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Abstract

One of the main aims in the theory of covering codes is to obtain good estimates on

Kqðn;RÞ; the minimal cardinality of an R-covering code over the nth power of an alphabet

with q elements. This paper reports on the new bound K5ð7; 3Þp100; obtained by an improved

computer search based on Österg(ard and Weakley’s method. In particular, the code leading to

this bound has a group of automorphisms quite different from the one Österg(ard and Weakley

used. This new upper bound significantly improves the former record (which was 125).
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1. Introduction

In the field of covering codes, one of the main questions is the determination of
Kqðn;RÞ which is defined as the minimal cardinality of an R-covering code over the

nth power of an alphabet with cardinality q:
More formally, let us consider an alphabet with q elements, that we denote by Zq

(and that we sometimes see as the cyclic group with q elements, for convenience). If n

is a positive integer, we define the Hamming distance between two elements in Zn
q;

x ¼ ðx1;y; xnÞ and y ¼ ðy1;y; ynÞ; as
dðx; yÞ ¼ jfiAN; 1pipn : xiayigj:
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In this metric space, the ball with center x and radius r is classically defined as
fyAZn

q : dðx; yÞprg: Let now R be a positive integer. A subset C of Zn
q is said to be an

R-covering code if the union of the balls centered at the elements of C covers the
whole space. Equivalently, C is an R-covering code if for any element in Zn

q; there

exists an element in C at a distance less than or equal to R: With these notations,
Kqðn;RÞ is the minimal cardinality of any R-covering code in Zn

q:

Computing exactly Kqðn;RÞ is, in general, a difficult problem. Except in the

case when the parameters (q; n and R) of the code are all very small and some
special cases (perfect codes), we only know lower and upper bounds. While lower
bounds are usually obtained using theoretical arguments based on improved
versions of the so-called sphere covering bound, upper bounds are obtained by
constructions.

Some powerful construction methods are based on computer local search methods
like simulated annealing, tabu search or genetic algorithms [1]. All these methods
which exist in a more general context have been successfully applied in the context of
covering codes. To be more precise, simulated annealing (which is the more popular
method) has been used for instance in [5,7,9,10,13–15], to quote a few; tabu search in
[8,10]; genetic algorithms in [12].

The most studied (main) cases correspond to small values of the parameters,
namely qp5; np33;Rp10: Any improved method for obtaining bounds on Kqðn;RÞ
is usually tested on these very cases which have thus been widely investigated.
However, larger q can also be of interest (see [4]). The book [3], which is the most
complete reference on covering codes, concentrates on the above-mentioned main
cases: the tables it contains on bounds for Kqðn;RÞ (at the end of Chapter 6) are

limited to q ¼ 2; np33;Rp10; q ¼ 3; np14;Rp8; q ¼ 4; np10;Rp6 and q ¼ 5;
np9;Rp6:Note that several bounds have already been improved with respect to the
tables given in [3].

In the case q ¼ 5; n ¼ 7; R ¼ 3; it is currently known that

30pK5ð7; 3Þp125:

The lower bound follows from the sphere-covering bound while the upper bound
follows from K5ð7; 3Þp5K5ð6; 3Þ and K5ð6; 3Þp25 (proved in [6]).

In this paper, we improve the upper bound K5ð7; 3Þp125:

Theorem 1. One has

K5ð7; 3Þp100:

This result has been obtained by an improved local search, based on an idea of
Österg(ard and Weakley. Basically, this idea consists in imposing some additional
structural properties to the code we are looking for.

In Section 2, we give the list of codewords establishing Theorem 1. In Section 3, we
recall Österg(ard and Weakley’s method and explain how we started from it to get
our new bound.
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2. The proof

To prove our theorem, it is enough to give a list of 100 codewords which 3-cover
the whole space. In this section, for simplicity, the word x ¼ ðx1; x2;y; xnÞ will be
simply denoted by x1 x2 ? xn:

Let us define C1 to be the code

1304200 4103121 2142302 2034133 1402434 0130420

2410311 0214232 3203413 3140244 2013040 1241031

3021422 1320343 4314024 4201300 3124101 2302142

4132033 2431404 0420130 0312411 4230212 3413203

0243144 3042010 1031241 1423022 0341323 4024314;

C2 to be

4223000 3341101 4022142 1332003 4431124 0422300

0334111 4402212 0133203 2443114 0042230 1033411

1440222 0013323 1244314 3004220 1103341 2144022

2001333 1124434 2300420 4110331 2214402 3200133

3112444 2230040 3411031 0221442 3320013 4311244;

C3 to be

2434310 0404231 0103412 2140213 2013234 1243430

3040421 1010342 1214023 3201324 3124340 2304041

4101032 2121403 2320134 4312430 4230401 3410102

0212143 3232014 3431240 0423041 0341012 4021213

1323204 4343120 4042301 1034102 1402123 0132324;

C4 to be

1111110 2222221 3333332 4444443 0000004;

and finally C5 to be

0000000 1111111 2222222 3333333 4444444:

If C ¼ C1,C2,C3,C4,C5; then it is easily checked that C is a 3-covering code

on Z7
5 and that jCj ¼ jC1j þ jC2j þ jC3j þ jC4j þ jC5j ¼ 30þ 30þ 30þ 5þ 5 ¼ 100:

This proves Theorem 1.
As we will see later, the partition of C into the five subsets ðCiÞ1pip5 corresponds

in fact to a structure of C: The ðCiÞ1pip5 are five orbits under the action of the group

of automorphisms we used.
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3. Where does the proof come from?

