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Block Gauss elimination followed by a classical iterative
method for the solution of linear systems
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Abstract

In the last two decades many papers have appeared in which the application of an iterative method for
the solution of a linear system is preceded by a step of the Gauss elimination process in the hope that
this will increase the rates of convergence of the iterative method. This combination of methods has been
proven successful especially when the matrix A of the system is an M -matrix. The purpose of this paper is
to extend the idea of one to more Gauss elimination steps, consider other classes of matrices A, e.g., p-cyclic
consistently ordered, and generalize and improve the asymptotic convergence rates of some of the methods
known so far.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

For the numerical solution of the linear system

Ax = b; A∈Cn;n; b∈Cn; (1.1)

where A (=(aij); i; j=1(1)n), we apply a number of Gauss elimination steps followed by an iterative
method. The idea of applying one elimination step preceding an iterative method has been given by
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Juncosa and Mulliken [12]. Based on this idea and on similar ones (see, e.g., [25,26,6]), Milaszewicz
[19–21] improved the then known results. Similar works, in a diGerent direction, by Gunawardena
et al. [10], Kohno et al. [13] and recently by Li and Sun [14] and Hadjidimos et al. [10] appeared.

To perform the elimination most of the researchers used preconditioners on (1.1) and then
applied a Jacobi or a Gauss–Seidel-type iterative method to the preconditioned system. SpeciJcally,
Milaszewicz [21], assuming a11 = 1, considered essentially the preconditioner

P1 =




1 0 : : : 0

−a21 1 : : : 0

...
...

. . .
...

−an1 0 : : : 1


 (1.2)

to eliminate the elements of the Jrst column below the diagonal of the nonsingular M -matrix A.
The preconditioner of Gunawardena et al. [8] eliminates the elements of the Jrst upper co-diagonal
of the (non)singular M -matrix A. Kohno et al. [13], Li and Sun [14] and Hadjidimos et al. [10]
introduced parameters in the above preconditioners to accelerate the asymptotic convergence rates of
the subsequent iterative method. In [14,10] regular, weak regular and M -splittings (see, e.g., [28])
were considered to compare the spectral radii of the various iteration matrices involved.

In all the previous works one step of Gauss elimination was applied followed by a “point”
iterative method. In this work we apply more than one elimination steps followed by a “block”
iterative method. SpeciJcally, in Section 2, a block partitioning of the nonsingular M -matrix A is
considered, where

A=




A11 A12 : : : A1p

A21 A22 : : : A2p

...
...

. . .

Ap1 Ap2 : : : App


 ; (1.3)

and Aij ∈Rni;nj ; i; j = 1(1)p,
∑p

i=1 ni = n, and det(Aii) �= 0; i = 1(1)p. To (1.1) we apply a block
preconditioner P that eliminates the Jrst n1 columns of A below its diagonal. In Section 3, A∈Cn;n
is block p-cyclic consistently ordered and it is proved that applying P to A is equivalent to a block
cyclic repartitioning from the p-cyclic to the (p− 1)-cyclic case. So, problems that researchers like
Markham et al. [18], Pierce [23], Pierce et al. [24], Eiermann et al. [4], Galanis and Hadjidimos [7]
and Hadjidimos and Plemmons [11] dealt with reappear. In Section 4, the case of a singular A is
discussed. Finally, in Section 5, a number of numerical examples are presented.

Two points before we conclude this introductory section:
(i) It would be interesting to introduce the idea of block elimination of this work in the pre-

conditioner of [8]. This has already been done for the point case in [10]. Although some relative
numerical examples are given and comparisons are made in Section 5 this is not done here because
there are a number of unanswered theoretical questions in the point case that have to be answered
Jrst before one moves on to the block case. These examples show the superiority of our method
compared to previous similar ones and also that there are cases where our method competes very
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well with more state-of-the-art methods like, e.g., Incomplete LU (0) Factorization applied as a
preconditioning technique to GMRES method.

(ii) It is understood that the preconditioners of this work can be useful as preconditioners with
Krylov subspace methods, or as smoothers for multigrid and multilevel methods or even for providing
the conceptual framework for the analysis of the domain decomposition methods. Among others,
a real numerical experiment is given in Section 5 comparing our method against the Incomplete LU
Factorization one.

2. Nonsingular M -matrices

2.1. Basic theory

Consider the partitioning (1.3) for the nonsingular M -matrix A. It is known that the diagonal blocks
Aii ∈Rni;ni ; i = 1(1)p, of A are nonsingular M -matrices while the oG-diagonal blocks Aij ∈Rni;nj ;
i �= j= 1(1)p, are nonpositive matrices (Aij6 0; i �= j= 1(1)p) (see [3]). (Note: It is reminded that
a matrix A∈Rn;n is a Z-matrix if all its oG-diagonal elements are nonpositive. A Z-matrix A is an
M -matrix if A= sI−B; where s¿ �(B), s¿ 0 and B¿ 0 (see, e.g., [3]), with �(·) denoting spectral
radius.) In [3], it is said that in the triangular decomposition of a nonsingular M -matrix A (=LU ),
L; U are lower and upper triangular matrices, have positive diagonal elements and are nonsingular
M -matrices. We may assume that L has unit diagonal elements.

For our results the following lemma attributed to Fan [5], for nonsingular M -matrices, and to
Funderlic and Plemmons [6], for singular ones, is used.

Lemma 2.1. Let A= (aij)∈Rn;n, n¿ 2, be a nonsingular M -matrix, and let

L−1
1 =




1 0

−a21

a11
1

...
...

. . .

−an1

a11
0 : : : 1



:

Then, the matrices Ã = L−1
1 A and Ã1, obtained from Ã by deleting its 9rst row and column, are

nonsingular M -matrices. (Note: If A is irreducible then so is Ã1 and if, in addition, A is singular
then so are Ã and Ã1.)

Based on Lemma 2.1 we prove our Jrst result.

Theorem 2.1. Let A∈Rn;n be a nonsingular M -matrix partitioned as in (1:3). Then n1 successive
applications of the Gauss elimination process on A are equivalent to premultiplying A by the
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(preconditioning) matrix

P =




L−1
11 O12 : : : O1p

−A21A−1
11 I22 : : : O2p

...
...

