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Abstract

Let f:{0,1}" — {0,1} be a monotone Boolean function whose value at any point x € {0, 1}"
can be determined in time #. Denote by c=/\,_. \/,., xi the irredundant CNF of f, where C is
the set of the prime implicates of /. Similarly, let d =\/ Jen /\j ¢, %j be the irredundant DNF of
the same function, where D is the set of the prime implicants of f. We show that given subsets
C' C C and D' C D such that (C’,D’) # (C,D), a new term in (C\C')U(D\D’) can be found in
time O(n(t+n))+m°"¢™ where m=|C’|+|D’|. In particular, if f(x) can be evaluated for every
x€40,1}" in polynomial time, then the forms ¢ and d can be jointly generated in incremental
quasi-polynomial time. On the other hand, even for the class of A, V-formulae f of depth 2,
i.e., for CNFs or DNFs, it is unlikely that uniform sampling from within the set of the prime
implicates and implicants of f can be carried out in time bounded by a quasi-polynomial 2P°¥1°()
in the input size of f. We also show that for some classes of polynomial-time computable
monotone Boolean functions it is NP-hard to test either of the conditions D’ =D or C'=C. This
provides evidence that for each of these classes neither conjunctive nor disjunctive irredundant
normal forms can be generated in total (or incremental) quasi-polynomial time. Such classes of
monotone Boolean functions naturally arise in game theory, networks and relay contact circuits,
convex programming, and include a subset of A,V-formulae of depth 3. (© 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let f:{0,1}" — {0,1} be a monotone Boolean function of n variables:
x=x'= f(x)=f(x") forany x,x’ €{0,1}".

Denote by
c= /\\/x,-, (1.1)

the irredundant conjunctive normal form (CNF) of f, where C is the set of the prime
implicates 7 C{1,...,n} of f. Note that the anti-characteristic vector of any prime
implicate / € C is a maximal false vector of f, and vice versa. Thus, there is a natural
one-to-one correspondence C = MAX{x| f(x)=0}.

Similarly, let

d=\/ N\ x (1.2)
Jeb jeJ
be the irredundant disjunctive normal form (DNF) of the function f, where D is
the set of the prime implicants J C{1,...,n} of f. The characteristic vector of any
prime implicant J C{1,...,n} is a minimal true vector of f, which gives a bijection
D = MIN{x | f(x) = 1}. By definition,

f(x)=c(x)=d(x) forall xe{0,1}". (1.3)

In this paper, we investigate the complexity of generating the irredundant normal forms
¢ and/or d for various input representations of f. Let {-} denote either C, or D, or
the set C U D of all |C|+ |D| prime implicates and implicants of /. We consider the
following problems:

Gen{-}:Given a subset S C{-}, either prove that S = {-}, or find a new element in

{\S.

Section 2 deals with problem Gen{CLUD}. In Theorem 1 we show that this problem
can be solved in incremental quasi-polynomial time provided that f(x) can be evaluated
for any x€{0,1}" in polynomial time. Specifically, given two subsets C' C C and
D" C D of total size m=|C’'|+|D'| < |C|+|D|, a new element in (C\C')U(D\D") can
be generated in time O(n(z + n)) + m°1°¢™ where ¢ is the complexity of evaluating
f(x) at a binary point x. Note that this result implies that the condition (C’,D')=(C, D)
can also be checked in O(n(t + n)) 4+ m°1°¢™ time.

An important special case of Theorem 1 is for D’ =D. In such a case, f is already
represented by its irredundant DNF and consequently f(x) can be evaluated in poly-
nomial time. Next, computing the irredundant CNF for f is equivalent to computing
the irredundant DNF for the dual function f4(x) = —1/(—w). This problem is known
as Dualization or Transversal Hypergraph — see e.g. [1-5,10,13]. Theorem 1 thus
implies that the dualization problem for monotone DNFs can be solved in incremental
quasi-polynomial time ([5] — see Theorem 2 below). In fact, Theorem 1 rests upon
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this result, and the polynomial-time solvability of the dualization problem would imply
the solvability of problem Gen{C U D} in incremental polynomial time [1].