Let us start by exposing Österg(ard and Weakley’s work [11] on searching for good
covering codes. These authors noticed that classical computer search could be
improved if one imposes some kind of structure to the code.

They only considered codes which are sent into themselves under the action of a
given group of automorphisms G: Once G is fixed, the method consists of
partitioning the ambient space into orbits under the action of G: It proceeds with
constructing a graph whose vertices are the orbits, and where two vertices O1 and O2
are adjacent if there are elements o1AO1; o2AO2 such that dðo1; o2ÞpR: This
construction has an interesting property: if S is a subset of orbits such that any orbit
not inS is adjacent toS (such anS is called a covering of the graph), then

S
OAS O

is an R-covering code on Zn
q: Therefore, if the orbits’ cardinalities are large, it

considerably reduces the algorithmical complexity of the problem. The method ends
by approaching the solutions of the reduced problem. In [11], a computer search
using tabu is used to select a good set of orbits.

A basic feature in Österg(ard and Weakley’s method is to fix the group G

according to what seems to be (and even sometimes is) the best choice in small
dimensions. In this work, we first tried to improve the method of these
authors by trying several different groups G: we actually only imposed that G is
generated by one or two elements. This seems to be the most reasonable
choice because we need G not too large (to obtain a number of orbits not too
small). With this restriction, the computer randomly chose automorphisms. Then,
the method explained in the next paragraph was applied with corresponding
groups G:

Once G was fixed, we tried to completely solve the reduced problem, when it was
possible. To do so, we used either a basic branch and bound algorithm, or CPLEX (a
combinatorial optimization solver). Branch and bound can be used when the tree to
explore is not too deep; in particular, a way of restricting the research is to backtrack
when the code’s cardinality becomes greater than the best known upper bound of
Kqðn;RÞ:

When it was not possible to find the exact solution, we used a simulated
annealing algorithm. Just like Österg(ard and Weakley, we first fix how many orbits
of each cardinality we want to select; this repartition is chosen so that the
cardinalities’ sum is less than the best known upper bound of Kqðn;RÞ: The

simulated annealing begins with a given temperature T : At each program’s step,
we consider a neighbor of the orbits’ set by replacing an orbit with an adjacent
one of the same cardinality. If this neighbor covers more orbits than the former set,
it is automatically accepted. If it covers p orbits less, it is accepted with proba-
bility expð�p=TÞ: To end the step, the temperature is multiplied by a constant
wA	0; 1½: Moreover, we repeat the simulated annealing: when T gets under a given
bound, we change w into 2� w in order to warm the system; this warming ends
when T becomes high enough, we then begin the simulated annealing again. It
leads to a repetition of cooling and warming steps, which very often gives good
results.
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Finally, once we have a solution (or the solution) for the reduced problem, we
consider the result-code and delete one of its points; then we start a simulated
annealing from the obtained code. We continue reducing the code while the
simulated annealing finds covering codes. This last step allows to find smaller
covering codes, starting from codes stable for automorphisms.

Due to the enormous computational means needed by such a research program,
we decided to restrict ourselves to ‘‘small’’ codes i.e. those with small parameters. In
several cases that we experimented, this method led to the same upper bound as the
one which was known to be the best. The main case on which we worked was the
case q ¼ 5; n ¼ 7 and R ¼ 3 for which we could prove the improvement given by
Theorem 1.

We first tried Österg(ard and Weakley’s group of automorphisms which led us to
the bound 105.

The bound 100 that we finally could prove was obtained with a group of
automorphisms not of the form used by Österg(ard and Weakley. In the case under
study, the computer could find a group which gave a better result. Indeed, the bound
100 was computed with the group G generated by one element, namely (recall that Z5

can be seen as the cyclic group with five elements)

s :
Z7
5 - Z7

5

ðx1; x2;y; x6; x7Þ / ðx2 þ 1; x3 þ 1;y; x6 þ 1; x1 þ 1; x7 þ 1Þ:

�
�
�
�
�

In other words, s can be seen as the composition of a cyclic permutation of
the six first coordinates and the translation x-x þ 1 (where 1 is the all-one word).

Under the action of G; the space Z7
5 is partitioned into 2635 orbits, namely 2580

with cardinality 30, 40 with cardinality 15, 10 with cardinality 10 and 5 with
cardinality 5. Therefore, we decided to look for a code of size 100, with 3 orbits
with cardinality 30 and 2 with cardinality 5. Our computer search revealed
that such a choice was possible with the orbits C1;C2;C3;C4 and C5 given in
Section 2.

We finish with two remarks on G; the group generated by s; which were
pointed out by the referee. First, we may notice that this group (which, again, was
found randomly) differs only slightly from that of [11]: in that paper, (a conjugate of)
the group of use is also generated by one single element of the same form as s;
but with a different length for the cycle in the permutation. Secondly, similar
groups have been prescribed in [2] for the dual problem of finding good 5-ary
error-correcting codes.
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