. . .

−Ap1A−1
11 Op2 : : : Ipp




= Q + S; (2.1)

Q = diag(L−1
11 ; I22; : : : ; Ipp)¿ 0; Iii ∈Rni;ni ; i = 2(1)p; (2.2)

S =




O11 O12 : : : O1p

−A21A−1
11 O22 : : : O2p

...
...

. . .

−Ap1A−1
11 Op2 : : : Opp


¿ 0; (2.3)

with L11 being the lower triangular matrix in the LU triangular decomposition of A11. Moreover,
Ã = PA and the matrix Ã1, obtained from Ã by deleting its 9rst n1 rows and columns, are also
nonsingular M -matrices. (Note : If A is irreducible then so is Ã1 while if A is, in addition, singular
then so are Ã and Ã1.)

Proof. We apply Gauss elimination to the Jrst n1 columns of A. By Lemma 2.1 each elimination
step, k = 1(1)n1, yields a matrix Ã(k) (Ã(0) = A) which is a nonsingular M -matrix and whose the
bottom right corner submatrix Ãn1+1−k ∈Rn−k;n−k ; k = 1(1)n1, is also a nonsingular M -matrix. So,
Ã := Ã(n1) and Ã1 are nonsingular M -matrices. (Note: By the same lemma, if A is irreducible then
so will be Ã1 and if A is, in addition, singular so will be Ã and Ã1.) To express the above process
in matrix form, note that in the kth elimination step, k = 1(1)n1, we multiply Ã(k−1) on the left by
a lower triangular matrix with units on the diagonal and only nonzero elements in its kth column.
The product P of all these n1 matrices will be a lower triangular matrix with units on the diagonal
and only nonzero elements on the Jrst n1 columns. So, P, in a form consistent with A, will be

P =




P11 O12 : : : O1p

P21 I22 : : : O2p

...
...

. . .

Pp1 Op2 : : : Ipp


 ; (2.4)

where Ijj; j = 2(1)p, is the unit matrix of order nj. To determine the block elements of P, we
use PA = Ã, and note that Ãij = Pi1A1j + Aij; i; j = 1(1)p. Since Ãi1 = Oi1; i = 2(1)p, then Pi1 =
−Ai1A−1

11 ; i=2(1)p. Observe that the Jrst n1 diagonal elements of Ã are the pivots of the elimination
process. Since, after the elimination, Ã11 has zeros below its diagonal we conclude that Ã11 is the
matrix U11 yielded after the elimination is applied to A11. Thus, if L11U11 is the LU factorization of
A11, P11 = L−1

11 and the proof is complete.
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Note: The nonnegativity of Q and S in (2.2) and (2.3) is based on the fact that the inverse
of the nonsingular M -matrices L11 and A11 are nonnegative matrices.

Corollary 2.1. The application of P, of Theorem (2:1), to A of (1:3) results the matrix Ã whose
block elements are given by the following expressions:

Ãij =



L−1

11 A1j; j = 1(1)p;

Oi1; i = 2(1)p;

Aij − Ai1A−1
11 A1j; i; j = 2(1)p:

(2.5)

Using the preconditioner P we premultiply system (1.1) to obtain equivalently

Ãx = b̃ (=Pb); (2.6)

where xT = [xT
1 xT

2 : : : xT
p], b̃T = [b̃T

1 b̃T
2 : : : b̃T

p], xi; b̃i ∈Rni ; i = 1(1)p, and b̃1 = L−1
11 b1; b̃i =

bi − Ai1A−1
11 b1; i = 2(1)p. For the solution of (2.6) we consider then a classical block iterative

method applied to (2.6) or, equivalently, applied to

Ã1[xT
2 xT

3 : : : xT
p]T = [b̃T

2 b̃T
3 : : : b̃T

p]T; (2.7)

followed by a back substitution applied to

U11x1 = b̃1: (2.8)

2.2. Jacobi and Gauss–Seidel-type iterative methods

Let

A= D − L− U; (2.9)

D = diag(A11; A22; : : : ; App);

L=




O11 O12 : : : O1p

−A21 O22 : : : O2p

...
...

. . .
...

−Ap1 −Ap2 : : : Opp


 ; U =




O11 −A12 : : : −A1p

O21 O22 : : : −A2p

...
...

. . .
...

Op1 Op2 : : : Opp


 :

To solve (2.6) using a classical iterative method we consider various splittings of Ã. For this we
deJne the following matrices in a way analogous to the point case in [10]:

SU = L̂+ D̂ + Û ; (2.10)

where

D̂ = diag(O11; A21A−1
11 A12; : : : ; Ap1A−1

11 A1p) (¿ 0); (2.11)
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L̂=




O11 O12 : : : O1p

O21 O22 : : : O2p

O31 A31A−1
11 A12 : : : O3p

...
...

. . .
...

Op1 Ap1A−1
11 A12 : : : Opp




(¿ 0); (2.12)

Û =




O11 O12 O13 : : : O1p

O21 O22 A21A−1
11 A13 : : : A21A−1

11 A1p

O31 O32 O33 : : : A31A−1
11 A1p

...
...

...
. . .

...