Another straightforward consequence of Theorem 1 is as follows. Suppose that f(x)
can be evaluated for each x € {0,1}" in quasi-polynomial time 2P°°2() where (-) is
the size of the input encoding of f and x. Then the set C LI D can be constructed in
time bounded by a quasi-polynomial in the fotal/ input and output size. Theorem 3 in
Section 2 shows that, even for the class of A,V-formulae f of depth 2, it is unlikely
that uniform sampling from within C LI D can be carried out in time bounded by a
quasi-polynomial 2P°¥1°2() in the input size of f. Specifically, the existence of such
a randomized algorithm would imply that any NP-complete problem can be solved in
quasi-polynomial time by a randomized algorithm with arbitrarily small failure proba-
bility. Our arguments are similar to those used by Jerrum et al. [9] for the problem of
uniformly generating cycles in a digraph.

Finally, in Section 3 we consider problems Gen{C} and Gen{D}. In Theorems 4—7
we show that for some natural classes of polynomial-time computable monotone
Boolean functions it is NP-hard to test either of the conditions C' = C or D =D'.
Modulo the standard bijections C = MAX{x| f(x) =0} and D = MIN{x| f(x) =1},
our examples of such sets C (or D) are as follows:

e all prime implicates (or implicants) of a A, V-formula of depth 3;

e all minimal subsets of relays connecting (or disconnecting) two terminals in a mono-
tone relay circuit;

e all minimal winning sets of Player 1 (or 2) for a positional game form with perfect
information;

e all maximal feasible (or minimal infeasible) subsystems of a system of convex
inequalities.

For each of the above examples, problems Gen{C} and Gen{D} cannot be solved
in total (and hence incremental) quasi-polynomial time, unless any problem in NP is
solvable in quasi-polynomial time. But for all these examples, Theorem 1 guarantees
that problem Gen{C LU D} can be solved in incremental quasi-polynomial time.

2. Simultaneously generating C and D

In this section we show that problem Gen{C LI D} can be solved in incremental
quasi-polynomial time.

Theorem 1. Let f : {0,1}" — {0,1} be a monotone Boolean function whose value
at any point x € {0,1}" can be determined in time t, and let C and D be the sets of
the prime implicates and the prime implicants of f, respectively. Given two subsets
C'CC and D' CD of total size m=|C’'|+|D’| < |C|+|D|, a new element in (C\C")U
(D\D') can be found in time O(n(t + n)) + m°(os™)
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As mentioned in the Introduction, Theorem 1 follows from its special case which
deals with the dualization problem for monotone DNFs — cf. [1]. For this reason, we
start with the dualization problem:

Problem (22%). Given a pair of irredundant DNFs

diA=\/ Nx  dBI=\/ A\ x.

Ied iel JeB jel
test whether d[A] and d[B] are mutually dual:

d[A(x1,. .., x,) = Td[B](Tx1, ..., x,)  for all x = (x1,...,x,)€{0,1}". (2)
If d[A] and d[B] are not dual, find a Boolean vector x* € {0,1}" such that
dlAN(xy,..., X)) = d[Bl(x7], ..., X)) (2*)
It is easy to see that any dual disjunctive normal forms d[A] and d[B] must satisfy
the condition
INJ#( forall/leA4 and JEB. 2.1)

Suppose to the contrary that there is a pair of disjoint sets / € 4 and J € B. Then the
characteristic vector of J satisfies (2*).
Lemma 1 below shows that for any pair of dual irredundant forms we also have

max{|/| : I €4} <|B|, max{|J| : J € B} <|A|. (2.2)

Lemma 1. Suppose that irredundant DNFs d[A] and d[B] satisfy (2.1). If condition
(2.2) is violated, Eq. (2*) can be solved in O(|4| + |B| + n?) time.

Proof. First of all, (2.2) can be checked in O(]4| + |B|) time. If |J| > |4| for some
J €B, a solution x* of Eq. (Z*) can be found as follows:

Initialize x* < 0

For each I € 4, select an index i €/ NJ and set x] «— 1.

This procedure takes O(n|A|) time. Since |4| < |/|<n, we obtain the time bound as
required. Similarly, if |7| > |B| for some I €4, Eq. (2*) can be solved in O(n|B|)
time. Again, |B| < |/| <n, which proves the lemma. [J

Theorem 2 (Fredman and Khachiyan [10]). Suppose that d[A] and d[B] satisfy (2.1)
and (2.2). Then problem (29*) can be solved in time v* M) ywhere v=|A||B| and
W =v.

