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SUMMARY

We have used high-resolution 4D imaging of cardiac
progenitor cells (CPCs) in zebrafish to investigate the
earliest left-right asymmetric movements during car-
diac morphogenesis. Differential migratory behavior
within the heart field was observed, resulting in a ro-
tation of the heart tube. The leftward displacement
and rotation of the tube requires hyaluronan syn-
thase 2 expression within the CPCs. Furthermore,
by reducing or ectopically activating BMP signaling
or by implantation of BMP beads we could demon-
strate that BMP signaling, which is asymmetrically
activated in the lateral plate mesoderm and regulated
by early left-right signals, is required to direct CPC
migration and cardiac rotation. Together, these re-
sults support a model in which CPCs migrate toward
a BMP source during development of the linear heart
tube, providing a mechanism by which the left-right
axis drives asymmetric development of the verte-
brate heart.

INTRODUCTION

The vertebrate heart develops with a clear left-right (LR) asym-

metry. Defects occurring during LR patterning of the embryonic

heart result in congenital heart defects such as double-outlet-

right-ventricle or transposition of the great arteries and have ma-

jor consequences for heart function after birth (reviewed in

Ramsdell, 2005). LR asymmetry in vertebrates is controlled by

a ciliated organ such as the node in mouse and Kupffer’s vesicle

in zebrafish embryos (Essner et al., 2002). In this ciliated organ,

a fluid flow from right to left is generated, activating a left-sided

gene expression program with a central role for Nodal, a member

of the TGF-b growth factor family. Other growth factors such as

BMP, FGF, and SHH play important roles in the development of

the ciliated organ or are required to transduce the signals from

the ciliated organ to the lateral plate mesoderm (LPM) (reviewed

in Raya and Izpisua Belmonte, 2006). Although the signals that
Deve
regulate LR asymmetry in the embryo have been extensively

studied, we still do not understand how these signals control

cell and tissue morphogenesis to generate asymmetric organ

development.

In the zebrafish, as in most vertebrates, the heart is the first or-

gan to develop LR asymmetry (Stainier, 2001). Prior to the forma-

tion of the cardiac tube, several genes such as bmp4, lefty1,

lefty2, and pitx2 are expressed asymmetrically on the left side

in the LPM in close proximity to the cardiac field and in the car-

diac field itself (Chocron et al., 2007, and references therein).

However, the mechanisms by which these signals control asym-

metric cardiac development have not yet been identified. Prior to

formation of the heart tube, cardiac progenitor cells (CPCs) lo-

cated within bilateral myocardial epithelia fuse at the midline

ventral to the endoderm to form a cardiac cone (Glickman and

Yelon, 2002; Stainier, 2001). The cardiac cone will shape into

a cone with its base on the yolk, and a model has been proposed

in which the cone undergoes a telescopic extension into a linear

heart tube, with central cells of the cone assembling first and giv-

ing rise to the ventricle (arterial pole) and peripheral cells giving

rise to the atrium (venous pole) (see Figures S1A–S1C in the Sup-

plemental Data available with this article online). In addition, pre-

ceding this extension, a tilting process occurs that is referred to

as cardiac jogging, during which the future venous pole of the

heart becomes positioned toward the left side of the body

axis, while the arterial pole remains at the midline (Stainier,

2001). Although the mechanism of the leftward displacement is

unclear, it is subject to early left-right patterning (Chen et al.,

1997) and precedes rightward looping (Figures S1D–S1F). The

analysis of zebrafish mutants defective in LR patterning demon-

strated that the direction of cardiac jogging predicts the direction

of looping (Chen et al., 1997).

In the current work, we investigate this asymmetric patterning

of heart morphogenesis. Our data, using high-resolution 4D con-

focal imaging and serial sectioning in combination with 3D re-

constructions, show complex cellular behaviors and provide

evidence for a rotation of the cardiac cone. Studying the molecular

mechanisms that might drive these processes, we find a dynamic

expression of has2 in the CPCs during the jogging process, which

is required for the leftward migration of CPCs and rotation of

the cone. While Has2 is a permissive factor required for CPC
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migration, we find that BMP signaling is instructive for directing

CPC migration during these processes, thereby providing a di-

rect link between earlier LR patterning and morphogenesis of

the heart tube.

RESULTS

The Cardiac Cone of the Zebrafish Undergoes
Clockwise Rotation during Tube Formation
After fusion of the bilateral cardiac fields, CPCs move in a left-

ward and anterior direction, reorganizing to form the linear heart

tube. To date, this movement has been simplified as a tilting and

extension of the cone but is yet to be thoroughly described. To

gain a more comprehensive understanding of the intercellular

behavior and movements of CPCs during this stage, we per-

formed live high-resolution confocal time-lapse recordings using

the tg(cmlc2:gfp) line (Huang et al., 2003), which specifically ex-

presses a nuclear GFP in developing myocardial cells, starting

after fusion of the bilateral cardiac fields (Figure 1A and Movie

S1). Using cell-tracking software, we tracked individual cells

and measured their speed and displacement. All tracked cells

showed a linear displacement toward the left and anterior axis

of the embryo (n = 6 embryos), with cells moving in a coherent

fashion and maintaining cellular contacts with neighboring cells.