Op1 Op2 Op3 : : : Opp




(¿ 0): (2.13)

Having in mind (2.10) and (2.9), we consider the following splittings of Ã:

Ã= (Q + S)(D − L− U ) =

{
QD − (PL− SD + L̂+ D̂ + QU + Û );

(QD − D̂) − (PL− SD + L̂+ QU + Û ):
(2.14)

The block Jacobi and Gauss–Seidel as well as the block Jacobi and Gauss–Seidel-type iteration
matrices associated with the two splittings in (2.14) are:

B= D−1(L+ U ) (for A); (2.15)

B′ = (QD)−1(PL− SD + L̂+ D̂ + QU + Û ); (2.16)

B′′ = (QD − D̂)−1(PL− SD + L̂+ QU + Û ); (2.17)

H = (D − L)−1U (for A); (2.18)

H ′ = (P(D − L) − L̂)−1(D̂ + QU + Û ); (2.19)

H ′′ = (P(D − L) − L̂− D̂)−1(QU + Û ): (2.20)

Theorem 2.2. Under the notation and the de9nitions so far, suppose that A in (1:3) is a nonsingular
M -matrix and let �(B)¿ 0. Let B′1; B′′1; H1; H ′

1; H
′′

1 denote the (n− n1)× (n− n1) bottom right
corner submatrices of B′; B′′; H; H ′; H ′′, respectively. Then the following relationships hold:

�(B′′1 ) ≡ �(B′′)6 �(B′) ≡ �(B′1)¡ 1; (2.21)

�(H ′′
1 ) ≡ �(H ′′)6 �(H ′) ≡ �(H ′

1)6 �(H) ≡ �(H1)¡ 1: (2.22)
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Also, there exists a vector y∈Rn, with y¿ 0, such that

B′y6By: (2.23)

Moreover, the spectral radii of the iteration matrices involved satisfy the relationships below:

�(H ′′)6 �(B′′); �(H ′)6 �(B′); 0¡�(H)¡�(B)¡ 1: (2.24)

If, in addition, A is irreducible, then all the inequalities in (2:21)–(2:24) are strict. Also, in (2:23),
y¿ 0, implying that

�(B′1) ≡ �(B′)¡�(B): (2.25)

Proof. By Theorem 2.1, Ã and Ã1 are M -matrices and if A is irreducible then so is Ã1. Based on
properties of M -matrices [28,3] and on the fact that Q, S, L̂, Û¿ 0, we conclude that D; QD;
QD− D̂; D− L; P(D− L)− L̂ and P(D− L)− L̂− D̂ are nonsingular M -matrices. Also, the second
matrix factors in (2.15)–(2.20) are nonnegative. Therefore, the splittings from which the iterative
matrices B; B′; B′′; H; H ′ and H ′′ are produced are M -splittings [27] hence all these matrices are
convergent. From this point onwards the proof of the present theorem duplicates that in [10], where
all the parameters �i; i=2(1)n, in it, are equal to 1. The diGerence is that instead of “point” we deal
with “block” iteration matrices. So, as in [25], use of the Perron–Frobenius theory for nonnegative
matrices [28] and of regular splittings, weak regular splittings [3] and M -splittings [27] is made.
The complete proof can be found in [1]; it is very long and so is not possible to give here.

The results of the “block” case of Theorem 2.2 can be compared with the ones of the corresponding
“point” case in [21]. In the statement below we show that ours have better asymptotic convergence
rates.

Theorem 2.3. Under the notation and the de9nitions used in Theorem 2:2, suppose that A is
a nonsingular M -matrix. Let B′(k); B′′(k); H ′(k) and H ′′(k), k = 1(1)n1, denote the “point” iteration
matrices (Jacobi and Gauss–Seidel type) associated with the matrix Ã(k) (Ã(0) = A) of Theorems
2:1 and 2:2 after the kth elimination step k = 1(1)n1. Let also B(0); H (0) be the point Jacobi and
Gauss–Seidel iteration matrices associated with A. Then, there will hold

�(H ′′)6 �(H ′′(n1))6 �(H ′′(1))6 �(H (0)) (¡ 1): (2.26)

If, in addition, A is irreducible, then there will also hold

�(B′′)¡�(B′′(n1))¡�(B′′(1))¡�(B(0)) (¡ 1); (2.27)

and all the inequalities in (2:26) will be strict.

Proof. Let us apply the preconditioners P1, in (1.2), and P, in (2.1), to (1.1). The application
of P1 is equivalent to the Jrst Gauss elimination step of Lemma 2.1. So, according to the notation
of Theorem 2.1, P1A ≡ Ã(1). For the corresponding matrices B′(1); B′′(1); H ′(1) and H ′′(1) (the
point Jacobi and Gauss–Seidel-type matrices) relationships analogous to those in (2.21)–(2.25) hold
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[21,10]. SpeciJcally, we note that �(H ′′(1))6 �(H (0))¡ 1 and that if A is irreducible the leftmost
inequality will be strict and there will also hold that �(B′′(1))¡�(B(0))¡ 1. So, by induction, after
the kth elimination step, Ã(k) will have point Jacobi and Gauss–Seidel iteration matrices B′′(k) and
H ′′(k); k = 1(1)n1, whose spectral radii will be connected with those of the (k − 1)st step in the
same way the corresponding spectral radii after the Jrst elimination step are connected with those of
the initial point Jacobi, B(0), and Gauss–Seidel, H (0), iteration matrices. Therefore, we have shown
that

�(H ′′(n1))6 �(H ′′(1)) (¡ 1): (2.28)

If A is irreducible, inequality (2.28) is strict and the following relationships will also hold:

�(B′′(n1))¡�(B′′(1)) (¡ 1): (2.29)

Observe that after the n1th elimination step we apply “point” Jacobi and Gauss–Seidel iterative
methods to Ã(n1), which is nothing but the matrix Ã of Theorem 2.1. If we apply the corresponding
“block” iterative methods to Ã, as in Theorem 2.2, then because Ã is a nonsingular M -matrix, all
four “point” and “block” iterative methods correspond to M -splittings of the type M − N . It is
checked that in these splittings the N matrices of the “point” Jacobi and Gauss–Seidel methods are
greater than or equal to the corresponding ones of the “block” methods. Hence the “block” methods
converge asymptotically at least as fast as the “point” ones. This convergence will be strictly faster
if A is irreducible, which gives us the leftmost inequalities in (2.26) and (2.27). This and the results
in (2.28) and (2.29) conclude the proof.

2.3. SOR-type iterative methods

Based on (2.9)–(2.11) we consider the following SOR-type splittings for A and Ã:

Ã=




1
!
P(D − !L) − 1

!
P((1 − !)D + !U );

1
!

(QD − !(PL− SD + L̂)) − 1
!

((1 − !)QD + !(D̂ + QU + Û ));

1
!

((QD − D̂) − !(PL− SD + L̂)) − 1
!

