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In this Letter we compute the non-planar one loop anomalous dimension of restricted Schur polynomials
that belong to the sl(2) sector of N = 4 super Yang–Mills theory and have a bare dimension of order N .
Although the details are rather different, ultimately the problem of diagonalizing the dilatation operator
in the sl(2) sector can be reduced to the su(2) sector problem. In this way we establish the expected
dynamical emergence of the Gauss Law for giant gravitons and further show that the dilatation operator
reduces to a set of decoupled harmonic oscillators.

© Open access under CC BY license.2012 Elsevier B.V.
1. Introduction

The most detailed and tested realization of the AdS/CFT corre-
spondence postulates a complete equivalence between N = 4 su-
per Yang–Mills theory with gauge group U (N) and type IIB string
theory on the AdS5 × S5 background with N units of five form
flux [1]. The correspondence has motivated outstanding progress in
the computation of two point functions in N = 4 super Yang–Mills
theory. In particular, integrable structures governing the anomalous
dimensions of the theory in the planar limit have been discov-
ered [2,3]. In much of the literature on the subject, the planar limit
and large N limit are usually taken to mean the same thing. This is
not true [4]. An interesting question is whether or not integrability
is present in other large N (but not planar!) limits of the theory. In
this work we will have some relevant comments on this issue.

Operators constructed using a single complex scalar field Z
transforming in the adjoint of U (N) are 1

2 -BPS. Homogeneous poly-
nomial operators in Z (we have the Schur polynomials in mind)
have R-charge given by the degree of the polynomial. It is pos-
sible to establish a dictionary between these operators and 1

2 -BPS
objects in the dual string theory [5–7]. The entries in the dictio-
nary are organized by R-charge. Operators with an R-charge of
order N are dual to giant gravitons [8]. Among these, Schur poly-
nomials labeled by Young diagrams with O (1) long1 columns are
dual to sphere giant gravitons [9] while Schur polynomials labeled
by Young diagrams with O (1) long rows are dual to AdS giant
gravitons [5].
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Excited giant graviton states, which are not 1
2 -BPS can be de-

scribed in terms of open strings which end on the giant. Operators
dual to excited giant gravitons were proposed in [10]. Since gi-
ant gravitons have a compact world volume, Gauss’ Law forces
the total charge on the worldvolume to vanish [11]. A highly non-
trivial test of the proposal of [10] is that the number of operators
that can be defined matches the number of states obeying this
Gauss Law constraint. The two point functions of these operators,
the restricted Schur polynomials, were computed exactly, in the free
field theory limit, in [12], by exploiting the technology developed
in [13–15]. It was also shown that the restricted Schur polyno-
mials provide a basis for the gauge invariant local operators built
using only scalar (adjoint Higgs) fields [16]. Numerical studies of
the dilatation operator, when acting on decoupled sectors within
the su(2) sector of the theory, that have a sphere giant graviton
number equal to two showed that the spectrum of the dilatation
operator is that of a set of decoupled harmonic oscillators [17,18].
Analytic studies of the dilatation operator in these sectors within
the su(2) sector of the theory, with either two sphere giants or two
AdS giants [19] and then in general [20] have demonstrated that
the spectrum of the dilatation operator is that of a set of decou-
pled harmonic oscillators and further, that the Gauss’ Law emerges
at one loop. This dynamical emergence of the Gauss Law signifi-
cantly extends the counting arguments of [10]. A recent study has
shown that the frequency of the decoupled oscillators emerging
from the dilatation operator can be obtained from a coupled sys-
tem of springs which lends further support to the idea that these
operators are dual to an open string system [21].

In this Letter we will study operators dual to excited AdS gi-
ants. The strings carry an angular momentum along an S1 ⊂ AdS5
direction. The gauge theory description of strings spinning along
the AdS directions requires us to consider the action of covari-
ant derivatives on the set of scalar operators. In this way we
will be able to investigate whether or not the dilatation operator
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reduces to a set of decoupled oscillators as well as if the Gauss
Law emerges dynamically in the sl(2) sector of the theory. It will
be enough to consider operators built using a single complex scalar
field Z and covariant derivatives taken in a unique spacetime di-
rection, acting on it. The basic building blocks D p

+ Z transform
in the infinite dimensional spin j = − 1

2 representation of a non-
compact sl(2) subsector of the conformal subalgebra. In Section 2
we will describe how to build a restricted Schur polynomial basis
for an sl(2) sector. We will then use the one loop dilatation oper-
ator of N = 4 super Yang–Mills theory constructed by Beisert [22]
and restrict it to the relevant sl(2) sector. The result, given in Sec-
tion 3, is the main result of this Letter. Section 4 is reserved for a
discussion of our results. In order to control the length of this Let-
ter, we have not attempted to make it completely self-contained.
We refer the reader to [13,20] for background.

