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Although extracellular adenosine 50-triphosphate (eATP) has a crucial role in the sensitization phase of contact
hypersensitivity (CHS), the mechanism by which hapten causes keratinocyte cell death and ATP release is
unknown. We examined the time course of cell death, reactive oxygen species (ROS) production, and ATP release
in HaCaT cells and in normal human keratinocytes after exposure to nonmetal haptens, NiCl2, or irritants. Both
haptens and irritants caused cell death of keratinocytes but with different time courses. N-acetylcysteine (NAC)
significantly reduced only nonmetal hapten-induced cell death as assessed by propidium iodide exclusion. We
examined the effects of antioxidants and pannexin (Panx) inhibitors on cell death, ROS production, and ATP
release by chemical-treated HaCaT cells. Nonmetal hapten-induced cell death, but not NiCl2- or irritant-related
cell death, was dependent on reactivity to thiol residues in the cells. NAC reduced cell death and ATP release,
whereas antioxidants and Panx inhibitors did not inhibit cell death but significantly attenuated ATP release. Panx1
small interfering RNA (siRNA) also suppressed ATP release from hapten-exposed HaCaT cells. Intraperitoneal
injection of a Panx1 inhibitor attenuated murine CHS. These findings suggest that nonmetal hapten reactivity to
thiol residues causes membrane disruption of keratinocytes and ROS production that leads to ATP release
through opening of Panx hemichannels.
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INTRODUCTION
Sensitization to contact allergens requires activation of the
innate immune system that leads to dendritic cell (DC)
activation. However, the mechanisms by which contact
allergens activate innate immune signaling pathways are
incompletely understood. It is possible that ‘‘endogenous
danger signals’’ or ‘‘damage-associated molecular patterns’’
(reviewed in Willart and Lambrecht, 2009) are responsible
for activation of the innate immune system in allergic
sensitization. The following molecules have been identified
as damage-associated molecular patterns: adenosine
50-triphosphate (ATP), heat shock proteins, hyaluronic
acid, monosodium urate, galectins, thioredoxin, adenosine,

high-mobility group box protein 1, IL-1a, and IL-33 (reviewed
in Hirsinger et al., 2012).

Recent studies using gene targeting in mice demonstrated
that Toll-like receptor 2 (TLR2)/TLR4 double-deficient mice
(Martin et al., 2008) or purinergic receptor P2X7-deficient
mice (Weber et al., 2010) are resistant to allergic contact
hypersensitivity (CHS), indicating an essential role of TLR2/
TLR4 as well as of purinergic receptor P2X7 in the mouse CHS
model. Breakdown products of hyaluronic acid in the range of
1.2 to 500 kDa that are generated during inflammation or
tissue damage have been demonstrated to stimulate TLR2 and/
or TLR4 in immune cells such as macrophages or DCs
(Termeer et al., 2002; Scheibner et al., 2006). Indeed, Esser
et al. (2012) reported that haptens induce reactive oxygen
species (ROS) production by keratinocytes in vitro as well as
in vivo, thereby increasing hyaluronidase activity in the skin
that results in the production of low-molecular-weight
hyaluronic acid fragments. Combined, these observations
suggest that hapten-exposed keratinocytes generate pro-
inflammatory low-molecular-weight hyaluronic acid frag-
ments that induce CHS via stimulation of TLR2/TLR4.

Similarly, extracellular ATP (eATP) released by stressed
or damaged cells can also activate innate immune responses.
The transmembrane ATP receptor P2X7 has been implicated
in the post-translational processing of pro-IL-1b and pro-IL-18
via activation of the NLRP3 inflammasome (reviewed
by Vitiello et al., 2012). Although Weber et al. (2010)
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demonstrated eATP release in skin painted with hapten, they
did not address the mechanism by which hapten-treated
keratinocytes release ATP.