((1 − !)(QD − D̂) + !(QU + Û ));

(2.30)

where D̂, L̂, Û are given in (2.11), (2.12), (2.13), respectively. In view of (2.30) the block SOR
and SOR-type iteration matrices associated with A and Ã are

L! = (D − !L)−1((1 − !)D + !U ) (for A and Ã);

L′
! = (QD − !(PL− SD + L̂))−1((1 − !)QD + !(D̂ + QU + Û ));

L′′
! = ((QD − D̂) − !(PL− SD + L̂))−1((1 − !)(QD − D̂) + !(QU + Û )): (2.31)

Below we give a statement due to Milaszewicz [19,21] and part of Theorem 3.5 of Marek and
Szyld [15] which will be used in the proof of our main statement of this section.
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Lemma 2.2. Let V; T ∈Rn;n, V; T¿ 0, for which �(V )¡�(V + T ) holds. Then, �(V + tT ) strictly
increases with t ∈ [0;∞) and is unbounded. Moreover, if �(V )¡ 1 there exists a unique t= t1 ¿ 0
such that �(V + t1T ) = 1. Also �((I − V )−1T ) = 1=t1.

Corollary 2.2. If V + T is irreducible Lemma 2:2 holds by the Perron–Frobenius theory of
nonnegative matrices.

Lemma 2.3. Let A−1¿ 0. Let A = M1 − N1 = M2 − N2 be two weak splittings with T1 = M−1
1 N1;

T2 =M−1
2 N2 having property “d”, and �(T1)¡ 1; �(T2)¡ 1. Let z¿ 0 such that T2z = �(T2)z. If

N2z¿N1z then �(T1)6 �(T2).

Based on the splittings (2.30) and the matrices in (2.31) we will prove the statement below.

Theorem 2.4. Under the assumptions of Theorem 2:2, for the block SOR and SOR-type matrices
de9ned in (2:31) and ∀!∈ (0; 1] there hold:

(a) �(L!)¡ 1; (b) �(L′
!)¡ 1; (c) �(L′′

!)¡ 1; (2.32)

and

�(L′′
!)6 �(L′

!): (2.33)

Also, for !1, !2, such that 0¡!1 ¡!26 1, there hold:

(a) �(L!2)6 �(L!1); (b) �(L′
!2

)6 �(L′
!1

); (c) �(L′′
!2

)6 �(L′′
!1

): (2.34)

Moreover, there exists a vector z ∈Rn, z¿ 0, such that

L′
!z6L!z; 0¡!6 1: (2.35)

If, in addition, A is irreducible and L′
!;1; L′′

!;1 denote the SOR-type matrices corresponding to
the last two splittings in (2:30) and are associated with the matrix Ã1 of Theorem 2:1, then Ã1 is
irreducible and the corresponding relationships in (2:33)–(2:34) are strict. If B = D−1(L + U ) is
irreducible the vector z in (2:35) is positive and it is also implied that

�(L′
!)6 �(L!); 0¡!6 1: (2.36)

(Note: For != 1 (Gauss–Seidel case) some of the above assertions are proved in Theorem 2:2 and
will not be proved here although continuity arguments can cover this case as well.)

Proof. (2.32): In view of the assumptions, the nonsingular M -matrix character of A and Ã and the
fact 0¡!6 1 we observe the following:

(a) The iteration matrix L! = (D−!L)−1((1 −!)D+!U ) is derived from the Jrst splitting in
(2.30) and is also derived from the splitting 1=!(D−!L)− 1=!((1−!)D+!U ). In the latter, the
matrix D − !L is a nonsingular M -matrix because D is a block nonsingular M -matrix, the block
strictly lower triangular matrix −!L is nonpositive and 1=!¿ 0. Also 1=!((1−!)I +!D−1U )¿ 0.
Therefore, the splitting from which L! is obtained is an M -splitting and thus it is convergent
implying (a) of (2.32).
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(b) In the same way it can be proved that the splitting M ′ − N ′ for L′
! is an M -splitting and

therefore convergent. Indeed, M ′ = 1=!(QD)−1(M1 − !L̂), where

M1 = QD − !(PL− SD) =




U11 O12 O13 : : : O1p

O21 A22 O23 : : : O2p

O31 !A32 A33 : : : O3p

...
...

...
. . .

...

Op1 !Ap2 !Ap3 : : : App



:

M1 is a block lower triangular Z-matrix whose diagonal blocks are nonsingular M -matrices and
so it is a nonsingular M -matrix itself since its inverse is nonnegative. For the same reason M1 −!L̂
is a nonsingular M -matrix. Since QD=diag(U11; A22; : : : ; App) it can be checked by direct calculation
that M ′ is a nonsingular M -matrix. On the other hand, N ′ is nonnegative and so the splitting yielding
L′

! is an M -splitting.
(c) The proof goes along the same lines as in the previous one except that QD− D̂ and QU + Û

play the roles of QD and QU + D̂ + Û , respectively.
(2.33): The last two splittings for Ã are M -splittings and as can be checked from the second

splitting M ′′ − N ′′ it is M ′′ = (QD − D̂)−1 = (I − (QD)−1D̂)−1(QD)−1 = (I + (QD)−1D̂ + · · · +
((QD)−1D̂)p−1)(QD)−1¿ (QD)−1 =M ′ and according to [29], (2.33) holds true.

(2.34): As was seen all three splittings from which the three SOR-type matrices are produced are
M -splittings of the form M!i −N!i ; i= 1; 2: It is checked that in view of 0¡!1 ¡!26 1 for each
one of them there holds N!2 6N!1 . Consequently, (2.34) are valid.

