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Abstract

Let f : {0; 1}n → {0; 1} be a monotone Boolean function whose value at any point x∈{0; 1}n
can be determined in time t. Denote by c=

∧
I∈C

∨
i∈I xi the irredundant CNF of f, where C is

the set of the prime implicates of f. Similarly, let d=
∨
J∈D

∧
j∈J xj be the irredundant DNF of

the same function, where D is the set of the prime implicants of f. We show that given subsets
C′ ⊆C and D′ ⊆D such that (C′; D′) 6= (C;D), a new term in (C\C′)∪(D\D′) can be found in
time O(n(t+n))+mo(log m), where m=|C′|+|D′|. In particular, if f(x) can be evaluated for every
x∈{0; 1}n in polynomial time, then the forms c and d can be jointly generated in incremental
quasi-polynomial time. On the other hand, even for the class of ∧;∨-formulae f of depth 2,
i.e., for CNFs or DNFs, it is unlikely that uniform sampling from within the set of the prime
implicates and implicants of f can be carried out in time bounded by a quasi-polynomial 2polylog(·)

in the input size of f. We also show that for some classes of polynomial-time computable
monotone Boolean functions it is NP-hard to test either of the conditions D′=D or C′=C. This
provides evidence that for each of these classes neither conjunctive nor disjunctive irredundant
normal forms can be generated in total (or incremental) quasi-polynomial time. Such classes of
monotone Boolean functions naturally arise in game theory, networks and relay contact circuits,
convex programming, and include a subset of ∧;∨-formulae of depth 3. c© 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let f : {0; 1}n → {0; 1} be a monotone Boolean function of n variables:
x¿x′ ⇒ f(x)¿f(x′) for any x; x′ ∈{0; 1}n:

Denote by

c =
∧

I∈C

∨

i∈I
xi; (1.1)

the irredundant conjunctive normal form (CNF) of f, where C is the set of the prime
implicates I ⊆{1; : : : ; n} of f. Note that the anti-characteristic vector of any prime
implicate I ∈C is a maximal false vector of f, and vice versa. Thus, there is a natural
one-to-one correspondence C 
 MAX{x |f(x) = 0}.
Similarly, let

d=
∨

J∈D

∧

j∈J
xj (1.2)

be the irredundant disjunctive normal form (DNF) of the function f, where D is
the set of the prime implicants J ⊆{1; : : : ; n} of f. The characteristic vector of any
prime implicant J ⊆{1; : : : ; n} is a minimal true vector of f, which gives a bijection
D
 MIN{x |f(x) = 1}. By de�nition,

f(x) = c(x) = d(x) for all x∈{0; 1}n: (1.3)

In this paper, we investigate the complexity of generating the irredundant normal forms
c and=or d for various input representations of f. Let {·} denote either C, or D, or
the set C t D of all |C|+ |D| prime implicates and implicants of f. We consider the
following problems:
Gen{·}:Given a subset S ⊆{·}, either prove that S = {·}; or �nd a new element in
{·}\S.

Section 2 deals with problem Gen{CtD}. In Theorem 1 we show that this problem
can be solved in incremental quasi-polynomial time provided that f(x) can be evaluated
for any x∈{0; 1}n in polynomial time. Speci�cally, given two subsets C′⊆C and
D′⊆D of total size m= |C′|+ |D′|¡ |C|+ |D|, a new element in (C\C′)∪ (D\D′) can
be generated in time O(n(t + n)) + mo(log m), where t is the complexity of evaluating
f(x) at a binary point x. Note that this result implies that the condition (C′; D′)=(C;D)
can also be checked in O(n(t + n)) + mo(log m) time.
An important special case of Theorem 1 is for D′=D. In such a case, f is already