In this study, we compared the effects of haptens with
irritants on keratinocyte cell death, ROS generation, and ATP
release. Although the generation of ROS by hapten-exposed
keratinocytes has been demonstrated in several studies
(Mehrotra et al., 2005; Esser et al., 2012; Kim et al., 2012),
the effect of the generated ROS on cell death and ATP release
from hapten-exposed keratinocytes has not been examined.
First, we demonstrated that haptens and irritants caused the
cell death of the human keratinocyte cell line HaCaT and
normal human epidermal keratinocytes (NHEKs), and induced
ATP release with different time courses. N-acetylcysteine
(NAC) significantly reduced cell death of HaCaT cells exposed
to haptens but did not affect the death of cells exposed to
irritants. Three representative nonmetal haptens, dinitrochlo-
robenzene (DNCB), 4-nitrobenzylbromide (4-NBB), and
diphenylcyclopropenone (DPCP), induced the generation of
ROS in HaCaT cells that was significantly attenuated by
pretreatment with NAC and several antioxidants. Despite the
inhibitory effects of NAC and antioxidants on ROS generation,
antioxidants suppressed lactate dehydrogenase (LDH) activity
and ATP release but did not affect cell death that was assessed
using propidium iodide (PI) exclusion. In addition, studies
using pannexin (Panx) inhibitors revealed that ATP release
from hapten-treated HaCaT cells was through Panx hemi-
channels. Furthermore, intraperitoneal injection of a pannexin
inhibitor, carbenoxolone (CBX), significantly attenuated CHS
induced by DNCB. Combined, these results provide an insight
into the mechanism by which haptens cause keratinocyte
death and ATP release in CHS.

RESULTS
Both haptens and irritants induce HaCaT and NHEK cell death
and ATP release but with different time courses

Evaluation of cell death by PI exclusion using flow cytometry
and LDH release assay showed that two nonmetal haptens
DNCB and 4-NBB, one metal hapten NiCl2, and two irritants
SDS and lactic acid (LA) induced HaCaT cell death in a dose-
dependent manner (Figure 1a). The minimum concentrations
of reagents that were toxic to all cells were 100mM for DNCB
and 4-NBB, 6 mM for NiCl2, 250mM for SDS, and 34 mM for
LA. Haptens and irritants induced cell death with different
time courses: maximum cell death was evident 1 hour after
irritant exposure but maximum cell death was only achieved
after more than 6 hours of hapten exposure as assessed by PI
staining. LDH activity in culture supernatants was increased
6 hours after hapten exposure, whereas maximum release of
LDH was seen 1 hour after SDS exposure. The LDH activity of
LA-treated HaCaT cells could not be measured, possibly
because of disturbance of LDH enzyme activity due to the
acidity of culture supernatants containing LA.

The time course of ATP release was also different between
haptens and irritants. ATP release was evident 6 hours after
hapten exposure, whereas maximum ATP release was seen
1 hour after exposure to irritants (Figure 1a). To test whether
higher concentrations of hapten induce an earlier release of

ATP, HaCaT cells were incubated with increased concentra-
tions of DNCB (from 100mM to 3.2 mM); however, ATP release
earlier than 6 hours after DNCB exposure was not observed
(data not shown). To clarify whether the delayed ATP release
is limited to HaCaT cells, ATP release in culture supernatants
of NHEKs exposed to either haptens or irritants was assessed.
Similar to HaCaT cells, the time course of ATP release from
NHEKs was also different between haptens and irritants
(Figure 1b).

NAC attenuates HaCaT cell death caused by DNCB, 4-NBB, and
DPCP but does not affect cell death caused by NiCl2, SDS, or LA

We previously reported that haptens induce a redox imbal-
ance in DCs that stimulates the phosphorylation of p38
mitogen-activated protein kinase and DC activation, and that
pretreatment of DCs with NAC corrects the redox imbalance
and abrogates the phosphorylation of p38 mitogen-activated
protein kinase as well as DC activation (Mizuashi et al., 2005).
Therefore, we examined whether NAC could attenuate cell
death caused by haptens and irritants. NAC significantly
suppressed HaCaT cell death caused by nonmetal haptens
DNCB, 4-NBB, and DPCP, as assessed by PI-positive cells, but
did not affect cell death caused by a metal hapten NiCl2, or
irritants SDS or LA (Figure 2). Similarly, ATP release and LDH
activity of HaCaT cells 12 hours after DNCB, 4-NBB, or DPCP
exposure were significantly attenuated by NAC, but NAC had
little effect on ATP release and LDH activity induced by NiCl2,
LA, or SDS (Figure 2).