(2.35): Use of Lemma 2.2 will be made. Let V = !D−1L¿ 0 and T = (1 − !)I + !D−1U¿ 0.
Since �(V )=0 and �(V+T )=1−!+!�(B)¿ 0, because 0¡!6 1 and �(B)¿ 0, the assumptions
of the lemma are satisJed. Therefore, there exists a t1 ¿ 0 such that �(V + t1T )=1. Note that t1 ¿ 1
because 0¡�(B)¡ 1, 0¡�(V +T ) = 1−!(1−�(B))¡ 1. Since V + t1T¿ 0 there exists a vector
z¿ 0 (eigenvector) such that

(!D−1L+ t1((1 − !)I + !D−1U ))z = z; (2.37)

from which

(L!z=) (I − !D−1L)−1((1 − !)I + !D−1U )z =
1
t1
z: (2.38)

From (2.37) we can readily obtain

(!PL+ t1((1 − !)PD + !PU ))z = PDz

or
(!PL+ t1(1 − !)QD + t1(1 − !)SD + !t1QU + !t1SU )z = (QD + SD)z

or equivalently after some manipulation

(QD − !(PL− SD + L̂))z

=t1((1 − !)QD + !(QU + D̂ + Û ))z + (t1 − 1)((1 − !)SD + !L̂)z

¿ t1((1 − !)QD + !(QU + D̂ + Û ))z; (2.39)

Because (t1 − 1)((1 − !)SD + !L̂)z¿ 0. Combining (2.38) and (2.39), (2.35) is proved.
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If A is irreducible then so will be Ã1. Therefore, Ã−1
1 ¿ 0 and the M -splittings, from which L′

!,
L′

!1
, L′

!2
and L′′

!, L′′
!1 , L

′′
!2 are yielded, give strict inequalities in (2.33) and (2.34).

(2.36): If B (¿ 0) is irreducible so will be L!, !∈ (0; 1), because after some algebra it is

L! = (1 − !)I + (1 − !)!D−1L+ !D−1U + nonnegative terms

= (1 − !)I + (1 − !)!D−1(L+ U ) + !2D−1U + nonnegative terms¿ 0; (2.40)

and the rightmost matrix expression is irreducible since B = D−1(L + U ) is. Hence the eigenvec-
tor w corresponding to the spectral radius of L! will be positive. The Jrst splitting in (2.30) is
a weak (nonnegative) convergent one for the nonsingular M -matrix Ã and at the same time it is
an M -splitting for the matrix A. Let Ã = MA − NA = MÃ − NÃ denote the two splittings that give
the iteration matrices L! and L′

!. We have that NA − NÃ = 1=!(P(1 − !)D + !PU ) − 1=!((1 −
!)QD+!(D̂+QU + Û )) = 1=!((1−!)SD+!L̂)¿ 0 and therefore (NA−NÃ)w¿ 0. So, according
to Lemma 2.3, (2.36) is valid.

3. Nonsingular p-cyclic consistently ordered matrices

We consider the nonsingular matrix A∈Cn;n of the special block form

A=




A11 O12 O13 : : : A1p

A21 A22 O23 : : : O2p

O31 A32 A33 : : : O3p

...
...

. . . . . .
...

Op1 Op2 : : : Ap;p−1 App



; (3.1)

with p¿ 3 and Aii, i = 1(1)p, nonsingular matrices. The matrix A is block p-cyclic consistently
ordered [28,30] and its block Jacobi matrix will be

B=




O11 O12 O13 : : : −A−1
11 A1p

−A−1
22 A21 O22 O23 : : : O2p

O31 −A−1
33 A32 O33 : : : O3p

...
...

. . . . . .
...

Op1 Op2 : : : −A−1
pp Ap;p−1 Opp



: (3.2)
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The matrix B is then weakly cyclic of index p and consistently ordered [28]. Applying the precon-
ditioner P of (2.1) we obtain according to (2.5) that

Ã=




U11 O12 O13 : : : L−1
11 A1p

O21 A22 O23 : : : −A21A−1
11 A1p

O31 A32 A33 : : : O3p

...
...

. . . . . .
...

Op1 Op2 : : : Ap;p−1 App



:

The block Jacobi matrix B′′ associated with Ã (see (2.17)) will be

B′′ =




O11 O12 O13 : : : −A−1
11 A1p

O21 O22 O23 : : : A−1
22 A21A−1

11 A1p

O31 −A−1
33 A32 O33 : : : O3p

...
...

. . . . . .
...

Op1 Op2 : : : −A−1
pp Ap;p−1 Opp



: (3.3)

The matrix B′′1, yielded from B′′ as Ã1 is yielded from Ã will be block weakly cyclic of index p−1
and consistently ordered and Ã1 will be block (p− 1)-cyclic consistently ordered.

Direct computations show that the powers Bp and B′′p−1
1 are diagonal matrices. Using the fact that

if E ∈Cn;m, F ∈Cm;n and *∈C \ {0}, then *∈ +(EF) if and only if *∈ +(FE), with +(·) denoting
eigenvalue spectrum, we Jnd that the eigenvalue spectra of B and B′′1 are connected via the following
relationship:

+(B′′p−1
1 ) \ {0} ≡ +(Bp) \ {0}: (3.4)

However, (3.4) and especially the expressions for B, B1′′ and B1′′1 strongly remind us of the problem
of the best block p-cyclic SOR repartitioning, Jrst considered and studied by Markham et al. [18].
Indeed, it can be seen that if we repartition the matrix A into the following block (p − 1)-cyclic
consistently ordered form

A=




A11 O12 O13 : : : A1p

A21 A22 O23 : : : O2p

O31 A32 A33 : : : O3p

...
...

. . . . . .
...

Op1 Op2 : : : Ap;p−1 App




(3.5)
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we can Jnd out that the block Jacobi matrix, J , associated with A of (3.5) is identically the same
with the matrix B′′ associated with A without any repartitioning, since

J =




O11 O12 O13 : : : −A−1
11 A1p

O21 O22 O23 : : : A−1
22 A21A−1

11 A1p

O31 −A−1
33 A32 O33 : : : O3p

...
...

. . . . . .
...

Op1 Op2 : : : −A−1
pp Ap;p−1 Opp



:

Consequently, J ≡ B′′ and therefore

+(Jp−1) \ {0} ≡ +(B′′p−1) \ {0} ≡ +(B′′p−1
1 ) \ {0} ≡ +(Bp) \ {0}: (3.6)

Based on the result just obtained we can readily prove the following statement.