We observed, however, some variation in cellular behavior (ve-

locity and displacement) when comparing individual tracks

which appeared to correlate with the origin of cells in the initial

cardiac cone. Clustering tracks into four equal sectors, based

on the starting position of the cells at anterior-posterior and

left-right positions (I–IV; Figure 1A), we found that the tracks of

cells originating from the posterior region of the cardiac cone

(sectors I and IV, red and yellow tracks in Figure 1A) were longer

than tracks originating from the anterior region of the cardiac

cone (sectors II and III, Figure 1A), resulting in significantly higher

displacement rates for CPCs from the posterior region of the car-

diac cone compared with CPCs from the anterior region (p %

0.005; Figure 1B). This was not the result of indirect migration

paths, as meandering indices did not differ (Figure 1C). Further-

more, looking at the distance cells moved between the individual

time points suggested that the speed at which these posterior

cells move is not constant (Figure 1E). This was confirmed by

measuring the speed of multiple tracks during the time-lapse im-

aging, demonstrating that, while anterior cells move at a constant

speed, posterior cells start with a similar speed, only to acceler-

ate to double their speed before slowing down and returning to

their initial speed (Figure 1F).

Comparing the migration paths of individual cells, we further

observed that, during their leftward displacement, cells derived

from sectors I and IV (Figure 1A) crossed each other. This sug-

gests that, simultaneous to leftward jogging, the cardiac cone

undergoes a clockwise rotation (from a dorsal view). Tracing

cells from each sector over 200 min, we determined the extent

of this cardiac cone rotation as 36 ± 4 degrees (SEM, n = 6 em-

bryos) whereas the embryonic axis itself did not rotate (Figure 1D

and Movie S2). Incidentally, we also measured the angle of the

tilted cone relative to the LR axis. After rotation of the cardiac

cone and cardiac jogging, the tube was positioned at an angle

of 36 ± 3 degrees (SEM, n = 6 embryos) relative to the LR axis,

the same angle as the degree of cone rotation.
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Left-Right Polarity of the Cone Is Converted
into Dorsal-Ventral Polarity of the Tube
Given the clockwise rotation of the developing heart tube, we

postulated that a subsequent redistribution of cells of left and

right identity would occur and should be detectable. We ana-

lyzed the specific expression of lefty2, which demarcates the

left cardiac field, in 23-somite-stage embryos (Figure 2A). Dou-

ble labeling with lefty2 and cardiac myosin light chain 2 (cmlc2,

a marker of cardiomyocytes) (Figures 2A and 2B) or a tropomyo-

sin antibody (labeling all cardiomyocytes, Figures 2C and 2D) re-

vealed that in the linear heart tube lefty2-expressing cells are not

restricted to the left half but end up largely in the dorsal part of the

tube (Figure 2C) with the exception of the outflow region

(Figure 2D). 3D reconstructions of serial sections confirmed

a dorsal position of lefty2-expressing cells in the majority of the

tube with the exception of the two poles, suggesting some tor-

sion within the tube (Figures 2E–2H and Movie S3). This change

in lefty2 expression from a strictly left-right pattern to a dorsal-

ventral pattern suggests that cells derived from the left cardiac

field form the dorsal part of the tube and cells from the right

form the ventral part. To confirm this, we performed lineage-trac-

ing experiments by injecting cmlc2:mRFP DNA in either the left

or right side of embryos, labeling single cells in the cardiac field

(Figures 2I and 2J). Left-labeled CPCs (n = 23) invariably ended

up in the dorsal part of the linear heart tube, and right-labeled

CPCs (n = 11) ended up exclusively in the ventral part of the

tube, consistent with the clockwise rotation of the cone and

lefty2 expression (Figure 2K,L). Together, these results demon-

strate that the initial left-right polarity of the cone becomes dor-

sal-ventral polarity of the later heart tube after cone rotation.

Has2 Expression in Myocardial CPCs
Is Required for Cardiac Jogging
We next looked into the possible molecular mechanisms driving

the leftward displacement and rotation of the cardiac field. We

have previously shown that hyaluronan synthase 2 (Has2) is re-

quired for cell migration of mesodermal cells during various

stages of zebrafish development (Bakkers et al., 2004). Consis-

tent with this, specific expression of has2 was observed in the

heart during fusion of the bilateral heart fields and cardiac jog-

ging (Figures 3A–3G). Although expression of has2 at later

stages is specific for the endocardial cushions (data not shown),

we found earlier expression detectable in the myocardial lineage.

This was evidenced by normal expression of has2 observed in

cloche mutant embryos that lack endothelial cells including the

endocardium (data not shown). In addition, bilateral has2 ex-

pression overlaps with the expression pattern of cmlc2 (Figures

3B and 3E–3G) although not all cmlc2-expressing progenitor

cells were positive for has2 expression. This subpopulation of

has2-postitve, cmlc2-expressing cells was more obvious after

fusion of the bilateral heart fields, when has2 expression was re-

stricted to peripheral, future atrial regions of the myocardial

cone. In accordance with this observation, double in situ hybrid-

ization (ISH) showed that has2 is expressed in a subset of amhc

(atrial myosin heavy chain)-expressing cells (Figure 3C), a marker

gene for future atrial cells, which will undergo leftward displace-

ment (see Introduction and Figure S1). In contrast, presumptive

ventricular cells, which assemble first into a tube and remain at

the midline, display little has2 expression, as is apparent in
Inc.
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Figure 1. Rotation of the Cardiac Cone during Formation of the Linear Heart Tube

(A) Selected images of a confocal time-lapse recording of a tg(cmlc2:gfp) embryo starting at the 23-somite stage. Individual GFP-positive cells were tracked and

color-coded according to their location within the cardiac field at the 23-somite stage. Dorsal view with anterior to the top.

(B and C) Displacement rates and meandering index (displacement/track length) of CPCs located at different positions within the cardiac field (color corresponds

to position indicated in the confocal image) calculated from time-lapse recording shown in (A) (n = 30). Error bars indicate standard errors. Statistic significance

(by paired t test) calculated for CPCs derived from sector I (red) compared with CPCs derived from sectors II (green) and III (blue) (* p < 0.005).