HaCaT cells exposed to haptens and irritants produce ROS and
mitochondrial superoxide anion depending on their thiol
reactivity

Next, we examined whether exposure of HaCaT cells to
haptens or irritants results in production of ROS using the
CM-H2DCFDA probe (Figure 3a). All nonmetal haptens but
not the metal hapten NiCl2 stimulated intracellular ROS
production in a dose-dependent manner from 30 minutes to
6 hours after stimulation. ROS production in HaCaT cells
exposed to DNCB or DPCP was greater than that in cells
exposed to 4-NBB. SDS exposure resulted in the production of
ROS in HaCaT cells from 30 minutes to 24 hours after
exposure, but the amount of ROS production in the first
6 hours after exposure was much smaller than that caused by
hapten exposure. The concentration of SDS that induced cell
death of the majority of HaCaT cells did not result in a
significant amount of ROS generation within 1 hour after
exposure, suggesting that ROS did not contribute to SDS-
related HaCaT cell death. LA did not induce ROS in
keratinocytes. The positive control H2O2 triggered immediate
production of ROS in HaCaT cells.

As pretreatment with NAC significantly attenuated
HaCaT cell death as well as ATP release, we examined the
effects of NAC on ROS production by hapten-exposed HaCaT
cells. Pretreatment of HaCaT cells with NAC significantly
attenuated ROS production by hapten-exposed HaCaT
cells 6 hours after exposure, whereas it did not significantly
affect ROS production by SDS- or H2O2-treated HaCaT cells
(Figure 3b).
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Next, to clarify the source of ROS in HaCaT cells treated
with haptens, we examined whether haptens induce mito-
chondrial superoxide anion generation using MitoSOX, a
mitochondria-targeted ROS-specific fluorescent probe. DNCB,
DPCP, and 4-NBB, although weakly, induced mitochondrial
superoxide anion production 2 hours after cell exposure
(Figure 3c), suggesting that mitochondria contribute to ROS
production in HaCaT cells exposed to nonmetal haptens.
Treatment with H2O2 also induced mitochondrial superoxide
anion production. Pretreatment with NAC significantly atte-
nuated mitochondrial superoxide anion production in HaCaT
cells exposed to DNCB, 4-NBB, or DPCP, although its
inhibitory effect on superoxide anion production by HaCaT
cells exposed to 4-NBB was minimum (Figure 3c).

TEMPOL and apocynin do not rescue hapten-treated HaCaT cells
from cell death but suppress ROS production and reduce ATP
release

Although ROS production after hapten stimulation in the
mitochondria of dendritic cells (Migdal et al., 2010) and in

the cytosol of keratinocytes (Mehrotra et al., 2005) has been
documented, the source of ROS production that causes
keratinocyte cell death and ATP release has not yet been
determined. Therefore, we examined whether the following
reagents affect ROS production in hapten-exposed HaCaT
cells: TEMPOL, a whole-cell antioxidant (Wilcox and
Pearlman, 2008); MnTBAP, a superoxide dismutase mimetic,
catalase mimetic, and peroxynitrite scavenger (Konorev et al.,
2002; Batinic-Haberle et al., 2009); allopurinol, a xanthine
oxidase inhibitor (Borges et al., 2002); and apocynin, an
NADPH oxidase inhibitor (Bedard and Krause, 2007).
Results showed that TEMPOL, MnTBAP, and apocynin
suppressed ROS production by HaCaT cells exposed to
DNCB, 4-NBB, and DPCP, but their inhibitory effect on
ROS production by 4-NBB-treated HaCaT cells was not
statistically significant (Figure 4a). In contrast, allopurinol
failed to suppress ROS production in HaCaT cells exposed
to haptens.