2. Restricted Schur polynomials for the sl(2) sector

This section will describe a restricted Schur polynomial basis
for operators built using nz Z ’s and m vector “impurities”, that is,
m covariant derivatives D+ act on the nZ Z fields. These operators
do not mix with other operators under the action of the dilatation
operator – they form the closed sl(2) subsector [22]. We will build
our operators out of Z(i) , i = 0,1,2, . . . ,m where2

Z (n) = 1

n! Dn+ Z , Z (n)† = 1

n! Dn− Z †

and Z (0) ≡ Z . The action of the covariant derivative is completely
specified by

Dn+ Z = D+ Z (n−1) = ∂+ Z (n−1) − igYM
[

A+, Z (n−1)
]
.

Denote the number of Z (i) in the operator by ni . We have

m∑
i=0

ini = m,

m∑
i=0

ni = nZ .

We will employ perturbation theory with small parameter gYM and
compute two point functions to zeroth plus first order. Schemat-
ically, there are two types of contributions (corresponding to α
and β)

〈
O1(x1)O2(x2)

〉 = α + βg2
YM

|x1 − x2|�0+g2
YM�1

= α + βg2
YM

|x1 − x2|�0

(
1 − g2

YM�1 log |x1 − x2|
)
.

To obtain �1 we should pick up the O (g2
YM) contribution that also

comes multiplied by log |x1 − x2|.
At leading order in the gYM expansion the sl(2) sector can

be understood as a reduction of N = 4 super Yang–Mills theory
to a sector built using lightcone derivatives of a single complex
scalar Z . The basic two point function we use is

〈
Z i

j(x)
(

Z †)k
l (y)

〉 = δi
l δ

k
j

|x − y|2 . (2.1)

Choose x± = x1 ± x0. We will consider N = 4 super Yang–Mills
theory on the one point compactification of R4 and will take our
two operators to lie at opposite poles of the (conformally equiv-
alent) S4. The coordinate patch around the south pole has coor-
dinate x while the coordinate patch around the north pole has

2 This inner product is defined with respect to the Zamolodchikov metric (defined
in Eq. (2.2)) on the space of local operators of the conformal field theory.
coordinate x′ . We approach the south pole by setting x2 = x3 = 0
and taking x− = x+ → 0 and approach the north pole by setting
x′ 2 = x′ 3 = 0 and taking x′+ = x′− → 0. The correlators we con-
sider have the form〈
O1(P )O2(Q )

〉 ≡ lim
x,x′→0

〈
O1(x)O2

(
x′)〉. (2.2)

We are using a standard trick in conformal field theory: the space-
time dependent two point functions define a (spacetime indepen-
dent) metric on the space of local operators, the Zamolodchikov
metric. Knowing the metric for arbitrary derivatives of the op-
erators allows us to reconstruct the full spacetime dependence.
Working with the Zamolodchikov metric will be particularly useful
for the problem we consider here. See [23–26] for useful related
material.

Under

y+ = 1

x′− , y− = 1

x′+ (2.3)

we have

Z
(
x′) → x+x− Z(x), (2.4)

∂

∂x′− Z
(
x′) → ∂x+

∂x′−
∂

∂x+
(
x+x− Z(x)

)
(2.5)

and other obvious generalizations of these formulas for higher
derivatives. These follow because Z is a conformal primary with
dimension 1. Thus, for example〈
Z(P )Z †(Q )

〉 = lim
x±,x′±→0

〈
Za

b(x)
(

Z †)c
d

(
x′)〉

= lim
x±→0

lim
y±→∞

y+ y−〈
Z(x)Z †(y)

〉
= lim

x±→0
lim

y±→∞
y+ y− 1

(x+ − y+)(x− − y−)

= 1.