(D) Selected images of confocal timelapse recording with individual cells labeled during formation of the heart tube. Individual cells are marked (yellow, red, green,

and blue for laterally located atrial cells and pink for medially located ventricular cells) and tracked over a 200 min period, revealing the evident rotation of the

cardiac cone.

(E) Representative tracks of individual cells originating from the posterior (blue) or anterior (purple) region of the cardiac cone with 8 min intervals in between time

points shown. Scale bar represents 25 mm.

(F) Graphical representation of CPC speeds during the process of heart tube formation. Cells were grouped according to their original position in the cardiac field

(posterior, blue; anterior, purple).
has2 � vmhc (ventricular myosin heavy chain) double labeling

(Figure 3D).

During the process of cardiac jogging, has2 expression was

rapidly shifted to the embryonic left side (Figures 3E and 3G)

and remained restricted to the most anterior presumptive atrial

cells (venous pole) of the developing heart tube. To address

whether this asymmetric has2 expression is dependent on cor-

rect LR patterning of the cardiac field, we injected a morpholino

(MO) targeting the nodal related gene southpaw (spaw). spaw is

required for correct LR patterning of the LPM, including the

heart field, and injecting a MO targeting spaw prevents cardiac

jogging (Long et al., 2003). Strikingly, we observed that in em-

bryos injected with the spaw MO, has2 expression is affected
Deve
and persists in the right cardiac field (17/20 embryos) (Figures

3I and 3J).

The dynamic expression pattern of has2 that correlates with

the leftward displacement of CPCs suggests a role for Has2 in

this process. In order to address whether Has2 itself is required

for this displacement, we injected MOs, previously shown to

specifically target has2 (Bakkers et al., 2004). Embryos injected

with has2 MO that only mildly affect cell migration during gastru-

lation showed no defects in fusion of the heart fields or CPC dif-

ferentiation (Figure 3H). A subtle affect on lefty1/2 staining was

observed in the heart region of has2 morphants; however, no dif-

ference in the laterality markers, spaw and pitx2, was observed

in has2 morphants compared with control-injected embryos,
lopmental Cell 14, 287–297, February 2008 ª2008 Elsevier Inc. 289
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Figure 2. lefty2 Expression and Lineage Tracing Reveals a Dorsal-

Ventral Orientation of the Left-Right Regions of the Heart Field,

Respectively, in the Linear Heart Tube

(A and B) Double ISH with cmlc2 (red) and lefty2 (blue) antisense riboprobes at

23-somite stage (A) and 24 hpf (B). Dorsal views with anterior to the top.

(C and D) Serial section and 3D reconstruction (E–H) of an ISH embryo with

lefty2 probe counterstained by using an anti-tropomyosin antibody at the level

of the venous pole of the heart tube (C) and the arterial pole (D).

(E–H) 3D reconstruction with blue representing lefty2-positive tissue and yel-

low representing tropomyosin-positive tissue. (E) Dorsal view with venous

pole to the top and arterial pole to the bottom. Arrows in (F) and (G) indicate

regions at the poles where some torsion of the tube is visible.

(I–L) Lineage tracing of CPCs from the left or right cardiac field. (I) CPCs

were mosaically labeled in the left or right cardiac field by injection of

cmlc2:mRFP DNA into one cell at the two-cell stage. (J) In the cardiac cone,

mRFP-expressing CPCs were observed on the left side, and these cells

were later found to occupy the dorsal part (K, arrowheads) of the linear heart

tube with no mRFP cells observable on the ventral side of the tube (L).
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indicating that left-right patterning in these embryos was not

markedly disturbed (Table S1). Thereafter, however, these em-

bryos developed with a linear heart tube from a failure to jog to-

ward the left side (29/55 embryos) (Figures 3K–3N). In addition,

cardiac looping was severely affected in has2 MO-injected

embryos (data not shown). These data suggest that Has2-

dependent migration of CPCs is required as a response to early

LR signals for the leftward displacement of the venous pole of

the linear heart tube.

The Cardiac Cone of has2 Morphants Fails to Rotate
To determine whether rotation of the cardiac cone was affected

in conjunction with cardiac jogging in has2 morphants, time-

lapse confocal imaging and cell tracking of tg(cmlc2:gfp) em-

bryos injected with has2 MOs was performed (Figure 3O).

has2 MO injection had little effect on coherent cell movement

(meandering index of 0.82 ± 0.1 SEM, n = 68). In has2 mor-

phants, the CPCs still migrate in linear tracks with a total speed

of 50 ± 2 mm/hr (SEM, n = 68); however, there is little displace-

ment in the left-right direction when compared with WT embryos

(compare Figures 1A and 3O). In addition, cells originating from

different sectors in the cardiac field all have similar displacement

rates, resulting in a significant reduction in rotation of the cone

(p < 0.0005; Figures 3P–3R and Movie S4). Remarkably, in con-

junction with a failure of the cone to rotate, lefty2-positive cells

were not found exclusively in the dorsal side of the heart tube

but remain restricted to the left side (dorsal and ventral) of the

heart tube in has2 morphants (Figures 3M and 3N). It is also

evident that despite the loss of rotation and leftward displace-

ment in has2 MO-injected embryos, the anterior displacement

is only slightly delayed and a tube is still formed, albeit with

a smaller lumen (Figures 3K and 3L, insets), suggesting that other

forces are responsible for elongation of the linear heart tube (see

also Discussion).