represented by its irredundant DNF and consequently f(x) can be evaluated in poly-
nomial time. Next, computing the irredundant CNF for f is equivalent to computing
the irredundant DNF for the dual function fd(x) :=@f(@x). This problem is known
as Dualization or Transversal Hypergraph – see e.g. [1–5,10,13]. Theorem 1 thus
implies that the dualization problem for monotone DNFs can be solved in incremental
quasi-polynomial time ([5] – see Theorem 2 below). In fact, Theorem 1 rests upon
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this result, and the polynomial-time solvability of the dualization problem would imply
the solvability of problem Gen{C t D} in incremental polynomial time [1].
Another straightforward consequence of Theorem 1 is as follows. Suppose that f(x)

can be evaluated for each x∈{0; 1}n in quasi-polynomial time 2polylog(·), where (·) is
the size of the input encoding of f and x. Then the set C t D can be constructed in
time bounded by a quasi-polynomial in the total input and output size. Theorem 3 in
Section 2 shows that, even for the class of ∧;∨-formulae f of depth 2, it is unlikely
that uniform sampling from within C t D can be carried out in time bounded by a
quasi-polynomial 2polylog(·) in the input size of f. Speci�cally, the existence of such
a randomized algorithm would imply that any NP-complete problem can be solved in
quasi-polynomial time by a randomized algorithm with arbitrarily small failure proba-
bility. Our arguments are similar to those used by Jerrum et al. [9] for the problem of
uniformly generating cycles in a digraph.
Finally, in Section 3 we consider problems Gen{C} and Gen{D}. In Theorems 4–7

we show that for some natural classes of polynomial-time computable monotone
Boolean functions it is NP-hard to test either of the conditions C′ = C or D = D′.
Modulo the standard bijections C 
 MAX{x |f(x) = 0} and D
 MIN{x |f(x) = 1},
our examples of such sets C (or D) are as follows:

• all prime implicates (or implicants) of a ∧;∨-formula of depth 3;
• all minimal subsets of relays connecting (or disconnecting) two terminals in a mono-
tone relay circuit;
• all minimal winning sets of Player 1 (or 2) for a positional game form with perfect
information;
• all maximal feasible (or minimal infeasible) subsystems of a system of convex
inequalities.

For each of the above examples, problems Gen{C} and Gen{D} cannot be solved
in total (and hence incremental) quasi-polynomial time, unless any problem in NP is
solvable in quasi-polynomial time. But for all these examples, Theorem 1 guarantees
that problem Gen{C t D} can be solved in incremental quasi-polynomial time.

2. Simultaneously generating C and D

In this section we show that problem Gen{C t D} can be solved in incremental
quasi-polynomial time.

Theorem 1. Let f : {0; 1}n → {0; 1} be a monotone Boolean function whose value
at any point x∈{0; 1}n can be determined in time t; and let C and D be the sets of
the prime implicates and the prime implicants of f; respectively. Given two subsets
C′⊆C and D′⊆D of total size m=|C′|+|D′|¡ |C|+|D|; a new element in (C\C′)∪
(D\D′) can be found in time O(n(t + n)) + mo(log m).
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As mentioned in the Introduction, Theorem 1 follows from its special case which
deals with the dualization problem for monotone DNFs – cf. [1]. For this reason, we
start with the dualization problem:

Problem (DD∗). Given a pair of irredundant DNFs

d[A] =
∨

I∈A

∧

i∈I
xi; d[B] =

∨

J∈B

∧

j∈J
xj;

test whether d[A] and d[B] are mutually dual:

d[A](x1; : : : ; xn) =@d[B](@x1; : : : ;@xn) for all x = (x1; : : : ; xn)∈{0; 1}n: (D)
If d[A] and d[B] are not dual; �nd a Boolean vector x∗ ∈{0; 1}n such that

d[A](@x∗1 ; : : : ;@x∗n ) = d[B](x∗1 ; : : : ; x∗n ): (D∗)

It is easy to see that any dual disjunctive normal forms d[A] and d[B] must satisfy
the condition

I ∩ J 6= ∅ for all I ∈A and J ∈B: (2.1)

Suppose to the contrary that there is a pair of disjoint sets I ∈A and J ∈B. Then the
characteristic vector of J satis�es (D∗).
Lemma 1 below shows that for any pair of dual irredundant forms we also have

max{|I | : I ∈A}6|B|; max{|J | : J ∈B}6|A|: (2.2)

Lemma 1. Suppose that irredundant DNFs d[A] and d[B] satisfy (2:1). If condition
(2:2) is violated, Eq. (D∗) can be solved in O(|A|+ |B|+ n2) time.