From
y(v) ~ logv/loglogv = o(logv),
the trivial inequality
v=|4||B|< (4] + |BI)’,

and Lemma 1 we obtain the following complexity bound.
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Corollary 1. If d[A] and d[B] satisfy (2.1), Problem (22") can be solved in time
Tguat = O(n?) + (4| + |B| yoUoed4I+IBI),

Proof of Theorem 1. Suppose that C/ C C and D’ C D, where C and D are defined by
(1.1) and (1.2). For ACC, let c[A] = A\;c, Vs Xi- With this notation, (1.3) implies
c[C"(x)=c[Cl(x) = c(x) = f(x) = d(x) = d[D](x) =d[D'](x). Hence (C’,D’')=(C,D)
if and only if ¢[C'](x) = d[D’](x), which is equivalent to the duality of d[C’] and
d[D’]. In particular, we have I NJ # () for all /€C and J €D. By Corollary 1,
the duality of d[C’] and d[D’] can be tested in time Ty, = O(n?) + m°1°¢™) where
m=|C'| + |D'|. If (C',D’')=(C,D), we are done. Otherwise we obtain a solution x*
of Eq. (2%). 1t is easy to see that c[C'](x*) =1 and d[D’](x*)=0. Now we compute
f(x*) and split into two cases.

Case 1: f(x*)=0. By evaluating f(-) at O(n) binary points, we can find a vector
y* € MAX{x| f(x) = 0} such that x*<y*. Since f is monotone, 0 = f(y*) <1 =
c[C')(x*)<c[C'1(y*). This means that I = {i|yF =0, i=1,...,n} € C\C/, i.e., we
obtain a new prime implicate of f.

Case 2: f(x*)=1. Find a vector y* € MIN{x| f(x) =1} such that y* <x*. The set
J={jly;=1j=1,...,n} €D\D' is a new prime implicant of f. [J

In the remainder of this section we discuss the complexity of uniformly sampling
from CUD. A randomized algorithm £ is an e-uniform generator for a finite set Q if

(1) Z outputs only elements w € £, unless it stops with no output;

(i) Y {p(w)|w e Q}>1/2, where p(w) is the probability that # outputs w € Q;

(iii) max{ p(w)/p(0) | w,0'} <1 +¢.

Theorem 3 below shows that a fast uniform generator for C LD is unlikely to exist,
even if we restrict the input to the class Z.4"%, of quadratic monotone DNFs. Note
that the input size of any formula f(xi,...,x,) € PN F, is polynomial in n.

Theorem 3. Let p < 1 be a fixed constant, and let ¢ = 2. Suppose there exists a
(quasi) polynomial-time randomized algorithm that, given a formula f(xi,...,x,) €
DN F o, acts as an e-uniform generator for the set CLUD of the prime implicates and
implicants of f. Then any NP-complete problem can be solved in (quasi) polynomial
time by a randomized algorithm with arbitrarily small one-sided failure probability.

Proof. Since for any formula f € Z.4"%, the set D is given explicitly and |D|<n?,
any e-uniform generator # for C LI D can be used as an e-uniform generator for C.
This entails at most O(n?) slowdown in the running time of %. We can thus assume
that there exists a (quasi) polynomial-time 2" -uniform generator for C or equivalently,
MAX{x| f(x)=0}.

For a given graph G = (V,E) with n vertices, define fs(x,...,x,) =
V{xx;|(if) ¢ E}. Then MAX{x | f(x)=0} is the set of (the characteristic vectors of)
all maximal cliques in G. In other words, Z can be used to 2" -uniformly generate
maximal cliques in G. To show that this implies the theorem, we need only slightly
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modify the proof suggested by Jerrum et al. [9] for the problem of generating cycles
in digraphs.

Let H, = 5.2 be the complete k-partite graph, each “part” of which consists of
two isolated vertices. Thus, H; has 2k vertices and 2¥ maximal cliques of size k£ each.
Let G(H;) be the 2nk-vertex graph obtained by substituting H; for each vertex of G.
Then N(G(Hy),kI)=2""N(G, ), where N(-,t) is the number of maximal cliques of size
t in (-). Furthermore, N(G(Hy),t)=0 if t # Omod k. Since the total number of cliques
in G is bounded by 2", we conclude that for k>1 + n + (2nk)*, any 2" -uniform
generator # of maximal cliques in G(Hj) produces a clique of maximum size with
probability > 1. Letting k=0(n"/!=)), we can satisfy the inequality k >1-+n+(2nk)"
and find a maximum clique in G(H;) with high probability in (quasi) polynomial
time. But this is equivalent to solving the NP-complete clique problem for any imput
graph G. [

The proof of Theorem 3 also shows that there is little hope that false vectors of
a monotone quadratic DNF can be uniformly generated in polynomial time. It should
be pointed out that Karp and Luby [12] gave a simple polynomial-time algorithm for
uniformly generating true vectors of an arbitrary, not necessarily monotone or quadratic,
DNF.