Proceeding in this way it is straightforward to argue that〈
1

n1!∂
n1+ Z i

j(P )
1

n2!∂
n2−

(
Z †)k

l (Q )

〉
= δn1n2δi

l δ
k
j , (2.6)

and〈
1

p1!∂
p1+ Z i1

j1
· · · 1

pn!∂
pn+ Z in

jn
(P )

1

q1!∂
q1−

(
Z †)k1

l1
· · · 1

qn!∂
qn−

(
Z †)kn

ln
(Q )

〉

=
∑
σ∈Sn

σ I
L

(
σ−1)K

J

n∏
i=1

δpiqσ (i) .

This is a nice formula because it tells us that we can treat ∂
p
+ Z as

a new type of matrix for each p. Thus, we will have the usual re-
stricted Schur polynomials with one Young diagram for each value
of p. We will not review restricted Schur polynomials here. The
reader wanting more details may find it useful to consult [13,12].

Our restricted Schur polynomials will be labeled by a Young
diagram R with nZ boxes and less than m Young diagrams {ri},
i = 0,1,2, . . . ,m which each have ni boxes. The restricted Schur
polynomial is

χR,{ri}αβ

(
Z (0), Z (1), . . . , Z (m)

)
=

m∏
k=0

1

nk!
∑

σ∈SnZ

χR,{ri}αβ(σ )Tr

(
σ

m∏
j=0

(
Z ( j))⊗n j

)
. (2.7)

The label {ri}αβ specifies an irreducible representation of Sn0 ×
Sn1 × · · · × Snm . It consists of less than m Young diagrams ({ri})
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together with a pair of multiplicity labels (αβ). A given Sn0 × Sn1 ×
· · · × Snm irreducible representation may be subdued more than
once; the multiplicity labels tell us which of the degenerate copies
are being used by the restricted character χR,{ri}(σ ). The free two
point function is〈
χR,{ri}αβ(P )χ

†
S,{s j}δγ (Q )

〉
= δR Sδ{ri}{s j}δαγ δβδ

(hooks)R

(hooks){ri}
f R . (2.8)

The delta function δ{ri}{s j} is 1 if the two Sn0 × Sn1 × · · · × Snm

irreducible representations specified by {ri} and {s j} are identical;
multiplicity labels must also match – see [12] for more details.
The number (hooks)R is the product of the hook lengths for Young
diagram R . The number (hooks){ri} is the product of the (hooks)ri ,
one factor for each of the ri appearing in {ri}.

3. Dilatation operator in sl(2) subsector

The one loop contribution to the dilatation operator, in the sl(2)

sector, is [22]

D1 = g2
YMCcd

ab:Tr
([

Z (a), Z †
(c)

][
Z (b), Z †

(d)

]):
= g2

YM

(
Ccd

ab + Cdc
ab

):Tr
(

Z (a) Z †
(c) Z (b) Z †

(d)

):
− g2

YM

(
Ccd

ab + Cdc
ba

):Tr
(

Z (a) Z †
(c) Z †

(d)
Z (b)

): (3.1)

where repeated indices are summed. By cyclicity of the trace we
can cycle the two commutators around so that our coefficients
obey

Ccd
ab = Cdc

ba.

When acting on a restricted Schur polynomial, the daggered fields
in D1 are to be Wick contracted with fields in the restricted Schur
polynomial so that they act as derivatives

(
Z †

(c)

)i
j ↔ d

(dZ (c))
j
i

.

Consequently, the one loop dilatation operator acts by removing
two fields from the restricted Schur polynomial and then it puts
two others back into the polynomial. Introduce the notation

c+ =
c−1∑
i=1

ni + 1.

This is the number of the slot in which the first Z (c) appears.
A rather straightforward computation gives (see [18,20] for related
computations with more details)

D1χR,{ri}
(

Z , Z (1), . . . , Z (m)
)

= g2
YM

(
Ccd

ab + Cdc
ab

)∏
k ñk!∏
l nl!

∑
S,{si}

ncnd∏
q dsq

× Tr
(
σ

(
c+,d+)

P R→{ri}σ−1 P S→{si}
)

× χS,{si}
(

Z , Z (1), . . . , Z (m)
)

− g2
YM

(
Ccd

ab + Cdc
ba

)∏
k ñk∏
l nl!