Proof. First of all, (2.2) can be checked in O(|A| + |B|) time. If |J |¿ |A| for some
J ∈B, a solution x∗ of Eq. (D∗) can be found as follows:

Initialize x∗ ← 0

For each I ∈A; select an index i∈ I ∩ J and set x∗i ← 1:

This procedure takes O(n|A|) time. Since |A|¡ |J |6n, we obtain the time bound as
required. Similarly, if |I |¿ |B| for some I ∈A, Eq. (D∗) can be solved in O(n|B|)
time. Again, |B|¡ |I |6n, which proves the lemma.

Theorem 2 (Fredman and Khachiyan [10]). Suppose that d[A] and d[B] satisfy (2:1)
and (2:2). Then problem (DD∗) can be solved in time v�(v)+O(1); where v= |A||B| and
�� = v.

From

�(v) ∼ log v=log log v= o(log v);
the trivial inequality

v= |A||B|6(|A|+ |B|)2;
and Lemma 1 we obtain the following complexity bound.
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Corollary 1. If d[A] and d[B] satisfy (2:1); Problem (DD∗) can be solved in time
Tdual =O(n2) + (|A|+ |B|)o(log(|A|+|B|)).

Proof of Theorem 1. Suppose that C′⊆C and D′⊆D, where C and D are de�ned by
(1.1) and (1.2). For A⊆C, let c[A] =∧

I∈A
∨
i∈I xi. With this notation, (1.3) implies

c[C′](x)¿c[C](x) ≡ c(x) ≡ f(x) ≡ d(x) ≡ d[D](x)¿d[D′](x). Hence (C′; D′)=(C;D)
if and only if c[C′](x) ≡ d[D′](x), which is equivalent to the duality of d[C′] and
d[D′]. In particular, we have I ∩ J 6= ∅ for all I ∈C and J ∈D. By Corollary 1,
the duality of d[C′] and d[D′] can be tested in time Tdual = O(n2) + mo(log m), where
m= |C′|+ |D′|. If (C′; D′) = (C;D), we are done. Otherwise we obtain a solution x∗

of Eq. (D∗). It is easy to see that c[C′](x∗) = 1 and d[D′](x∗) = 0. Now we compute
f(x∗) and split into two cases.
Case 1: f(x∗) = 0. By evaluating f(·) at O(n) binary points, we can �nd a vector

y∗ ∈MAX{x |f(x) = 0} such that x∗6y∗. Since f is monotone, 0 = f(y∗)¡ 1 =
c[C′](x∗)6c[C′](y∗). This means that I = {i |y∗i = 0; i = 1; : : : ; n}∈C\C′, i.e., we
obtain a new prime implicate of f.
Case 2: f(x∗) = 1. Find a vector y∗ ∈MIN{x |f(x) = 1} such that y∗6x∗. The set

J = {j |y∗j = 1; j = 1; : : : ; n}∈D\D′ is a new prime implicant of f.

In the remainder of this section we discuss the complexity of uniformly sampling
from C tD. A randomized algorithm R is an �-uniform generator for a �nite set 
 if
(i) R outputs only elements !∈
, unless it stops with no output;
(ii)

∑ {p(!) |!∈
}¿1=2, where p(!) is the probability that R outputs !∈
;
(iii) max{p(!)=p(!′) |!;!′}61 + �.
Theorem 3 below shows that a fast uniform generator for C tD is unlikely to exist,

even if we restrict the input to the class DNF2 of quadratic monotone DNFs. Note
that the input size of any formula f(x1; : : : ; xn)∈DNF2 is polynomial in n.