We also examined whether MnTBAP or TEMPOL sup-
presses mitochondrial superoxide anion production by
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Figure 1. Haptens and irritants cause cell death of HaCaT cells and induce adenosine 50-triphosphate (ATP) release with different time courses. (a) HaCaT cells

or (b) normal human epidermal keratinocytes (NHEKs) cultured in 24-well plates were treated with graded concentrations of haptens dinitrochlorobenzene

(DNCB), 4-nitrobenzylbromide (4-NBB), diphenylcyclopropenone (DPCP), or NiCl2, or irritants lactic acid (LA) or SDS, for various time periods. After incubation,

propidium iodide (PI) exclusion, lactate dehydrogenase (LDH) activity, and ATP release were examined to assess cell viability. The mean LDH activity and

extracellular ATP (eATP) release of triplicate cultures were calculated for each chemical. The symbols K, m, ’, and ~ correspond to the highest, medium, and

lowest concentrations and vehicle control of each chemical, respectively. Chemicals and their concentrations were as follows: DNCB, 4-NBB, and DPCP—100,

50, and 25mM; NiCl2—6.0, 3.0, and 1.5 mM; SDS—250, 125, and 62.5mM; and LA—34 and 17 mM. Representative data from three independent experiments are

shown.
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hapten-exposed HaCaT cells. In contrast to its effects on ROS
production in HaCaT cells, MnTBAP did not suppress mito-
chondrial superoxide anion production (Figure 4b). TEMPOL
suppressed the MitoSOX fluorescence intensity of HaCaT cells

exposed to 4-NBB, whereas it did not affect the fluorescence
of cells exposed to DNCB or DPCP (Figure 4b).

Next, we examined whether ROS is involved in cell death
or ATP release in HaCaT cells exposed to haptens. Assessment
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Figure 2. N-acetylcysteine (NAC) significantly attenuates cell death and adenosine 50-triphosphate (ATP) and lactate dehydrogenase (LDH) release by HaCaT

cells exposed to dinitrochlorobenzene (DNCB), 4-nitrobenzylbromide (4-NBB), or diphenylcyclopropenone (DPCP) but does not affect the death or ATP release

of cells exposed to NiCl2, SDS, or lactic acid (LA). HaCaT cells cultured in 24-well plates were either pretreated or not with 2.5 mM of NAC for 30 minutes,

followed by exposure to 100mM of DNCB, 4-NBB, or DPCP, 6 mM of NiCl2, 250mM of SDS, or 34mM of LA for various time periods. The effects of NAC on cell

death, extracellular ATP (eATP) levels, and LDH activity were assessed 6 hours after culture by propidium iodide (PI) exclusion assay, 9 and 12 hours after culture,

and 12 hours after culture, respectively. The mean eATP or LDH activity of triplicate cultures was calculated for each chemical, and results were normalized to the

data of hapten-exposed HaCaT cells without NAC. Bars represent mean±SD. Significant differences between treatment groups: *Po0.05, **Po0.01,

***Po0.001. Representative data from three independent experiments are shown.
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of cell death by the PI exclusion assay showed that TEMPOL,
MnTBAP, apocynin, and allopurinol could not rescue HaCaT
cells from cell death after hapten treatment (Supplementary
Figure S1 online). TEMPOL, MnTBAP, and apocynin reduced
LDH activity and ATP release from DNCB- and 4-NBB-
exposed HaCaT cells (Figure 4c and d), and TEMPOL
attenuated LDH activity and ATP release from DPCP-exposed
HaCaT cells (Supplementary Figure S2 online).