Activation of BMP Signaling Is Asymmetric in the LPM
Although the mechanism has not been solved, BMPs are essen-

tial for the regulation of LR asymmetry within the heart tube

(Breckenridge et al., 2001; Chocron et al., 2007; Schilling et al.,

1999; Zhang and Bradley, 1996). In a recent study, we were

able to show a genetic interaction between Has2 and BMP sig-

naling during dorsal convergence in the gastrulating embryo

(von der Hardt et al., 2007). We observed a similar genetic inter-

action between Has2 and Bmp4 (the zebrafish ortholog of hu-

man BMP4) during leftward displacement of CPC (Figure S2).

Prior to the initiation of cardiac jogging, bmp4 is asymmetrically

expressed in the LPM, which is regulated by earlier left-right sig-

nals including Nodal signaling (Chen et al., 1997; Chocron et al.,

2007). To address whether there is asymmetric activation of

BMP signaling in the LPM prior to leftward migration of the

CPCs, we stained 23-somite-stage embryos with an antibody

recognizing phosphorylated Smad 1,5 and 8 protein and coun-

terstained with anti-tropomyosin antibody to label CPCs (Fig-

ure 4) and DAPI to stain all nuclei (data not shown). A confocal

stack of the LPM in the region of the cardiac field detected

phospho-Smad-positive cells across the LPM and surrounding

the myocardium, with an asymmetric activation of phospho-

Smad on the left versus right side of the embryo (Figures 4A–

4C). A greater number of positive cells was observable on the
Inc.
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Figure 3. Has2 Expression in CPCs Is Required for Jogging and Rotation of the Cardiac Cone

(A–L) One- and two-color ISH (probes indicated at bottom) on wild-type embryos (A–G, I, and K) or embryos injected with a southpaw MO (J) or a has2 MO (H and

L) during various stages (indicated at the top) of heart tube formation. Evident is the dynamic expression pattern of has2 in the CPCs. All images are dorsal views

with anterior to the top and left to the left.

(M and N) Combined ISH with an antisense lefty2 riboprobe (blue) and anti-tropomyosin antibody staining (brown, labeling all cardiomyocytes) of a control

MO-injected embryo (M) or has2 MO-injected embryo (N).

(O) Selected images of a confocal time-lapse recording of a tg(cmlc2:gfp) embryo injected with a has2 MO starting at the 23-somite stage. Individual GFP-positive

cells were tracked and color coded according to their location within the cardiac field at the 23-somite stage. Dorsal views with anterior to the top.

(P) Displacement rates of CPCs localized at different positions within the cardiac field (color corresponds to position indicated in the confocal image) calculated

from time-lapse recording shown in (O) (n = 55, mean ± SEM). Evident is the absence of leftward displacement of the CPCs and their equal displacement rates.

(Q) Selected images of a confocal time-lapse recording shown in (O) with individual cells marked (red, light blue, dark blue, and green for atrial cells located lateral

and pink for ventricular cells located medial) and tracked over a 250 min period.

(R) Quantification of clockwise cardiac cone rotation in wild-type and has2 MO-injected embryos (mean ± SEM).
left side (Figure 4B, arrowheads) compared with the right

(Figure 4B, arrows), and cell counting demonstrated this to be

a statistically significant difference (Figure 4G, # p < 0.05, n =

6). As an additional confirmation of this patterned activation of

Smad 1,5,8, we performed immunostaining in tg(hsp70:noggin3)

embryos heat shocked at the 15-somite stage to induce Noggin

expression and subsequently block BMP signaling (Chocron

et al., 2007). Significantly fewer overall cells were stained for

phospho-Smad 1,5,8 in these embryos (Figures 4D–4F and 4H;

* p < 0.001, n = 5–6), and there was no significant left-right asym-

metry of phospho-Smad-positive cells in tg(hsp70:noggin3)

embryos (Figure 4I).
Deve
BMP Signaling Is Required for Directing CPC Migration
It has been well characterized that mutants with defective BMP

signaling do not undergo cardiac jogging (Chen et al., 1997;

Chocron et al., 2007). Given this defect, the genetic interaction

of BMP signaling with Has2, and the asymmetric activation of

BMP signaling in the LPM, we were interested in determining

whether BMP signaling is also required for rotation of the cardiac

cone. Lost-a-fin mutants have defective BMP signaling due to

a loss-of-function mutation in the BMP type I receptor gene,

alk8 (Bauer et al., 2001; Mintzer et al., 2001). It was also apparent

that laf/alk8 mutant embryos have a smaller cardiac field at

23 somites (data not shown). Monitoring CPC movements in
lopmental Cell 14, 287–297, February 2008 ª2008 Elsevier Inc. 291
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laf/alk8 mutant embryos showed a reduced rotation (23 ± 10 de-

grees, n = 3) when compared with wild-type embryos (36 ± 4 de-

grees) (Figures 5A and 5D and Movie S5). The fact that this was

not a complete loss of rotation may be attributed to the presence

of other BMP receptors. Indeed, in tg(hsp70:noggin3) embryos

heat shocked at the 15-somite stage, leftward displacement of

the venous pole and rotation of the cardiac cone were efficiently

blocked (n = 5) (Figures 5B and 5D and Movie S6). When migra-

tion paths were examined in laf/alk8 mutant embryos, CPC

movement was irregular, while in WT embryos the paths of indi-

vidual CPCs were straight (Figures 6A and 6B). This difference

was manifested in the meandering index of the cells (Figure 6I).