Theorem 3. Let �¡ 1 be a �xed constant; and let � = 2n
�
. Suppose there exists a

(quasi) polynomial-time randomized algorithm that; given a formula f(x1; : : : ; xn)∈
DNF2; acts as an �-uniform generator for the set CtD of the prime implicates and
implicants of f. Then any NP-complete problem can be solved in (quasi) polynomial
time by a randomized algorithm with arbitrarily small one-sided failure probability.

Proof. Since for any formula f∈DNF2 the set D is given explicitly and |D|6n2,
any �-uniform generator R for C t D can be used as an �-uniform generator for C.
This entails at most O(n2) slowdown in the running time of R. We can thus assume
that there exists a (quasi) polynomial-time 2n

�
-uniform generator for C or equivalently,

MAX{x |f(x) = 0}.
For a given graph G = (V; E) with n vertices, de�ne fG(x1; : : : ; xn) =

∨{xixj |(ij) 6∈ E}. Then MAX{x |fG(x)=0} is the set of (the characteristic vectors of)
all maximal cliques in G. In other words, R can be used to 2n

�
-uniformly generate

maximal cliques in G. To show that this implies the theorem, we need only slightly
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modify the proof suggested by Jerrum et al. [9] for the problem of generating cycles
in digraphs.
Let Hk =K2;2;:::;2 be the complete k-partite graph, each “part” of which consists of

two isolated vertices. Thus, Hk has 2k vertices and 2k maximal cliques of size k each.
Let G(Hk) be the 2nk-vertex graph obtained by substituting Hk for each vertex of G.
Then N (G(Hk); kl)=2klN (G; l), where N (·; t) is the number of maximal cliques of size
t in (·). Furthermore, N (G(Hk); t)=0 if t 6= 0mod k. Since the total number of cliques
in G is bounded by 2n, we conclude that for k¿1 + n + (2nk)�, any 2(2nk)

�
-uniform

generator R of maximal cliques in G(Hk) produces a clique of maximum size with
probability ¿ 1

4 . Letting k=�(n
1=(1−�)), we can satisfy the inequality k¿1+n+(2nk)�

and �nd a maximum clique in G(Hk) with high probability in (quasi) polynomial
time. But this is equivalent to solving the NP-complete clique problem for any imput
graph G.

The proof of Theorem 3 also shows that there is little hope that false vectors of
a monotone quadratic DNF can be uniformly generated in polynomial time. It should
be pointed out that Karp and Luby [12] gave a simple polynomial-time algorithm for
uniformly generating true vectors of an arbitrary, not necessarily monotone or quadratic,
DNF.
We also mention in passing that problem Gen{x | x a maximal clique in G} can be

solved in incremental polynomial time. In fact, all maximal cliques in a graph can be
generated with polynomial delay – see [10].

3. Generating C or D

In this section we describe some classes of monotone Boolean functions for which it
is NP-hard to separately check either of the conditions C′=C or D′=D. This provides
evidence that for each of these classes, problems Gen{C} and Gen{D} cannot be
solved in total (or incremental) quasi-polynomial time. Our �rst example is as follows.

3.1. Monotone Boolean formulae of depth 3

Theorem 4. Let F3 be the class of ∧;∨-formulae of depth 3. For a formula f∈F3;
let C and D denote the sets of the prime implicates and the prime implicants of f;
respectively.

(i) Given a formula f∈F3 and a subset C′ of C, it is coNP-complete to decide
whether C′ = C:
(ii) Similarly; for a formula f∈F3 and a subset D′ of D, it is coNP-complete to

determine whether D′ = D.
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Proof. Since the class F3 is self-dual, parts (i) and (ii) of the theorem are equivalent.
To show part (ii), it is convenient to state (ii) in the following equivalent form:

E :Given a formula f(x)∈F3 and a monotone DNF d(x) such that

f(x)¿d(x) for all x∈{0; 1}n; it is coNP-complete to check whether
f(x) ≡ d(x):