Theorem 3.1. Under the notation of Section 2 let A∈Cn;n be a nonsingular block p-cyclic con-
sistently ordered matrix of the form (3:1) with �(B)¡ 1. Then for the spectral radii of the block
Jacobi and Gauss–Seidel iteration matrices B; B′′; B′′1; H; H ′′ and H ′′

1 the following relationships
hold:

�(B′′1 ) ≡ �(B′′) = �
p

p−1 (B)¡�(B)¡ 1 (3.7)

and

�(H ′′
1 ) ≡ �(H ′′) = �(H) = �p(B)¡ 1: (3.8)

Proof. The proof of (3.7) is an immediate consequence of (3.6). The validity of (3.8) is because
the spectrum of the Gauss–Seidel matrix of a p-cyclic consistently ordered matrix is the union of
0 and of the pth powers of the eigenvalues of the corresponding Jacobi matrix.

We conclude this section by stating a theorem concerning the best of the optimal block SOR
methods associated with a block p-cyclic consistently ordered matrix A of the form (3.1) and its
preconditioned one Ã (or Ã1) when +(Bp) ⊂ R.

Theorem 3.2. Let B be the block Jacobi matrix (3:2) associated with the block p-cyclic consistently
ordered matrix A in (3:1), p¿ 3, and let +(Bp) ⊂ [ − �p; -p] with −�p; -p ∈ +(Bp), where
06 -¡ 1 and 06 �¡∞. Consider Ã partitioned in a block (p− 1)-cyclic form consistent with
the partitioning of A in (3:5). Denote by !k and �(L!k ), k=p;p−1, the real optimal SOR factor
and the optimal spectral radius associated with A (k=p) and Ã or Ã1 (k=p−1), respectively, and
by �(L!(A)), �(L!(Ã)) the spectral radii of the SOR matrices for A and Ã. Then there hold:
If

�
-
∈
((

p− 3
p− 1

)(p−1)=p

;
p− 2
p

)
;
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then for any -∈ (0; 1) there exists a unique value of �,

�p−1;p := �(-)∈
((

p− 3
p− 1

)(p−1)=p

-;
p− 2
p

-

)

which is given by the expression

�p−1;p =


2�

1
p−1 − (1 + �)-

p
p−1

1 − �




(p−1)=p

;

where � is the unique root in (0; 1) of the equation

-p(p− 1 + �)p − pp�= 0: (3.9)

The root � is such that

�(L!p−1)¡�(L!p)¡ 1 for
(
p− 3
p− 1

)(p−1)=p

-¡�¡�p−1;p; (3.10)

�(L!p−1) = �(L!p)¡ 1 for � = �p−1;p; (3.11)

�(L!p)¡�(L!p−1)¡ 1 for �p−1;p ¡�¡
(
p− 2
p

)
-: (3.12)

Note: The theorem presents only one out of eight(!) possible cases. In each of them it is determined
which of the optimal p-cyclic and (p − 1)-cyclic repartitioning is the best to use for SOR when
the ratio �=- runs over the set of real numbers. Speci9cally, the following intervals are considered:

(i)

[
0;
(
p− 3
p− 1

)(p−1)=p
]
; (ii)

((
p− 3
p− 1

)(p−1)=p

;
p− 2
p

)
;

(iii)
(
p− 2
p

; 1
)
; (iv) [1; 1];

(v)
(

1;
p

p− 2

)
; (vi)

(
p

p− 2
;

p
-(p− 2)

)
;

(vii)

(
p

-(p− 2)
;

1
-

(
p− 1
p− 3

)(p−1)=p
)
; (viii)

[
1
-

(
p− 1
p− 3

)(p−1)=p

;∞
]
: (3.13)

Proof. Only a sketch of the proof will be given, since the main line of reasoning is analogous
to that found in [7]. It is known that in a p-cyclic consistently ordered case, like the one we are
working on, when �¿p=(p−2) there is no !∈R for which the associated SOR method converges.
Having in mind the point just made, then by means of the formulas given in Theorem 2.1 and Table
1 of [7] (of the Best Cyclic Repartitioning for Optimal SOR) one can determine the value of
k=2(1)p that gives the best (repartitioned) optimal SOR. Having determined the speciJc value of k
one can Jnd the optimal SOR parameter by means of the formulas (2.20)–(2.22) of [7]. In our case,
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however, we must restrict to the values of k = p − 1 and p. So, we have to appropriately exploit
the results in [7]. For this we observe that because of (3.6), it will be �p−1

p−1 = �p and -p−1
p−1 = -p,

where �p−1; -p−1 play the roles of �; - for the block (p − 1)-cyclic consistently ordered matrix
Ã or Ã1. However, for these matrices convergence of the associated block SOR will take place
for values of �p−1 ∈ [0; (p − 1)=(p − 3)) while for the original p-cyclic SOR the corresponding
interval for � will be [0; p=(p − 2)). The latter interval for � is contained in the former one for �
which is then [0; ((p − 1)=(p − 3))(p−1)=p) since as can be proved the function ((x − 2)=x)x (resp.
(x=(x−2))x), x∈ [2;∞), strictly increases (resp. decreases) with x. So, the (p−1)-cyclic case for Ã
can be advantageous over the p-cyclic case for A. From this point on the statement of our theorem
describes more speciJcally one of the eight possible situations that can arise and gives for it (case
(vi) of (3.13)) the (optimal) convergence results that can be obtained. (Note: A complete list of the
results for the other seven cases in (3:13) is given in [2].)

4. Comments and discussion on the singular case

(I) Let A∈Rn;n, in (1.3), be a singular irreducible M -matrix. For such an A, each principal
submatrix, except itself, is a nonsingular M -matrix [3]. By Lemma 2.1 and Theorem 2.1, Ã1 is
irreducible (unless p = 2 and n1 = n − 1, when Ã1 = O∈R1;1) and both Ã and Ã1 are singular
M -matrices. All the splittings in Sections 2.2 and 2.3 that were M -splittings still are and so all
the corresponding iteration matrices there, e.g., B, H , L!, !∈ (0; 1], are well deJned and have
spectral radii 1. As is known [3] for the (semi)converge of a linear Jrst order iterative scheme, with
iteration matrix satisfying �(T ) = 1, for any initial guess x0 ∈Rn, provided that b∈ range(A), +(T )
must satisfy the three conditions below (see [3]). In such a case a factor .(T ), which is equal to
the modulus of the second largest in modulus eigenvalue of T , plays the role of the spectral radius.

