice (Qj )j of R

3 generated by the cube

Q� = (−�/2, �/2) × (−�/2, �/2) × (−�/2, �/2).

Let J = {j : Qj ⊂ D} and N = Card J . Then, as κ → ∞, the natural number N satisfies

N = |D|
�3

+ o

(
1

�3

)
. (5.2)

Moreover, we have the lower bound

E0(ψ,A;D) �
∑
j∈J

E0(ψ,A; Qj ). (5.3)

For each j ∈ J , we will bound from below the term E0(ψ,A; Qj ). Let xj be the center of the
cube Qj . Using the estimate of ‖A − F‖C0,1/2(Ω) given in Proposition 4.1, we may write for all
x ∈ Qj , ∣∣A(x) − F(x) − (

A(xj ) − F(xj )
)∣∣ � Cλ�1/2,

where C is a constant that is independent of j , x and κ , and the parameter λ is defined by

λ = 1√
κH

√
ln

√
κ

H
. (5.4)

We define ϕj (x) = (A(xj ) − F(xj )) · x, uj (x) = eiϕ(x)ψ(x) and aj (x) = A(x) − ∇ϕj (x). Then
we may write

∀x ∈ Qj ,
∣∣aj (x) − F(x)

∣∣ � Cλ�1/2, (5.5)

and

E0(ψ,A; Qj ) = E0(uj ,aj ; Qj ). (5.6)

We may write, for all δ ∈ (0,1),∣∣(∇ − iκHaj )uj

∣∣2 � (1 − δ)
∣∣(∇ − iκHF)uj

∣∣2 − 2δ−1(κH)2|aj − Fj |2|uj |2.
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We insert this estimate into the expression of E0(uj ,aj ; Qj ) then we use the estimate in (5.5)
and that |uj | = |ψ | to get

E0(uj ,aj ; Qj ) � (1 − δ)E0(uj ,F; Qj ) − Cδ−1(κH)2λ2�

∫
Qj

|ψ |2 dx. (5.7)

Let R = �
√

κH and b = H/κ . For all x ∈ R3 such that |x| � R, we define

vj (x) = u

(
xj + x√

κH

)
.

Then a simple change of variable shows that

E0(uj ,F; Qj ) = 1

b
√

κH
GQR

(vj ), (5.8)

where GQR
is the functional in (2.10) and QR is the cube in (2.12).

We select � in the following way:

� =
(

κH

lnκ

)1/4 1√
κH

. (5.9)

With this choice, we have (
√

κH )−1 � � � 1, 1 � R and 1
R2 ln R√

b
� 1 as κ → ∞. Conse-

quently, Theorem 2.6 tells us that the ground state M0(b,R) in (2.13) satisfies

M0(b,R) = bR3 ln
1√
b

(
1 + o(1)

)
.

Since vj ∈ H 1(QR), we get GQR
(vj ) � M0(b,R). Substituting this into (5.8) and using the

aforementioned asymptotic expansion of M0(b,R), we get

E0(uj ,F; Qj ) = R3

√
κH

ln
1√
b

(
1 + o(1)

)
. (5.10)

By inserting (5.10) into (5.7) and using (5.6), we get for all j ∈ J ,

E (ψ,A; Qj ) � (1 − δ)
R3

√
κH

ln
1√
b

(
1 + o(1)

) − Cδ−1�(κH)2λ2
∫

Qj

|ψ |2 dx.

Taking the sum over j ∈ J and using (5.3), we get

E (ψ,A;D) � (1 − δ)N × R3

√
κH

ln
1√
b

(
1 + o(1)

) − Cδ−1�(κH)2λ2
∫
D

|ψ |2 dx, (5.11)

where N = Card J . To finish the proof, we use the bound |ψ | � 1, the definition of λ in (5.4), and
we choose δ = �1/2. This gives that the remainder term in (5.11) is equal to o(κH ln

√
κ/H ). For
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the leading order term in (5.11), we use the asymptotic expansion of N in (5.2), that R = �
√

κH ,
and we observe that it is equal to

|D|κH ln

√
κ

H

(
1 + o(1)

)
. �

Proof of Theorem 1.1. Combining the upper bound in Theorem 3.1 and the lower bound in
Theorem 5.1 with D = Ω , we get the estimate of the ground state energy in Theorem 1.1. �
Proof of Corollary 1.2. The convergence of curl A−β in L2(R3;R

3) is proved in Theorem 3.1.
Since div(A − F) = 0 and A − F ∈ Ḣ 1(R3;R

3), we get that∥∥∇ curl(a − F)
∥∥

L2(R3)
= ∥∥curl(A − F)

∥∥
L2(R3)

.

Consequently, it results from the convergence of curl A in L2(R3) that curl A → β in
H 1(R3;R

3).
We prove the convergence of μκ,H (ψ,A). Let B(x) = curl A(x). Since div A = 0, it results

by taking the curl on both sides of the second equation in (1.3),

−
B + B = μκ,H (ψ,A) in Ω.

Since B → β in H 1(R3;R
3), we get that −
B + B → β dx in D′(R3;R

3).
It remains to prove the convergence of the measure eκ,H (ψ,A). It suffices to prove that

eκ,H (ψ,A) → dx in the sense of measures. If D is any open set in Ω with smooth boundary,
then we have by Theorem 5.1,

E0(ψ,A;D) � |D|κH ln

√
κ

H

(
1 + o(1)

)
,

E0(ψ,A;Ω \ D) � |Ω \ D|κH ln

√
κ

H

(
1 + o(1)

)
.

Here E0(ψ,A;D) is introduced in (5.1). Recall the functional E 3D in (1.1). Since

E0(ψ,A;D) + E0(ψ,A;Ω \ D) = E 3D(ψ,A)

� κH |Ω| ln

√
κ

H

(
1 + o(1)

)
,

we infer from Theorem 3.1,

E0(ψ,A;D) = |D|κH ln

√
κ

H

(
1 + o(1)

)
.

This is sufficient to conclude the convergence of eκ,H (ψ,A) to dx in the sense of measures. �
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