Inhibition of Panx-1 channels significantly suppresses ATP
release from hapten-treated HaCaT cells

Multiple pathways other than cell lysis are involved in ATP
release (Lohman et al., 2012). It has been demonstrated that
ATP release into the extracellular space by dying cells during
apoptosis depends on the Panx channel (Chekeni et al., 2010).
The release of ATP through Panx hemichannels has also been
reported in the setting of ischemia-induced oxidative stress
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culminating in the cell death of oligodendrocytes (Domercq
et al., 2010). We therefore examined whether CBX, a
nonspecific Panx inhibitor (Suadicani et al., 2006; Ma et al.,
2009), can suppress ATP release from hapten-treated HaCaT
cells (Figure 5a). Interestingly, CBX significantly decreased
ATP release from hapten-treated but not irritant-treated HaCaT
cells in a dose-dependent manner. Furthermore, CBX sup-
pressed LDH release from DNCB-treated but not 4-NBB- or
DPCP-treated HaCaT cells (data not shown). Evaluation of cell
death by the PI exclusion assay showed that CBX was unable
to rescue hapten-exposed HaCaT cells from cell death.

To exclude the possibility that CBX reduced levels of
intracellular ATP, thereby decreasing ATP release from hap-
ten-treated cells, we examined the concentration of intracel-
lular ATP in DNCB-exposed HaCaT cells. Results showed that
CBX at concentrations of 7.8 to 31mM increased intracellular
ATP levels and decreased ATP release, whereas CBX at 62mM

slightly decreased the intracellular ATP level and significantly
decreased ATP release (Figure 5b). These findings exclude the
possibility that CBX reduces ATP release by depleting intra-
cellular ATP.

To further examine the role of Panx hemichannels in ATP
release from hapten-treated HaCaT cells, we examined the

effects of another Panx-1 inhibitor, probenecid (Silverman
et al., 2008), and a Panx-1 mimetic blocking peptide (Pelegrin
and Surprenant, 2006) on ATP release from hapten-
treated HaCaT cells. Probenecid significantly suppressed
ATP release from DNCB- or 4-NBB-treated HaCaT cells, and
Panx1-blocking peptide also significantly inhibited ATP
release from DNCB-treated HaCaT cells (Figure 5c and d).
We also examined the effect of small interfering RNA (siRNA)
against Panx1. Attenuation of Panx1 mRNA expression in
HaCaT cells by Panx1 siRNA significantly suppressed ATP
release from cells exposed to either DNCB or DPCP (Figure 5e
and f).

Inhibition of Panx1 by CBX significantly reduces CHS induced by
DNCB

Finally, to explore the role of Panx1 in the induction of CHS,
we administered CBX by intraperitoneal injection and induced
CHS using DNCB. After challenge with 0.5% DNCB, the ear
swelling of mice pretreated with CBX was significantly
reduced compared with those of saline-injected control mice,
suggesting that CBX attenuated the CHS response (Figure 6). In
contrast, CBX treatment did not affect the ear swelling induced
by 0.5% DNCB without sensitization.
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DISCUSSION
In this study, we demonstrated that the haptens DNCB, 4-
NBB, DPCP, and NiCl2, and the irritants killed keratinocytes
and induced ATP release from keratinocytes with different
time courses. This suggests that the mechanism of hapten-
induced keratinocyte cell death leading to ATP release is
different from that of irritants. Furthermore, keratinocyte cell
death caused by nonmetal haptens DNCB, 4-NBB, and DPCP,
but not cell death caused by the metal hapten NiCl2 or by
irritants, was abrogated by NAC. The fact that NAC is a thiol-
containing compound that interferes with thiol redox transi-
tions (Parasassi et al., 2010), and that haptens exhibit a strong
affinity toward thiol groups (Becker et al., 2003), suggests that
nonmetal haptens kill keratinocytes via reactivity to thiol
residues in keratinocytes. In contrast, the mechanism

of cell death induced by NiCl2 or irritants was not
dependent on this.

Next, we demonstrated that only nonmetal haptens induced
ROS production by HaCaT cells that was significantly atte-
nuated by NAC treatment. Again, this suggests that thiol
modification by haptens has a crucial role in ROS production.
Apart from NAC, MnTBAP, TEMPOL, and apocynin signifi-
cantly suppressed ROS production by hapten-treated HaCaT
cells. However, the three antioxidants did not decrease cell
death as evaluated by PI exclusion that suggests that ROS
generated by hapten-treated HaCaT cells does not cause
membrane disruption.