It is well known that it is coNP-complete to test whether a given (non-monotone)
DNF D(x1; : : : ; xn) is a tautology. Substituting yi for @xi; i=1; : : : ; n; we can transform
D(x1; : : : ; xn) into a monotone form d(x1; y1; : : : ; xn; yn) such that

d(x; y) ≡ D(x) for y =@x:
Let �(x; y) =

∧n
i=1(xi ∨ yi). It is easy to see that D(x) is a tautology, i.e.,

D(x) = 1 for all x∈{0; 1}n;
if and only if

d(x; y) ∨ �(x; y) = d(x; y) for all x; y∈{0; 1}n:
Since f(x; y) := �(x; y)∨d(x; y) is a ∧;∨-formula of depth 3 such that f(x; y)¿d(x; y),
claim E and the theorem follows.

Note that since any Boolean formula can be evaluated at any binary point in poly-
nomial time, from Theorem 1 it follows that problem Gen{C t D} can be solved
in incremental quasi-polynomial time for any ∧;∨-formula. Observe also that any
∧;∨-formula of depth 2 is in conjunctive or disjunctive normal form. Theorem 2
thus implies that for ∧;∨-formulae of depth 2, problems Gen{C} and Gen{D} can
be solved in incremental quasi-polynomial time. In addition, it is not hard to show that
problems Gen{C} and Gen{D} can be solved with polynomial delay for any read-once
∧;∨-formula. (A formula is read-once if each variable appears in it exactly once – see
e.g., [8,11].

3.2. Monotone relay circuits

Let G=(V; E) be a graph with two distinguished vertices s; t ∈V . A monotone relay
circuit is a mapping R : E → {1; : : : ; n}, which assigns a relay R(e)∈{1; : : : ; n} to each
edge e∈E – cf. [14]. For a relay set X ⊆{1; : : : ; n}; let ON (X ) = {e∈E |R(e)∈X }
and OFF(X ) = E\ON (X ).We say that X connects the terminals s and t if the graph
(V;ON (X )) contains an s; t-path. Similarly, X disconnects the terminals if s and t are
not connected in (V;OFF(X )). We shall call a minimal X connecting (disconnecting)
the terminals s and t a relay path (cut), respectively.

Theorem 5. Let � be the class of series–parallel monotone relay circuits. Given a
circuit in � and a collection of relay s,t-cuts (or relay s; t-paths); it is coNP-complete
to determine whether the given collection is complete.
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Proof. For a relay circuit R, let fR : {0; 1}n → {0; 1} be the monotone Boolean function
realized by the circuit:

fR(x1; : : : ; xn) = 1 if the set {i | xi = 1; i = 1; : : : ; n} connects s and t;
fR(x1; : : : ; xn) = 0 otherwise:

(3.1)

Clearly, each relay s; t-cut (path) is a prime implicate (implicant) of fR, and vice
versa. Since any ∧;∨-formula can be easily realized by a series–parallel relay circuit,
Theorem 5 follows from Theorem 4.

As before, fR(x) can be evaluated for each binary vector x in polynomial time.
Hence all relay cuts and paths in an arbitrary monotone relay circuit can be jointly
generated in incremental quasi-polynomial time.
If the relay mapping R : E → {1; : : : ; n} is bijective, the relay cuts and paths turn

into the usual cuts and paths, which can be (separately) generated with polynomial
delay for any graph G.

3.3. Positional two-person games with perfect information

Let G = 〈V; E〉 be a directed acyclic graph with a distinguished vertex s such that
all vertices v∈V are reachable form s. A two-person positional game on G is a
partitioning

V = V1 ∪ V2; V1 ∩ V2 = ∅; (3.2)

where V1 and V2 are the sets of positions controlled by Players 1 and 2, respectively.
Let E+(v) be the set of arcs incident from a position v∈V . The game starts in the

initial position s. If the current position v is in V�; � = 1; 2, Player � selects a move
from E+(v) until the game reaches a �nal position u∈VT = {v∈V |E+(v) = ∅}. The
player who controls the �nal position wins – cf. [15].
A game form � speci�es the partitioning (3.2) on V\VT , but does not indicate the

winners on the set VT of �nal positions. A subset X ⊆VT is called a winning set of
Player � if this player can force the game to �nish in X , regardless of the adversary’s
moves.