We also mention in passing that problem Gen{x|x a maximal clique in G} can be
solved in incremental polynomial time. In fact, all maximal cliques in a graph can be
generated with polynomial delay — see [10].

3. Generating C or D

In this section we describe some classes of monotone Boolean functions for which it
is NP-hard to separately check either of the conditions C'=C or D' =D. This provides
evidence that for each of these classes, problems Gen{C} and Gen{D} cannot be
solved in total (or incremental) quasi-polynomial time. Our first example is as follows.

3.1. Monotone Boolean formulae of depth 3

Theorem 4. Let F 3 be the class of N\, V-formulae of depth 3. For a formula f € F 3,
let C and D denote the sets of the prime implicates and the prime implicants of f,
respectively.

(i) Given a formula f € 73 and a subset C' of C, it is coNP-complete to decide
whether C' = C.

(i1) Similarly, for a formula f € 75 and a subset D' of D, it is coNP-complete to
determine whether D' = D.
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Proof. Since the class .73 is self-dual, parts (i) and (ii) of the theorem are equivalent.
To show part (ii), it is convenient to state (ii) in the following equivalent form:

& : Given a formula f(x)€ %3 and a monotone DNF d(x) such that
f(x)=d(x) for all x€{0,1}", it is coNP-complete to check whether

f(x)=d(x).
It is well known that it is coNP-complete to test whether a given (non-monotone)
DNF D(xy,...,x,) is a tautology. Substituting y; for —x;, i=1,...,n, we can transform
D(xy,...,x,) into a monotone form d(xi, y1,...,X,, V) such that

d(x,y) = D(x) for y ="x.

Let ¢(x,y) = A/, (x; V ;). It is easy to see that D(x) is a tautology, i.c.,
D(x)=1 forall xe{0,1}",

if and only if

d(x,y)V ¢(x,y)=d(x,y) forall x,ye{0,1}".

Since f(x,y) = ¢(x, y)Vd(x,y) is a A, V-formula of depth 3 such that f(x, y)=d(x, y),
claim & and the theorem follows. [

Note that since any Boolean formula can be evaluated at any binary point in poly-
nomial time, from Theorem 1 it follows that problem Gen{C Ll D} can be solved
in incremental quasi-polynomial time for any A,V-formula. Observe also that any
A, V-formula of depth 2 is in conjunctive or disjunctive normal form. Theorem 2
thus implies that for A,V-formulae of depth 2, problems Gen{C} and Gen{D} can
be solved in incremental quasi-polynomial time. In addition, it is not hard to show that
problems Gen{C} and Gen{D} can be solved with polynomial delay for any read-once
A, V-formula. (A formula is read-once if each variable appears in it exactly once — see
e.g., [8,11].

3.2. Monotone relay circuits

Let G=(V,E) be a graph with two distinguished vertices s,z € V. A monotone relay
circuit is a mapping R : E — {1,...,n}, which assigns a relay R(e) € {1,...,n} to each
edge e € E — cf. [14]. For a relay set X C{1,...,n}, let ON(X)={e€E|R(e) X}
and OFF(X) = E\ON(X).We say that X connects the terminals s and ¢ if the graph
(V,ON(X)) contains an s, ¢-path. Similarly, X disconnects the terminals if s and ¢ are
not connected in (V,OFF(X)). We shall call a minimal X connecting (disconnecting)
the terminals s and ¢ a relay path (cut), respectively.

Theorem 5. Let Il be the class of series—parallel monotone relay circuits. Given a
circuit in Il and a collection of relay s,t-cuts (or relay s,t-paths), it is coNP-complete
to determine whether the given collection is complete.
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Proof. For a relay circuit R, let fz:{0,1}" — {0, 1} be the monotone Boolean function
realized by the circuit:

Sr(x1,...,x,)=1 if theset{i|x;=1, i=1,...,n}connectssand ¢,
fr(x1,...,x,) =0 otherwise.

3.1)

Clearly, each relay s,t-cut (path) is a prime implicate (implicant) of f%, and vice
versa. Since any A, V-formula can be easily realized by a series—parallel relay circuit,
Theorem 5 follows from Theorem 4. [J

As before, fr(x) can be evaluated for each binary vector x in polynomial time.
Hence all relay cuts and paths in an arbitrary monotone relay circuit can be jointly
generated in incremental quasi-polynomial time.

If the relay mapping R : E — {1,...,n} is bijective, the relay cuts and paths turn
into the usual cuts and paths, which can be (separately) generated with polynomial
delay for any graph G.