Measurement of the vectors (direction of displacement) demon-

strated an obvious effect on the direction of cell migration upon

reduced BMP signaling. While WT CPCs coordinately migrate in

an anterior-left direction, CPCs in laf/alk8 mutant embryos mi-

grated in an almost entirely anterior direction (Figures 6D and

6E). In addition, during their migration in the left-anterior direc-

tion, WT posterior CPCs accelerate, resulting in a much higher

Figure 4. Asymmetric Activation of Smad

1,5,8 Protein in the LPM

Confocal images of the LPM at the cardiac region

in 23-somite stage embryos stained for tropomyo-

sin (red, A and D), phospho-Smad 1,5,8 (white, B

and E), and the overlay (C and F). Staining in WT

embryos (A–C) shows asymmetric activation of

Smad 1,5,8 on the left side (yellow arrowheads)

compared with right (green arrows). Cell counting

showed this difference to be statistically signifi-

cant ([G]; mean ± SEM, # p < 0.05). Activation of

Smad 1,5,8 was significantly lower in tg(hsp70:

noggin3) embryos (D–F) compared with WT

embryos ([H]; mean ± SEM, * p < 0.001), and the

difference between left and right activation of

Smad 1,5,8 was not significant ([I]; mean ± SEM).

In all images anterior is to the top, left is to the

left side, and the midline is demarcated by the

dashed yellow line.

speed compared with the anterior cells

that do not accelerate (Figures 1B and

1E and Figures 6G and 6J). This acceler-

ation of the posterior cells is lost in laf/alk8

mutant embryos, resulting in near-identical

migration speeds for all CPCs in the

cardiac field (Figure 6G). Finally, the

combined reduction in total speed and

the directionality of the CPC migration in

laf/alk8 mutants results in a dramatic

reduction of their displacement rates

(Figure 6H). These data demonstrate

that BMP signaling is required for nor-

mal migration of CPCs during heart tube

formation.

Given the asymmetric activation of

BMP signaling in the LPM (Figure 4), we

next investigated whether localized BMP

signaling is required for proper CPC mi-

gration. If so, migration should not only

be perturbed by loss of BMP signaling but also by uniformly

high signaling levels. To test this, we utilized the previously de-

scribed tg(hsp70:bmp2b) line in the tg(cmlc2:gfp) background

which, upon heat shock, ectopically expresses bmp2b (the

zebrafish ortholog of human BMP2) in the entire LPM within sev-

eral hours following heat shock (Chocron et al., 2007; Scheer

et al., 2002). While the heat shock alone does not affect cardiac

jogging, cardiac jogging was efficiently blocked when BMP

signaling was induced at the 18-somite stage or earlier (Figure

5E). Strikingly, we also observed groups of cardiomyocytes that

did not incorporate normally into the heart tube, giving the tube

a disheveled appearance (Figure 5E). The lack of jogging was

not due to differences in cardiomyocyte specification or levels

of has2 expression, as examination of the cardiac field (by ISH

for cmlc2 or has2) in tg(hsp70:noggin3) and tg(hsp70:bmp2b)

embryos at 23 somites revealed no differences compared with

WT embryos (data not shown). When we investigated whether

this lack of jogging was accompanied by a failure of the cardiac

cone to rotate, we observed almost a complete absence of
292 Developmental Cell 14, 287–297, February 2008 ª2008 Elsevier Inc.
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Figure 5. Leftward Displacement of CPCs and Cardiac Rotation Are Affected upon Reduced or Ectopic BMP Signaling

(A–C) Selected images of confocal time-lapse recordings of laf/alk8 (A) heat-shock induced (at 15-somite stage) tg(hsp70:noggin3) (B) and tg(hsp70:bmp2b) (C)

embryos with individual cells marked and tracked over a 200 min period.

(D) Quantification of clockwise cardiac cone rotation in wild-type laf/alk8 mutant tg(hsp70:noggin3) and tg(hsp70:bmp2b) embryos (mean ± SEM).

(E) ISH with a cmlc2 riboprobe on tg(hsp70:bmp2b) embryos heat shocked at various time points (indicated at the top). Arrows and arrowheads indicate CPCs

not properly incorporated into the cardiac tube. Heat shock at 15-somite stage, no cardiac jogging (n = 14/16); 18-somite stage, no cardiac jogging (n = 12/20);

22-somite stage, leftward jogging (n = 17/19).
clockwise rotation in tg(hsp70:bmp2b) embryos (1 ± 1 degree,

n = 3, Figures 5C and 5D and Movie S7).

Kinetic measurement of CPCs in tg(hsp70:bmp2b) embryos

revealed that, like laf/alk8 mutants, migration paths were obvi-

ously disturbed (Figure 6C). Measuring the vectors in tg(hsp70:

bmp2b) embryos revealed a dramatic effect on CPC directiona-

lity that was more pronounced than that observed in laf/alk8

mutants (Figures 6D–6F). Ectopic activation of BMP ligand

resulted in CPC migration in apparently random directions.

This disoriented migratory behavior is also reflected in the low

meandering index for these cells (meandering index of 0.28 ±

0.02 compared with 0.86 ± 0.02 in WT embryos) (Figure 6I). Fur-

thermore, in laf/alk8 mutants no acceleration of the posterior

cells was observed, resulting in consistent speeds between the

anterior and posterior cells (Figure 6G). This combined reduction

in speed and directed movement resulted in an overall significant

reduction in the displacement of CPCs (Figure 6H). Altogether,

these data demonstrate that BMP signaling was not only neces-

sary but required in a localized fashion for appropriate CPC

migration during heart tube formation.