∑
R ′

∑
S,{si}

cR R ′dSncnd

dS ′
∏

q dsq nZ

× Tr
(
σ

(
n+, l+

)
P R→{ri}σ−1 I R ′ S ′ρP S→{si}ρ−1(n+, l+

)
I S ′ R ′

)
× χS,{si}

(
Z , Z (1), . . . , Z (m)

)
. (3.2)
The ñk are the number of impurities Z (k) appearing in χS,{si}(Z ,

Z (1), . . . , Z (m)). σ in the first term ensures that the fields Z (a)

and Z (b) that are inserted are inserted into the correct slots. Notice
that the first term above does not involve a sum over Young dia-
grams R ′ that can be obtained by removing a single box from R .
The structure of this term is new and rather different to the terms
obtained when acting with the dilatation operator in the su(2) sec-
tor. In contrast to this, the second term is very similar to terms
that arise in the su(2) sector. In the second term σ ensures that
the box that is removed corresponds to a Z slot, while ρ en-
sures that the fields Z (a) and Z (b) that are inserted are inserted
into the correct slots. cR R ′ is the factor of the box that must be
removed from R to obtain R ′ . P R→{ri} is a projection operator pro-
jecting from R to {ri}, while I S ′ R ′ are intertwiners discussed in
detail in [18,20]. Eq. (3.2) is a new result.

We now specialize to the limit that nz,m ∼ N and nZ � m.
It is within this subsector of the sl(2) sector that the action of
the dilatation operator simplifies considerably. Since there are a
lot more Z s than Z (q)s with q > 0 the only term that we need
to consider is obtained when one of c, d in (3.1) is 0 and one of
a, b is 0. In this case (there is a sum on q), at leading order in
large N ,

D1 = 2g2
YM

(
C0q

0q + C0q
q0

)(:Z Z † Z (q) Z †
(q): + :Z (q) Z † Z Z †

(q):
)

− g2
YM

(
C0q

0q + Cq0
q0

)(:Z Z † Z †
(q) Z (q): + :Z (q) Z †

(q) Z † Z :)
− g2

YM

(
C0q

q0 + Cq0
0q

)(:Z (q) Z † Z †
(q) Z : + :Z Z †

(q) Z † Z (q):).
Given this structure it is clear that processes that change the im-
purity type are subleading. It is then simplest to assume that there
is only one type of impurity, Z (q) . In this case the label {ri} con-
tains two Young diagrams. Using the results of [22] we have

C0q
0q = −1

2
h(q) = −1

2

q∑
i=1

1

i

and

Cq0
0q + C0q

q0 = 1

q
.

A little work now shows that

D1χR,(r,s)αβ

(
Z , Z (q)

)
=

∑
S,(t,u)γ δ

MR,(r,s),αβ S,(t,u)δγ χS,(t,u)δγ

(
Z , Z (q)

)

where

MR,(r,s),αβ S,(t,u)δγ

= 2g2
YM

(
1

q
−

q∑
i=1

1

i

)
nm

drds
χR,(r,s)βγ

(
(1,m + 1)

)
δR Sδ(r,s)(t,u)δαδ

− 1

q

∑
R ′

g2
YMcR R ′dSnm

dtdu(n + m)dR ′

× [
Tr

(
I S ′ R ′(1,m + 1)P R→(r,s)αβ I R ′ S ′(1,m + 1)P S→(t,u)γ δ

)
+ Tr

(
I S ′ R ′ P R→(r,s)αβ(1,m + 1)I R ′ S ′ P S→(t,u)γ δ(1,m + 1)

)]
+

q∑
i=1

1

i

∑
R ′

g2
YMcR R ′dSnm

dtdu(n + m)dR ′

× [
Tr

(
I S ′ R ′ P R→(r,s)αβ(1,m + 1)I R ′ S ′(1,m + 1)P S→(t,u)γ δ

)
+ Tr

(
I S ′ R ′(1,m + 1)P R→(r,s)αβ I R ′ S ′ P S→(t,u)γ δ(1,m + 1)

)]
.
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Note the change in notation: we have used n for the number of Z s
and m for the number of Z (q) . Thus, there are mq covariant deriva-
tives acting. This new notation is far more natural – it fixes the
number of impurity slots to be m.