3.3. Positional two-person games with perfect information

Let G = (V,E) be a directed acyclic graph with a distinguished vertex s such that
all vertices v€ V are reachable form s. A two-person positional game on G is a
partitioning

V=VUb,, Vinv,=0, (3.2)

where 7, and V, are the sets of positions controlled by Players 1 and 2, respectively.

Let E*(v) be the set of arcs incident from a position v € V. The game starts in the
initial position s. If the current position v is in V,, o = 1,2, Player o selects a move
from E*(v) until the game reaches a final position u € Vr = {ve V|E"(v) =0}. The
player who controls the final position wins — cf. [15].

A game form I specifies the partitioning (3.2) on ¥\ V7, but does not indicate the
winners on the set V7 of final positions. A subset X C V7 is called a winning set of
Player o if this player can force the game to finish in X, regardless of the adversary’s
moves.

Theorem 6. Let oo =1 or 2. Given a positional game form I' and a list of minimal
winning sets of Player o, it is coNP-complete to decide whether the given list is
exhaustive.

Proof. Assume ¥y ={l,...,n} and consider the following Boolean function:

fr(xi,...,x,) =1 if the set {i|x;=1, i=1,...,n}is a winning set of Player I,
fr(xi,...,x,) =0 otherwise

— see [6,7]. Clearly f is monotone, and each minimal winning set of Player 1 is a
prime implicant of f and vice versa. Furthermore, the prime implicates of f are
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nothing but the minimal winning sets of Player 2. It is also easy to see that any
A, V-formula of size / and depth d can be realized by a game form of the same size
and depth. For this reason, Theorem 6 follows from Theorem 4. [

Any positional game with perfect information can be solved in polynomial time by
dynamic programming. Hence f(x) can be evaluated for each x in polynomial time.
From Theorem 1 we conclude that all minimal winning sets of Players 1 and 2 can
be jointly generated in incremental quasi-polynomial time.

Let us remark that due to the obvious one-to-one correspondence between positional
game forms and combinatorial A, V-circuits, all minimal winning sets of each player
can be generated with polynomial delay for positional games on trees.

3.4. Convex programming

Given a system 2 =(Py,...,P,) of polyhedra in %? consider the monotone Boolean
function
f:%(xl,-u,xn):l lf m Pi:®7
{ilx=1} 3.3)
fo(x1,...,x,) =0 otherwise.

By definition, each maximal false vector of f» corresponds to a maximal feasible
subsystem of polyhedra in 2, whereas each minimal true vector of f» can be viewed
as a minimal infeasible subsystem of 2.

As an example, let 2 be the set of all facets of polytope Q= {y € #? | a;y <b;,i=
1,...,n}. Then problem Gen{x|x a maximal feasible subsystem of 2} is equivalent
to generating all vertices of (. The complexity status of the latter problem is not
known. In general, however, generating all maximal feasible subsystems of a system
of polyhedra is hard. Analogously, generating all minimal infeasible systems of £ can
also be hard:

Theorem 7. For a system 2 of nonempty polyhedra in #¢ and a collection of maxi-
mal feasible (minimal infeasible) subsystems of 2, it is coNP-complete to tell whether
the given collection is complete.

Proof. Let R : E — {1,...,n} be an arbitrary relay circuit on a series—parallel graph
G=(V,E). It is easy to see that for any edge e € E, all s—¢-paths through e cross e in
the same direction, which we refer- to as the s—¢-orientation of e.

Denote by G; the graph (V,OFF({x;})) with the s—-orientation on the set of its
edges, and let P; be the s—¢-flow polyhedron for the diagraph G;,i =1,...,n. In other
words, P; consists of all vectors y € #% such that

y(e)=0, e€ON({x:}),

¥e)=0, ecOFF({x}),
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Z{y(e) | eincident from s} =1,
Z{y(e) | eincident from v} — Z{y(e) |eincident to v} =0, veV\{s,t}.

For this polyhedral system we have fx»(x) = 71 fz(7x), i.e., Definitions (3.3) and
(3.1) give mutually dual Boolean functions. This means that Theorem 7 is a corollary
of Theorem 5. [J

Since linear programming is polynomial-time solvable, from Definition (3.3) it fol-
lows that f»(x) can be computed for each x € {0,1}" in polynomial time. Again,
we conclude that all maximal feasible and minimal infeasible subsystems of an arbi-
trary system of convex polyhedral sets can be jointly generated in incremental quasi-
polynomial time.
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