BMP Beads Direct Cardiac Jogging
The acceleration of posterior CPCs during their migration sug-

gests that these cells move toward a localized source of

a chemo-attractant. The specific loss of this acceleration when

BMP signaling is modulated and the asymmetric phospho-

Smad distribution suggests that BMPs are likely involved in
Deve
directing CPC movement. To address whether a local source

of BMP ligand can direct the migration of CPCs, we implanted

BMP-loaded beads into embryos. The effect of this manipulation

on BMP signaling was monitored by immunostainings for phos-

pho-Smad 1,5,8 protein. While implantation of PBS beads had

no effect on the activation of Smad protein, implanting BMP

beads resulted in local stimulation of Smad 1,5,8 phosphoryla-

tion (Figures 7A and 7B). The BMP beads were implanted at

the 15–18-somite stage (15 hpf) in the LPM at different positions

relative to the cardiac field, and cardiomyocytes were visualized

by ISH after the cardiac tube was formed (28 hpf). While implant-

ing PBS beads had no effect on CPC behavior (7/7 embryos), im-

planting BMP beads prevented heart tube morphogenesis when

the bead was placed in direct contact with the cardiac field (data

not shown). Implanting beads at a distance from the field, how-

ever, had no effect on heart tube morphogenesis. We therefore

injected a bmp4 MO to disturb endogenous BMP signaling be-

fore implanting the BMP beads in close proximity to the heart

field. This resulted in various defects ranging from large parts

of the heart tube covering the BMP bead to groups of cells di-

verging away from the cardiac field and toward the BMP bead

(Figures 7C–7E).

Next, we addressed whether it was possible to redirect cardiac

jogging toward a BMP bead in bmp4 morphant embryos. BMP

beads were implanted on the left or right side of tg(cmlc2:gfp)

embryos injected with a bmp4 MO, and cardiac jogging was vi-

sualized by time-lapse confocal microscopy. For the majority,
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cardiac jogging was directed toward the BMP bead when placed

either on the left (5 out of 7 embryos) or right side (11 out of 15

embryos) (Figures 7F–7G0, Movie S8). From the time-lapse

movies, it was evident that cells in close proximity to the BMP

bead exhibited a greater response than those at a distance, pre-

venting an analysis of cone rotation (see also Discussion).

Finally, we investigated whether the recruitment of CPCs to-

ward the exogenous BMP source was also Has2 dependent.

We coinjected bmp4 MO and has2 MO in tg(cmlc2:gfp) embryos

before implanting BMP beads on either the left or the right side.

Coinjection of has2 MO indeed prevented cardiac jogging toward

the BMP source when the bead was placed on the left (6 out of 6

embryos) or right side (9 out of 13 embryos) (Figures 7H and 7H0,

Movie S9). Together, these results demonstrate that local activa-

tion of BMP signaling can guide the direction of cardiac jogging

and that this process requires the presence of Has2.

DISCUSSION

In zebrafish, heart tube formation from the cardiac cone has, to

date, been described as an extension and elongation of this

Figure 6. Coherent and Directional

Migration Is Regulated by Levels of BMP

Signaling

(A–C) Representative tracks from confocal time-

lapse recordings over 60 min with 5 min intervals

(25-somite stage). Yellow star indicates start point

and red star indicates end point. Anterior to the top

and left toward the left side.

(D–F) Vectors of individual cell tracks calculated

from representative confocal time-lapse record-

ings indicating the net displacement in the ante-

rior-posterior and left-right direction. Anterior to

the top and left toward the left side.

(G–I) Graphical illustrations of the total speed and

net displacement rate in mm/hr and the meander-

ing index (displacement/track length) of CPCs in

the posterior or anterior region of the cardiac field

(n = 30, mean ± SEM). Evident are the reduced

speed of the posterior cells and the lack of direc-

tionality when BMP signaling is modulated.

(J) Confocal image of the cardiac cone with poste-

rior and anterior cells indicated, respectively, in

blue and purple.

cone, in the same manner as one extends

a telescope. This rather oversimplified

model of what is a highly complex reorga-

nization of the heart field has been ad-

dressed with the current work. Tracking

of single cells revealed clear differences

in migratory behavior of CPCs in the car-

diac cone during the jogging process.

This results in a simultaneous rapid left-

ward displacement and clockwise rota-

tion of the cardiac cone which is Has2

dependent. In addition, we have shown

that localized BMP activity regulated by

early LR signaling in the LPM directs

CPC migration toward the left side, un-

covering a mechanism by which LR signaling controls heart

morphogenesis.

Our time-lapse recordings and cell-tracking data demonstrate

a dynamic and complex movement of CPCs resulting in a simul-

taneous coherent movement in the anterior-left direction and

a clockwise rotation of the entire cardiac cone. In has2 mor-

phants or in embryos with reduced or ectopic BMP activity,

both the rotation as well as the jogging of the cone is affected.

Rotation of the heart tube is recognized in other vertebrates,

including human (De la Cruz, 1998; Männer, 2000), and is

described here in the zebrafish embryo. In the chick embryo,

dextral looping (transformation of the linear heart tube into the

c-shaped heart loop) has been described as a clockwise rotation

(De la Cruz, 1998; Männer, 2000) resulting in a change of the ini-

tial left-right polarity into a dorsal-ventral polarity (Campione

et al., 2001). Although various mechanisms have been suggested

to drive dextral looping, there is only limited experimental data

supporting this model. Recently, it was proposed by biomechan-

ical models that rotation at the poles of the heart tube is sufficient

to drive dextral looping (Männer, 2004; Voronov et al., 2004). Our

results demonstrate a clockwise rotation of the zebrafish heart
294 Developmental Cell 14, 287–297, February 2008 ª2008 Elsevier Inc.
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cone, which is most apparent at the atrial pole, leading to a con-

version of the original left and right sides to dorsal and ventral

sides of the heart tube at 24 hpf. Since our analysis stopped after

heart tube formation and before its dextral looping, we do not

know whether this rotation continues and whether it might also

be correlated to or even drive the looping of the zebrafish heart.