Theorem 6. Let � = 1 or 2. Given a positional game form � and a list of minimal
winning sets of Player �; it is coNP-complete to decide whether the given list is
exhaustive.

Proof. Assume VT = {1; : : : ; n} and consider the following Boolean function:
f�(x1; : : : ; xn) = 1 if the set {i | xi=1; i=1; : : : ; n} is a winning set of Player 1;
f�(x1; : : : ; xn) = 0 otherwise

– see [6,7]. Clearly f� is monotone, and each minimal winning set of Player 1 is a
prime implicant of f� and vice versa. Furthermore, the prime implicates of f� are
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nothing but the minimal winning sets of Player 2. It is also easy to see that any
∧;∨-formula of size l and depth d can be realized by a game form of the same size
and depth. For this reason, Theorem 6 follows from Theorem 4.

Any positional game with perfect information can be solved in polynomial time by
dynamic programming. Hence f�(x) can be evaluated for each x in polynomial time.
From Theorem 1 we conclude that all minimal winning sets of Players 1 and 2 can
be jointly generated in incremental quasi-polynomial time.
Let us remark that due to the obvious one-to-one correspondence between positional

game forms and combinatorial ∧;∨-circuits, all minimal winning sets of each player
can be generated with polynomial delay for positional games on trees.

3.4. Convex programming

Given a system P=(P1; : : : ; Pn) of polyhedra in Rd consider the monotone Boolean
function

fP(x1; : : : ; xn) = 1 if
⋂

{i|xi=1}
Pi = ∅;

fP(x1; : : : ; xn) = 0 otherwise:

(3.3)

By de�nition, each maximal false vector of fP corresponds to a maximal feasible
subsystem of polyhedra in P, whereas each minimal true vector of fP can be viewed
as a minimal infeasible subsystem of P.
As an example, let P be the set of all facets of polytope Q= {y∈Rd | aiy6bi; i=

1; : : : ; n}. Then problem Gen{x | x a maximal feasible subsystem of P} is equivalent
to generating all vertices of Q. The complexity status of the latter problem is not
known. In general, however, generating all maximal feasible subsystems of a system
of polyhedra is hard. Analogously, generating all minimal infeasible systems of P can
also be hard:

Theorem 7. For a system P of nonempty polyhedra in Rd and a collection of maxi-
mal feasible (minimal infeasible) subsystems of P; it is coNP-complete to tell whether
the given collection is complete.

Proof. Let R : E → {1; : : : ; n} be an arbitrary relay circuit on a series–parallel graph
G= (V; E). It is easy to see that for any edge e∈E, all s–t-paths through e cross e in
the same direction, which we refer- to as the s–t-orientation of e.
Denote by Gi the graph (V;OFF({xi})) with the s–t-orientation on the set of its

edges, and let Pi be the s–t-
ow polyhedron for the diagraph Gi; i = 1; : : : ; n. In other
words, Pi consists of all vectors y∈RE such that

y(e) = 0; e∈ON ({xi});

y(e)¿0; e∈OFF({xi});
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∑
{y(e) | e incident from s}= 1;

∑
{y(e) | e incident from v} −

∑
{y(e) | e incident to v}= 0; v∈V\{s; t}:

For this polyhedral system we have fP(x) ≡ @fR(@x), i.e., De�nitions (3:3) and
(3:1) give mutually dual Boolean functions. This means that Theorem 7 is a corollary
of Theorem 5.

Since linear programming is polynomial-time solvable, from De�nition (3:3) it fol-
lows that fP(x) can be computed for each x∈{0; 1}n in polynomial time. Again,
we conclude that all maximal feasible and minimal infeasible subsystems of an arbi-
trary system of convex polyhedral sets can be jointly generated in incremental quasi-
polynomial time.
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