On the other hand, the three antioxidants suppressed ATP
and LDH release from hapten-treated HaCaT cells. We found
that ATP and LDH release from hapten-treated HaCaT cells
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was evident 6 hours after hapten treatment, whereas they
started to incorporate PI from 1 hour after exposure. As the
molecular weights of LDH and PI are B140,000 and 688 Da,
respectively, we speculate that considerable time is required
for sufficient membrane disruption to occur that permits the
passage of large molecules. However, molecular size alone
cannot fully explain the delay in ATP release as the molecular
weight of ATP is lower than that of PI.

It has been reported that ischemia-related oxidative stress
culminating in the cell death of oligodendrocytes induced ATP
release through the opening of Panx hemichannels (Domercq
et al., 2010). As Panx1 is ubiquitously expressed in human
tissues including the skin (Baranova et al., 2004), we
hypothesized that ROS produced by hapten-treated HaCaT
cells may open Panx hemichannels. Indeed, Panx inhibitors as
well as Panx1 siRNA significantly attenuated ATP release from
HaCaT cells exposed to DNCB, 4-NBB, or DPCP. In addition,
significant suppression of ATP release by antioxidants in a
dose-dependent manner suggests that ROS production by
hapten-treated HaCaT cells has a role in the opening of
Panx hemichannels. Combined, our findings suggest that
irritants induce ATP release from keratinocytes by disrupting
cell membranes, whereas nonmetal haptens such as DNCB, 4-
NBB, and DPCP induce ATP release from keratinocytes via
ROS-mediated opening of Panx1 channels. Therefore, it is
conceivable that Panx hemichannels have a crucial role in
sensitization, just as eATP and P2X7 are essential in the mouse
CHS model (Weber et al., 2010). This is supported by
observation of the attenuated CHS response after CBX
pretreatment in mice.

This study also demonstrated differences in the mechanism
of ATP release among haptens. ATP release from HaCaT cells
treated with the metal hapten NiCl2 was independent of thiol
reactivity of NiCl2, whereas nonmetal hapten-induced ATP
release from HaCaT cells was dependent on reactivity to thiol

residues and ROS production. It has been reported that Ni can
stimulate human TLR4 (Schmidt et al., 2010) that suggests that
Ni utilizes the TLR4 pathway to activate the innate immune
response instead of generating ROS in allergic sensitization. In
addition, there was quantitative difference in ROS and
superoxide anion production among nonmetal haptens. It is
conceivable that different nonmetal haptens generate ROS by
different mechanisms dependent on their own chemical pro-
perties. Further studies are required to examine the precise
mechanism by which nonmetal haptens generate ROS and/or
superoxide anion and open Panx channels.

In this study, we attempted to determine the source of
ROS in keratinocytes after hapten exposure. Although super-
oxide anion production by mitochondria occurred after
hapten exposure, antioxidants such as TEMPOL and MnTBAP
did not attenuate mitochondrial superoxide anion pro-
duction despite their suppression of ROS production, LDH
activity, and ATP release. This suggests that ROS production
by mitochondria does not have a significant role in ATP
release from hapten-treated keratinocytes, consistent with the
observation by Mehrotra et al. (2005). However, our study
could not determine which cytosolic compartment or enzyme
was responsible for ROS production that led to the release of
ATP. Although Kim et al. (2012) and Esser et al. (2012)
demonstrated ROS production and mitochondrial superoxide
anion production by hapten-treated keratinocytes, neither
group succeeded in identifying the source of ROS produc-
tion that influenced IL-1a production, ICAM-1 expression, or
induction of hyaluronidase activity.

Our study provides an insight into the mechanism by
which haptens kill keratinocytes and cause a large release of
ATP. These findings provide additional evidence of the
crucial role of keratinocytes in the sensitization of CHS. In
addition, the results of this study suggest that Panx1
may be targeted to protect humans from sensitization by
haptens. The Panx1 inhibitor CBX has already been approved
as a cosmetic ingredient and may be useful as a topical agent
in inflammatory or immune skin diseases by modulating
innate immunity.