Interestingly, however, the heart tube of has2 morphants, as well

as the heart tubes of embryos with ectopic or reduced BMP

Figure 7. BMP Beads Direct Cardiac Jogging

(A and B) Phospho-Smad 1,5,8 antibody staining after implantation at the

15-somite stage of a PBS bead (A) or a BMP bead (B). Bracket in (B) indicates

the induced phospho-Smad staining in close proximity of the BMP bead.

Dorsal view with anterior to the top of 25-somite stage embryos.

(C–E) ISH with antisense cmlc2 riboprobe of embryos injected with a bmp4 MO

and a BMP bead implanted at the 15–18-somite stage. (C) The heart tube is

redirected to a BMP bead implanted on the right side (11/15), dorsal view

with anterior to the top, arrow indicates position of the BMP bead. (D) In a lat-

eral view, arrows indicate CPCs that have been recruited toward the BMP

bead (n = 7/8). Arrowheads (E) point to a layer of CPCs that form a layer on

the bead’s surface. (E) is an enlargement of (D).

(F–H0 ) Selected images of a confocal time-lapse recording of bmp4 morphants

(F–G0) or a bmp4 has2 double morphant (H and H0) with a BMP bead placed on

the right side. Images represent the start (F–H) and end point (F0,G0,H0) of the

time-lapse of the three individual embryos. Position of the BMP beads is

marked by the blue circle.
Deve
activity, fail to loop at later stages (Chen et al., 1997; Chocron

et al., 2007, and J.B unpublished data). We addressed whether

the clockwise rotation of the cardiac cone is reversed or simply

does not occur in embryos with heart reversals such as in the

embryos with a BMP bead implanted on the right side. The

results were inconclusive due to the high variability in CPC move-

ments in this artificial system. Therefore, additional forward

genetic screens will be required to identify mutants that display

complete heart reversals. The zebrafish provides an excellent

model for future studies into the relationship between cardiac

rotation and looping and the mechanisms driving these events.

During the leftward displacement and clockwise rotation, the

cardiac cone also extends into a tube. Extension of the tube re-

quires an atypical PKC and a Na,K-ATPase (Rohr et al., 2005;

Shu et al., 2003). Our results demonstrate that extension of the

heart tube is not dependent on Has2 activity or BMP signaling

since the extension process still occurs when these pathways

are affected. This would suggest that the mechanism of heart

tube extension is independent of the leftward displacement

and clockwise rotation of the tube. This is in agreement with

our results that acceleration of a subset of CPCs is required for

the leftward displacement and rotation of the heart, which is

Has2- and BMP dependent. Without this acceleration of the pos-

terior CPCs, all cells move with the same speed in the anterior di-

rection as observed in Has2-deficient embryos (see Figure 3).

We identified Has2, which is required for cell migration in var-

ious tissues (Bakkers et al., 2004), to be specifically expressed in

the CPCs of the venous pole of the heart. As seen in chick and

mouse embryos, Has2 is strongly expressed in the CPCs (Klewer

et al., 2006). During their migration, CPCs invade the lateral plate

mesoderm, which we have shown in the current work requires

Has2 in the CPCs. This is in agreement with previous reports

showing that Has2 is required for migration of various cell types

by a cell-autonomous mechanism (Bakkers et al., 2004; Itano

et al., 2002). Has2 produces hyaluronic acid (HA), an extracellu-

lar glycosaminoglycan which has been implicated in tumor me-

tastasis. While large polymers of HA can form a water-containing

space-filling jelly, smaller oligosaccharides of HA can be bound

by specific receptors, such as CD44 or Rhamm, resulting in cy-

toskeletal changes by activation of the small GTPases, Rho, Rac,

and Ras (reviewed in Turley et al., 2002). Interestingly, cardiac-

specific inhibition of Rho family proteins in mouse embryos

results in reduced heart looping and poor trabeculation in the

ventricle (Wei et al., 2002). Similar defects were found in mouse

embryos deficient for Has2 (Camenisch et al., 2000), although

direct comparison is difficult as our data did not address this

later process of heart morphogenesis.

Although most studies on BMP signaling describe its effect on

cell differentiation, there have been a number of reports describ-

ing chemo-attractant properties of BMP proteins on various cell

types (Cunningham et al., 1992; Fiedler et al., 2002). Here, we

show that CPCs can also migrate toward a source of BMP (Fig-

ure 7). This provides a direct link between the LR pathway and

cardiac morphogenesis since the asymmetric bmp4 expression

in the LPM is affected in mutants with LR patterning defects

(Chen et al., 1997; Chocron et al., 2007). Whether the BMP ligand

itself acts as a chemo-attractant or whether BMP signaling acts

more indirectly by affecting cell adhesion and/or guidance re-

mains to be investigated. We observed an asymmetric activation
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of BMP signaling in the LPM, with significantly more cells acti-

vated on the left side than the right. This patterned activation of

phospho-Smad 1,5,8, which is lost in tg(hsp70:noggin3), sug-

gests that these responding cells may be instrumental in directing

the rotation and the leftward displacement of the cardiac cone.

Our data demonstrate that the BMP type I receptor, Alk8, is re-

quired for guiding CPC migration. The relatively mild effect of the

laf/alk8 mutation on cardiac rotation may be explained by a re-

dundancy with other type I receptors such as Alk3 and Alk6.