3.1. The special case q = 1

In this case we find

MR,(r,s)αβ S,(t,u)δγ

= −
∑

R ′

g2
YMcR R ′dSnm

dtdu(n + m)dR ′

× [
Tr

(
I S ′ R ′(1,m + 1)P R→(r,s)αβ I R ′ S ′(1,m + 1)P S→(t,u)γ δ

)
+ Tr

(
I S ′ R ′ P R→(r,s)αβ(1,m + 1)I R ′ S ′ P S→(t,u)γ δ(1,m + 1)

)]
+

∑
R ′

g2
YMcR R ′dSnm

dtdu(n + m)dR ′

× [
Tr

(
I S ′ R ′ P R→(r,s)αβ(1,m + 1)I R ′ S ′(1,m + 1)P S→(t,u)γ δ

)
+ Tr

(
I S ′ R ′(1,m + 1)P R→(r,s)αβ I R ′ S ′ P S→(t,u)γ δ(1,m + 1)

)]
= −

∑
R ′

g2
YMcR R ′dSnm

dtdu(n + m)dR ′
Tr

(
I S ′ R ′

[
(1,m + 1), P R→(r,s)αβ

]
× I R ′ S ′

[
(1,m + 1), P S→(t,u)γ δ

])
.

This is identical to the action of the dilatation operator in the su(2)

sector (see formula (2.3) of [18])! Denote this as Msu(2)
R,(r,s)αβ S,(t,u)δγ .

3.2. The general case of q > 1

In this case we can write

MR,(r,s)αβ S,(t,u)δγ = 1

q
Msu(2)

R,(r,s)αβ S,(t,u)δγ + δMR,(r,s)αβ S,(t,u)δγ

where

δMR,(r,s)αβ S,(t,u)δγ

= 2g2
YM

(
1

q
−

q∑
i=1

1

i

)
δR Sδ(r,s)(t,u)δαδ

nm

drds

× χR,(r,s)βγ

(
(1,m + 1)

)
− g2

YM

(
1

q
−

q∑
i=1

1

i

)∑
R ′

cR R ′dSnm

dtdu(n + m)dR ′

× [
Tr

(
I S ′ R ′ P R→(r,s)αβ(1,m + 1)I R ′ S ′(1,m + 1)P S→(t,u)γ δ

)
+ Tr

(
I S ′ R ′(1,m + 1)P R→(r,s)αβ I R ′ S ′ P S→(t,u)γ δ(1,m + 1)

)]
.

We will sketch how to evaluate δMR,(r,s)αβ S,(t,u)δγ . First, recall the
action of Eij in the fundamental representation of u(N) on a vec-
tor vk , which is a vector of zeros except for a 1 in the kth position,
is

Eij vk = δ jk vi .

The symmetric group element (1,m + 1) swaps the vectors in the
first and (m + 1)th slots. Given the above action of Eij we can
write (1,m + 1) = Tr(E(1)E(m+1)). Further, the projector P R→(r,s)βγ

can be factored into an operator acting on the impurity slots
(pR→(r,s)βγ ) and an operator acting on the Z slots (1r )

P R→(r,s)βγ = pR→(r,s)βγ ⊗ 1r .

The first term in δM can now be rewritten using
nm

drds
χR,(r,s)βγ

(
(1,m + 1)

)
=

∑
i j

nm

drds
Tr

(
pR→(r,s)βγ E(1)

i j

)
Tr

(
1r E(m+1)

ji

)

=
∑

i

nm

drds
Tr

(
pR→(r,s)βγ E(1)

ii

)
Tr

(
1r E(m+1)

ii

)
.

Next, consider the second term in δM (to get R ′ from R remove
box in row j and to get S ′ from S remove box in row i)

∑
R ′

cR R ′dSnm

dtdu(n + m)dR ′

× Tr
(

I S ′ R ′ P R→(r,s)αβ(1,m + 1)I R ′ S ′(1,m + 1)P S→(t,u)γ δ

)
=

∑
i

cR R ′dSnm

dtdu(n + m)dR ′
Tr

(
E(1)

i j P R→(r,s)αβ E(m+1)
ji P S→(t,u)γ δ

)

=
∑

i

cR R ′dSnm

dtdu(n + m)dR ′

× Tr
(

E(1)
i j pR→(r,s)αβ pS→(t,u)γ δ

)
Tr

(
1r E(m+1)

ji 1t
)

= δR Sδ(r,s)(t,u)δβγ

∑
i

cR R ′dRnm

dtdu(n + m)dR ′

× Tr
(

E(1)
ii pR→(r,s)αδ

)
Tr

(
1r E(m+1)

ii

)
.