(i) �(T ) = 1.
(ii) If *∈ +(T ) with |*| = 1, then * = 1.

(iii) index(I − T ) = 1, that is in the Jordan canonical form of T all eigenvalues of modulus 1 are
associated with 1 × 1 Jordan blocks.

All iteration matrices arising from M -splittings satisfy condition (i) and in view of the irreducibility
of A, and of Ã1, the iteration matrices associated with them satisfy condition (iii). However, when
the splitting is a non-parametric one, condition (ii) cannot be always satisJed. E.g., for A being
also p-cyclic consistently ordered its Jacobi matrix has, besides 1, as eigenvalues the numbers
exp(i(2/k=p); k = 1(1)p − 1, of modulus 1. So, stronger conditions are necessary or parametric
iterative schemes based on the given one such as “Extrapolated Schemes”, with parameter !∈ (0; 1)
(see, e.g., [22] and also [9] for more general cases), or SOR Schemes, see below, can produce
semiconvergent schemes. We also note that even if all three conditions (i)–(iii) are met for the
iteration matrices of Theorems 2.2 and 2.4 it is not clear whether their semiconvergence factors .(·)
will satisfy relationships analogous to those in (2.21)–(2.24) and in (2.32)–(2.36). In this direction
some recent results due to Marek and Szyld that can be found in [16,17] have contributed a lot.

(II) The case where some of the results obtained are carried over to the singular case is when
A∈Cn:n is block p-cyclic consistently ordered of the form (3.1). Suppose then that B=I−D−1A sat-
isJes condition (iii). This condition, index(I−B)=1, implies index(I−L!)=1; ∀! �= {0; p=(p−1)}
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(see [9, Theorem 3.1]). Hence by virtue of [11, Theorem 3.1], Theorem 3.2 holds, provided that in
its assumptions +(Bp) ⊂ [ − �p; -p] ∪ {1} will replace +(Bp) ⊂ [ − �p; -p] and therefore Theorem
3.2 will be valid except that .(·)’s will replace the corresponding �(·)’s.

A direct application to the previous results in the present section is the determination of the
stationary probability distribution vector in the Markov Chain Analysis where the coeScient matrix
A is a singular M -matrix with zero column sums.

If A is irreducible (ergodic chain) Theorems 2.2 and 2.4 hold in the way explained above.
If A is, in addition, of the form (3.1) (periodic chain of period p) and B= I−D−1A is irreducible,

then Theorem 3.2 holds as was explained. Since �(B) = 1, � in Theorem 3.2 must satisfy �¡ 1.
This restriction modiJes slightly the conclusions of the theorem. SpeciJcally: The three cases (vi),
(vii) and (viii) are expressed as one under the main assumption p=(p−2)¡�=-6∞, where “=∞”
means -= 0 and �¿ 0. Then, -p−1;p ∈ [0; [(p−2)=p]�], with -p−1;p = 0 corresponding to �=-=∞.
The conclusions are those of case (vi) of [2].

5. Numerical examples

Example 1. The matrix below (without the partitioning is found in [8]) is obviously an irreducible
Z-matrix and since �(I − A) ≈ 0:9807¡ 1, A is also a nonsingular M -matrix,

A=




1 −0:2 −0:1 −0:4 −0:2
−0:2 1 −0:3 −0:1 −0:6

−0:3 −0:2 1 −0:1 −0:6

−0:1 −0:1 −0:1 1 −0:01
−0:2 −0:3 −0:4 −0:3 1


 : (5.1)

Therefore, Theorems 2.1–2.4 apply. Indeed, preserving the notation in these statements it is:

�(B(0)) = 0:9807; �(H (0)) = 0:9611; �(L(0)
0:75) = 0:9768;

�(B) = 0:9785; �(H) = 0:9570; �(L0:75) = 0:9743;

�(B′(n1)) = 0:9778; �(H ′(n1)) = 0:9565; �(L′(n1)
0:75) = 0:9749;

�(B′′(n1)) = 0:9770; �(H ′′(n1)) = 0:9531; �(L′′(n1)
0:75) = 0:9734;

�(B′) = 0:9684; �(H ′) = 0:9505; �(L′
0:75) = 0:9676;

�(B′′) = 0:9577; �(H ′′) = 0:9172; �(L′′
0:75) = 0:9502; (5.2)

where the matrices in the Jrst two rows refer to the “point” and “block” iteration matrices associated
with A, the matrices of the third and fourth rows refer to the “point” iteration matrices of Ã and the
matrices of the last two rows refer to the “block” ones of Ã. It is checked that all the relationships
(strict inequalities) of Theorems 2.1–2.4 are veriJed.

For the above example we determined the “point” and “block” Jacobi and Gauss–Seidel iteration
matrices after applying the “point” and “block” preconditioners of the Gunawardena et al. [8]. For
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the “point” preconditioner we used the known one


1 −a12 0 0 : : : 0

0 1 −a23 0 : : : 0
...

. . . . . . . . . : : :
...

0 : : : : : : : : : 1 −an−1; n

0 : : : : : : : : : 0 1



; (5.3)

while for the “block” the one below


A−1
11 −A−1

11 A12A−1
22 0 0 : : : 0

0 A−1
22 −A−1

22 A23A−1
33 0 : : : 0

...
. . . . . . . . . : : :

...

0 : : : : : : : : : A−1
p−1;p−1 −A−1

p−1;p−1Ap−1;pA−1
pp

0 : : : : : : : : : 0 A−1
pp



: (5.4)

The corresponding spectral radii were found to be

�(B′(n1)
G ) = 0:9784; �(H ′(n1)

G ) = 0:9611;

�(B′G) = 0:9729; �(H ′
G) = 0:9570; (5.5)

where the superJx (n1) refers to the “point” case and the absence of it to the “block” one. It
seems that the corresponding “point” and “block” preconditioners of Milaszewicz’s type give better
results in all cases. However, as was stated in Section 1, no Jnal conclusion regarding the relative
eGectiveness of the two types of preconditioners should be drawn before a complete theoretical
analysis has taken place.