The role of BMPs in directing cell migrations has recently been

revealed for the dorsal convergence of mesodermal cells during

gastrulation (von der Hardt et al., 2007). However, in that case,

cells migrate away from the source of BMP protein, suggesting

a different mode of regulation. In other vertebrates, BMPs are

crucial for regulating cardiac LR asymmetry. In E8.0 mouse em-

bryos, Bmp2 is also expressed in the CPCs and the surrounding

mesoderm (Zhang and Bradley, 1996); however, this Bmp2 ex-

pression is symmetric without a clear difference between the

right and left sides of the embryo. Possibly, since many factors

such as antagonists and/or coreceptors such as heparin sulfate

proteoglycans influence BMP signaling, resultant BMP signaling

may still be asymmetric. Mice deficient for Bmp2 die around

E10.5 with severe cardiac defects such as a misplaced cardiac

tube or, when heart tubes are present at the correct location,

an unlooped tube (Zhang and Bradley, 1996; M. Mallo, personal

communication). In Xenopus embryos, Bmp4 is asymmetrically

expressed during heart tube formation with a stronger expres-

sion on the left side (Breckenridge et al., 2001). Furthermore,

ectopic expression of Noggin or a dominant-negative BMP re-

ceptor results in severe looping defects. Together, these results

demonstrate that BMPs regulate asymmetric cardiac develop-

ment in most vertebrate organisms studied to date. However,

whether the mechanisms by which this is regulated are similar

to what we have demonstrated here remains to be investigated.

To summarize, using time-lapse recordings and cell tracking

we have described the dynamic and complex movement of

CPCs during formation of the linear heart tube from the cardiac

cone. These movements involve a simultaneous migration of

CPCs in the anterior-left direction accompanied by a clockwise

rotation of the entire cardiac cone. Furthermore, we have dem-

onstrated that rotation of the zebrafish heart tube requires

Has2, an enzyme involved in extracellular matrix remodeling

during migration, to assist in the coordinated migration of

CPCs. Finally, this migration is directed by BMPs in the lateral

plate mesoderm. This complex reorganization that takes place

to establish the linear heart tube may also have implications on

later patterning of the heart.

EXPERIMENTAL PROCEDURES

Fish Lines and Heat-Shock Experiments

Fish were kept under standard conditions as previously described (Westerfield,

1995). Lost-a-fin/alk8 mutant allele used in this study is laf tm110b (Mullins et al.,

1996). The tg(cmlc2:gfp), tg(hsp70:noggin3), and tg(hsp70:bmp2b) lines were

previously described (Chocron et al., 2007; Huang et al., 2003). Heat-shock

experiments were performed as described previously (Chocron et al., 2007).

Morpholino Injections

Morpholino oligonucleotides (MOs; Gene Tools) were dissolved in water to

1 mM. For injection (1 nl per embryo), MOs were diluted in 1x Danieu’s buffer
296 Developmental Cell 14, 287–297, February 2008 ª2008 Elsevier
(Nasevicius and Ekker, 2000). All morpholinos used have been described pre-

viously; has2 MO (Bakkers et al., 2004), bmp4 MO (Chocron et al., 2007), spaw

MO (Long et al., 2003).

Lineage Tracing

Cmlc2:mRFP in pCS2 was injected into one cell at the two-cell stage into

tg(cmlc2:gfp) embryos at a concentration of 20 ng/ml (1 nl per embryo). Em-

bryos were screened for mosaic mRFP fluorescence on the right or left side

exclusively and imaged at 20 somites and 28 hpf by confocal imaging.

ISH, Immunohistochemistry, and Sectioning

ISH was carried out as previously described (Westerfield, 1995). Embryos

were cleared in methanol and mounted in benzylbenzoaat/benzylalcohol

(2:1) before pictures were taken. Embryos were mounted in Technovit 8100

(Hereaus Kulzer) and sectioned at 3 mm thickness. 3D reconstructions of serial

sections were performed as described before (Soufan et al., 2003). Immuno-

histochemistry was performed as previously described (Dong et al., 2007).

Mouse anti-Tropomyosin (Sigma) and rabbit anti-phospho-Smad (Cell Signal-

ing) were applied at 1:200.

Time-Lapse Imaging and Analysis

Embryos at the 22-somite stage were dechorionated and mounted in glass-

bottom 6-well plates using 0.25% agarose in E3 embryo medium containing

16 mg/ml 3-amino benzoic acid ethylester to block contractile movements.

Confocal imaging was performed using a Leica SP2 confocal laser scanning

microscope with 40x magnification, acquiring stacks every 5 min. Embryos

were kept at 28.5�C during recordings. ImageJ software (http://rsb.info.nih.

gov/ij/) was used to generate time-lapse movies and for cell counting. Auto-

mated cell tracking in 3D was done using Volocity software (Improvision)

followed by manual inspection of individual tracks generating quantification

of total speed (track length/time), displacement rate (displacement/time),

and meandering index (displacement/track length). Rotation was calculated

by measuring the angle with the LR axis of four imaginary lines connecting

four individual cells at the start and the end of the time-lapse (200 min). All

statistical analyses were performed in Excel (Microsoft).

Bead Implantations

Agarose beads (Affigel blue, BioRad) were rinsed twice in PBS and incubated

for 1 hr at 37�C with 100 ng/ml recombinant human BMP4 and BMP7 (R&D Sys-

tems) essentially as described before (von der Hardt et al., 2007).

Supplemental Data

Supplemental Data include two figures, one table, and nine movies and can be

found with this article online at http://www.developmentalcell.com/cgi/

content/full/14/2/287/DC1/.
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