To proceed note that

cR R ′ = N + hooksR

hooksR ′

and treat these two terms separately. The term that comes from
the N gives us

δR Sδ(r,s)(t,u)δβγ

∑
i

NdRnm

drds(n + m)dR ′

× Tr
(

E(1)
ii pR→(r,s)αδ

)
Tr

(
1r E(m+1)

ii

)
= δR Sδ(r,s)(t,u)δβγ

∑
i

Nm

ds
Tr

(
E(1)

ii pR→(r,s)αδ

)
= δR Sδ(r,s)(t,u)δβγ δαδ Nm.

The remaining piece is

δR Sδ(r,s)(t,u)δβγ

∑
i

dRnm

drds(n + m)dR ′
hooksR

hooksR ′

× Tr
(

E(1)
ii pR→(r,s)αδ

)
Tr

(
1r E(m+1)

ii

)
= δR Sδ(r,s)(t,u)δβγ

∑
i

nm

drds
Tr

(
E(1)

ii pR→(r,s)αδ

)
Tr

(
1r E(m+1)

ii

)
.

The third term can be dealt with in a very similar way. Together
these results are enough to evaluate

δMR,(r,s)αβ S,(t,u)δγ = 2δR Sδ(r,s)(t,u)δβγ δαδ

( q∑
i=1

1

i
− 1

q

)
g2

YM Nm.

This just adds a constant times the identity to the su(2) dilatation
operator so that we find exactly the same eigenvalue problem as
for the su(2) sector except that, for q > 1, there is a shift due to
the presence of δMR,(r,s)αβ S,(t,u)δγ . This shift is positive as it must
be: a negative shift would have produced operators with a dimen-
sion less than their R-charge which is not possible in a unitary
conformal field theory.
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4. Discussion

We have computed the action of the dilatation operator on re-
stricted Schur polynomials that are dual to systems of excited AdS
giant gravitons. The open string excitations have an angular mo-
mentum along an S1 ⊂ AdS5. For a similar project which considers
a single AdS giant see [27]. Our study has shown that diagonaliz-
ing the action of the dilatation operator in the sl(2) sector can be
reduced to the problem of diagonalizing the action of the dilata-
tion operator in the su(2) sector. For the su(2) sector problem it is
known that the Gauss Law emerges at one loop and the spectrum
reduces to that of a set of decoupled oscillators. Our results show
that in the sl(2) sector we again find that the Gauss Law emerges
and the spectrum is again given by a set of decoupled oscilla-
tors. Our results extend and complement those of [17–20]. Taken
together, these results are very suggestive that there are indeed
large N but non-planar limits in which the anomalous dimensions
continue to be governed by an integrable system. It would be fas-
cinating to study this possibility further.

There is a constant shift for the anomalous dimensions of the
operators (as compared to the su(2) result) if q > 1. The value
of this shift has a natural interpretation. The non-compact closed
sl(2) sector has been studied, in the planar limit, in [22]. The fac-
tor

∑q
i=1

1
i − 1

q appearing in the shift for the anomalous dimension
is precisely the eigenvalue of the planar dilatation operator acting
on the module Vq−1 defined in [22].

We have focused on a single species of impurity. However, us-
ing the results of [28] we know it is not difficult to add more
impurity flavors. This uses the fact that at leading order in large N
there are no impurity number changing processes.

Although we have focused on restricted Schur polynomials in
this Letter, they are not the only basis for local gauge invariant
operators of a matrix model. Another interesting basis to con-
sider is the Brauer basis [29,30]. There is an elegant construc-
tion of a class of BPS operators [31] in which the natural N
dependence appearing in the definition of the operator [32] is re-
produced by the Brauer algebra projectors [31]. Another natural
approach is to adopt a basis that has sharp quantum numbers
for the global symmetries of the theory [33,26]. The action of
the anomalous dimension operator in this sharp quantum num-
ber basis is very similar to the action in the restricted Schur
basis [34]. Finally, for a rather general approach which correctly
counts and constructs the weak coupling BPS operators see [35].
Are there signals of non-planar integrability in these more general
bases?
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