Example 2. We consider the following singular block three-cyclic consistently ordered matrix

A=



I3 O −C
−C I3 O

O −C I3


 ; with C =




0 1 0

0 0 1

−�- �− - + �- 1 − � + -


 ; (5.6)

I3 ∈R3;3 the identity matrix and −�6 06 -¡ 1; � �= -. It is B = diag(I3; I3; I3) − A hence B3 =
diag(C3; C3; C3), with +(C3) = {1;−�3; -3}, −�36 06 -3 ¡ 1; � �= -. Therefore,

+(B) =
{

exp
(

i
2k/

3

)
; - exp

(
i

2k/
3

)
;−� exp

(
i

2k/
3

)}
; k = 0; 1; 2;

the eigenvalue 1 is simple and index(I −B) = 1. Consequently, all the assumptions of Theorem 3.2,
in the singular case, are satisJed. So, depending on the value of the ratio �=- the best of the two
optimal SORs associated with A and Ã1, if they exist, will be associated with either the original
block three-cyclic or, after the preconditioning takes place, with the block two-cyclic one. It is noted
that for the optimal three-cyclic SOR to exist, �¡ 3 must hold, while the two-cyclic one exists for
all �∈ [0;∞)!
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Example 3. We consider the convection–diGusion equation in the unit square under Dirichlet bound-
ary conditions

− uxx − uyy + cux = f(x; y) in 5 := (0; 1) × (0; 1); u= g(x; y) on 95; (5.7)

where c is a positive constant. A uniform discretization is imposed on 5∪ 95 with n internal nodes
in each coordinate direction. The n2 internal nodes, at which the approximate values of the unknown
function are sought, are ordered in the natural ordering, i.e., from left to right and from bottom
to top. The classical Jve-point central diGerence scheme is adopted for the discretization. (Note:
c6 2(n+ 1) is a suScient and necessary condition for the coeScient matrix A to be a nonsingular
M -matrix.)

A number of numerical examples were run on a computer using Matlab 6.5 (with double
precision arithmetic) with various values of c and n. The conclusions at which we arrived were
in almost all the cases pretty much the same. In the table below we present a simple case, that
can be readily checked by the interested reader, so c = 0 is selected and the PDE considered be-
comes the Poisson equation. The functions f and g in (5.7) are selected such that the theoretical
solution to the PDE problem is u(x; y) = ex+y sin (/x=2) sin (/y=2). To make fair comparisons we
used maxi |(x(m+1)

i − x(m)
i )=x(m+1)

i |6 7 = 0:5 × 10−12; i = 1(1)n2, as a stopping criterion, with x(m)
i

denoting the ith component of the mth approximation to the actual solution vector of the linear
system yielded from the discretization. The block partitioning considered was the one suggested by
the discretization used and the theory we developed, that is A11 ∈Rn;n and A22 ∈Rn(n−1); n(n−1). In the
following table, because the PDE considered leads to a real symmetric positive deJnite linear system,
the ICC(0)/CG instead of the ILU(0)/GMRES method was used, where ICC stands for Incomplete
Cholesky. The ICC(0)/CG was restarted every n iterations, which n we found fairly good in almost
all the examples we run on the computer. It should be said that the simple CG performed worse
than the restarted one and that is why we preferred the latter. We also have to add that in all cases
treated full exploitation of the presence of zero elements in the structure of the main matrix and its
submatrices was taken so that calculations with zero elements were completely avoided.

n Jacobi Gauss–Seidel ICC(0)/CG

iter 260 140 17
10 CPU time 7.6250 3.750 0.3590

rel error 1.3832e-011 2.4428e-012 1.0689e-004
iter 842 454 27

20 CPU time 14.449 7.703 1.532
rel error 5.0075e-011 1.0818e-11 1.0225e-005
iter 1682 914 38

30 CPU time 119.44 48.125 4.109
rel error 1.0992e-010 2.3587e-011 2.4481e-006
iter 2748 1502 47

40 CPU time 91.625 69.172 7.281
rel error 1.9429e-010 4.1897e-011 8.7150e-007
iter 4020 2207 58

50 CPU time 292.08 131.27 12.06
rel error 3.0014e-010 6.5602e-011 3.8770e-007
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In the above table the following items are illustrated: In the Jrst column the number n. In the
second one, for each n, and in three consecutive rows, the number of iterations needed to satisfy the
criterion imposed (iter), the CPU time consumed in seconds and the actual absolute relative error
(rel error) achieved with respect to the theoretical solution at the corresponding nodal point, that is
maxi |(x(m+1)

i − ui)=ui|; i = 1(1)n2, for each of the three methods Jacobi, Gauss–Seidel, ICC(0)/CG,
shown in columns three to Jve.

As one can note from the various values in the table, in all the cases the block precondi-
tioned Gauss–Seidel performs twice as good as the block preconditioned Jacobi, regarding both
iterations needed and CPU time consumed, and this is in accordance with what one would expect
due to the block two-cyclic consistently ordered nature of the coeScient matrix of the linear system
solved. Although the criterion imposed was satisJed in all the cases by the Jacobi, Gauss–Seidel
and ICC(0)/CG methods, the former two methods needed much more time than the latter one to
reach it. On the other hand, however, the actual absolute relative error in the former two methods
is (very) close to the required one and much better than the corresponding quantity for the latter
method. Things seem to improve in favor of the ICC(0)/CG method as the number of subdivisions
n increases. From the results and the data presented it is rather clear that for moderate values of n
block preconditioned Gauss–Seidel should be preferred instead of ILU(0)/GMRES, while for large
values of n the situation may be reversed.

Before we conclude with this example we have to say that in each case examined we tried to
increase the number of iterations in the ICC(0)/CG method in order to reach the best actual relative
error achieved by either of the methods Jacobi or Gauss–Seidel. Although we exhausted the time
limits deJned by the latter two methods, the result was that the aforementioned actual relative error
could not be reached! The results illustrated in the table could not be improved further.
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