MATERIALS AND METHODS
Test chemicals and preparation of chemicals

Four contact sensitizers (DNCB, 4-NBB, NiCl2, and DPCP) and two

irritants (SDS and LA) were used. The following antioxidants were

used in experiments: NAC, allopurinol, MnTBAP, and apocynin. Panx

was inhibited using carbenoxolone disodium salt (CBX), probenecid,

or Panx-1 mimetic blocking peptide. Full details are available in the

Supplementary Methods online.

Keratinocyte culture

HaCaT cells, a gift from Norbert Fusenig in Heidelberg, Germany,

and neonatal foreskin NHEKs purchased from Kurabo (Osaka, Japan)

were used in this study. Full details regarding cell culture are

available in the Supplementary Methods online.

Chemicals exposure of keratinocytes

HaCaT cells or NHEKs were cultured in 24-well plates, washed twice

48 hours later, and incubated with DMEM without phenol red at

Sensitization – – + +

Δ 
E

ar
 th

ic
kn

es
s 

(x
 0

.0
1m

m
)

0

2

4

6

8

10
Saline

CBX

**

Figure 6. Inhibition of pannexin-1 (Panx1) by carbenoxolone (CBX)

significantly reduces contact hypersensitivity (CHS) induced by

dinitrochlorobenzene (DNCB). To examine the role of extracellular adenosine

50-triphosphate (eATP) in sensitization, C57Bl/6 mice were given an

intraperitoneal injection of CBX or saline on day 0 and then sensitized with 1%

DNCB (or without sensitization) on days 0, 1, and 2, followed by epicutaneous

application of 20ml of 0.5% DNCB on the dorsum of both ears on day 4. Ear

measurement was taken on days 4 and 6. The data represent the mean increase

in ear thickness for groups of seven mice±SD. Representative data from three

independent experiments are shown. **Po0.01 (vs. saline control, Student’s

t-test).
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37 1C in 10% CO2 for 1 hour. Afterwards, they were pretreated with

or without graded concentrations of antioxidants or Panx inhibitors

for 30 minutes, followed by treatment with graded concentrations of

haptens or irritants for various time periods at 37 1C in 10% CO2.

Knockdown of Panx1 by stealth siRNA

In some experiments, HaCaT cells were treated with siRNA against

Panx1 as described previously (Hirakawa et al., 2011), followed by

hapten exposure. Full details are available in the Supplementary

Methods online.

Cell viability

Cell viability was determined by either a PI exclusion assay using flow

cytometry or LDH release. Full details are available in the

Supplementary Methods online.

Measurement of intracellular ROS

Intracellular ROS were measured fluorometrically using a CM-

H2DCFDA probe (Invitrogen, Grand Island, NY) according to the

manufacturer’s protocol. Full details are available in the Supple-

mentary Methods online.

In vitro detection of mitochondrial superoxide anion

Mitochondrial superoxide anion was detected by MitoSOX RED

(Invitrogen). Full details are available in the Supplementary

Methods online.

Measurement of ATP
The extracellular ATP level was measured with a commercially available

kit (ENLITEN, rLuciferase/Luciferin Reagent; Promega, Madison, WI).

Full details are available in the Supplementary Methods online.

Murine model of CHS

Female C57Bl/6 mice were sensitized by painting the shaved abdom-

inal skin with 100ml of 1% DNCB in 4:1 (v/v) acetone/olive oil on days

0, 1, and 2. For elicitation, 20ml of 0.5% DNCB was applied to the

dorsum of both ears on day 4. To examine the role of eATP in

sensitization, we injected 20 mg kg� 1 of CBX into the peritoneum on

day 0. Full details are available in the Supplementary Methods online.

Statistical analysis

At least three independent experiments were performed for each

analysis and representative data from one experiment are shown. A

one-way or two-way analysis of variance test was used to evaluate

statistical significance. The P-values of o0.05 were considered

statistically significant.
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