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Chronic muscle disuse, such as that resulting from immobilization, denervation, or pro-

longed physical inactivity, produces atrophy and a loss of mitochondria, yet the molecular

relationship between these events is not fully understood. In this review we attempt to

identify the key regulatory steps mediating the loss of muscle mass and the decline in

mitochondrial content and function. An understanding of common intracellular signaling

pathways may provide much-needed insight into the possible therapeutic targets for treat-
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ments that will maintain aerobic energy metabolism and preserve muscle mass during

disuse conditions.
© 2014 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access

article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
. Introduction

keletal muscle is the largest tissue in the body, represent-
ng approximately 40% of the total mass of a healthy adult.
his tissue is well characterized as exceptionally malleable,
nd a diversity of stimuli, such as prolonged inactivity,1

enervation,2 starvation,3 aging,4 or chronic disease,3,5 can
egatively impact muscle mass. Each unique stimulus yields
imilar, yet characteristic, molecular, functional, and phe-
otypic alterations in skeletal muscle. The resulting muscle

trophy is defined by an overall loss of proteins, organelles,
nd cytoplasm. Mitochondria are the main source of energy
n skeletal muscle and they provide adenosine triphos-
hate by means of oxidative phosphorylation.6 It is not
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surprising then that mitochondria are also quite adapt-
able, as their cellular content can be fine-tuned to the
tissue’s energy requirements. Mitochondrial content is reg-
ulated by two opposing processes, mitochondrial synthesis
(biogenesis)7 and mitochondrial degradation (mitophagy).8

In the context of muscle disuse, a decrement in mitochon-
drial abundance is one of the major adaptations observed,9

as the demand for energy is diminished. Understanding the
interaction between mitochondrial biogenesis and mitophagy
and their relationship to muscle atrophy during disuse
is therefore invaluable for our comprehension of cellular
uharson Life Science Building, York University, Toronto, ON, M3J

homeostasis. The following review provides a concise sum-
mary of the mechanisms moderating muscle mass and
mitochondrial content during conditions of chronic muscle
disuse.
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2. Atrophy signaling during muscle disuse

Skeletal muscle mass is determined by the balance between
protein synthesis and degradation. One of the most significant
alterations associated with prolonged inactivity of skeletal
muscle is the net loss of muscle protein, which results in
myofiber atrophy.10–14 This loss of muscle mass occurs as a
consequence of enhanced activation of the cell’s major pro-
teolytic executors, the ubiquitin–proteasome system (UPS),
and the autophagy–lysosome pathway (ALP), which together
regulate the half-life of a majority of cellular proteins.15 The
study of the molecular pathways controlling this balance is an
important area of sustained research.

Muscle mass maintenance and myofiber hypertrophy are
governed, in part, by insulin-like growth factor-1 signaling.
This protein can promote muscle growth partially through
phosphatidylinositol 3-kinase–Akt signaling,16–18 which sti-
mulates myofibrillar protein synthesis via mammalian target
of rapamycin complex 1 (mTORC1).19 Thus, the direct acti-
vation of Akt is associated with muscle hypertrophy, and
interestingly is sufficient to block atrophy during muscle
disuse.16 During muscle disuse, a reduction in phosphatidyl-
inositol 3-kinase–Akt signaling is evident and could, in theory,
result in reduced mammalian target of rapamycin (mTOR)
activity. Notably, mTORC1 has been implicated in stimulat-
ing mitochondrial biogenesis20–22 and in the inhibition of
autophagy.23 Thus, a decrease in mTOR activity would result
in reduced protein synthesis and mitochondrial biogenesis,
while stimulating autophagy. Both decreases in mitochon-
drial function and marked increases in autophagy are known
to trigger cellular signaling events that contribute to mus-
cle atrophy. However, several studies have noted a counter
intuitive hyperactivation of mTOR during chronic muscle dis-
use, likely as a result of enhanced amino acid influx from
the cellular degradative pathways, the UPS and ALP.24,25

Therefore, although the exact role of mTOR-related signaling
during muscle wasting is still contentious,24–29 this complex
appears to represent a critical rheostat in the control of an
abundance of cellular processes during muscle growth and
atrophy.

Central to the regulation of muscle mass during disuse
are members of the forkhead box class O (FoxO) proteins.
Although this family of transcription factors is involved in
numerous intracellular processes,30,31 these proteins also
operate as critical mediators of myofiber atrophy during mus-
cle disuse, as they orchestrate the induction of an atrophic
gene program that is implicated in both UPS- and ALP-
mediated catabolism.29,32,33 In this scenario Akt is able to
prevent muscle atrophy by inhibitory phosphorylation of
FoxO3 on multiple residues, effectively prohibiting its nuclear
entry by facilitating its sequestration in the cytoplasm though
interactions with 14-3-3 proteins.34 Indeed, Akt activity is
reduced during muscle disuse,16 allowing FoxO3 to enter the
nucleus and stimulate a gene expression program that pro-
motes an atrophic phenotype.33 In particular, FoxO nuclear

translocation has been shown to upregulate the expression of
E3 ubiquitin ligases muscle RING finger 1 (MuRF1) and atrogin-
1/MAFbx.33 These E3 ligases are major effectors of the UPS,
as they mediate muscle loss by targeting muscle structural
Integr Med Res ( 2 0 1 4 ) 161–171

proteins and components related to protein translation for
degradation.1,35–38

Apart from Akt-mediated phosphorylation, the activity
and subcellular localization of FoxO transcription factors can
be fine-tuned via post-translational modifications by other
upstream factors. AMP-activated protein kinase (AMPK), a
metabolic sensor, has the capacity to phosphorylate FoxO
on numerous residues, which positively influences its trans-
criptional activity.39,40 The activation of this AMPK–FoxO axis
was documented to occur with muscle disuse41 and appears
to contribute to muscle protein degradation. The increase in
AMPK activation with muscle inactivity also likely inhibits pro-
tein synthesis,42–44 further accelerating muscle protein loss.
AMPK activation has also been shown to promote mitochon-
drial biogenesis,45–49 however, a process that is downregulated
during muscle disuse. Thus, AMPK activation at the onset of
muscle disuse could serve as an early signal to mitigate energy
stress, by enhancing energy substrate availability through pro-
tein breakdown and attenuating the loss of mitochondria at
the early stages of muscle disuse.

FoxO3 activity can also be modulated by acetylation.50–52 In
response to muscle disuse, FoxO3 can be deacetylated by His-
tone deacetylase 1 (HDAC1),50 promoting its nuclear translo-
cation and activity. Conversely, recent research has also drawn
attention to the role of SirT1, an NAD+-dependent deacetylase,
in the inhibition of denervation-induced myofiber atrophy
through the deacetylation of FoxO3.53 It appears possible that
the differential acetylation of lysine residues could account
for the contrasting results observed between these studies.
Nonetheless, the capacity of FoxO3 to be post-translationally
regulated during muscle disuse represents a critical inflection
point in the control of the atrophy gene program.

Another critical system contributing to disuse-induced
muscle atrophy is the nuclear factor-�B (NF-�B) signaling
pathway (Fig. 1). Extracellular factors, such as tumor necro-
sis factor � (TNF�), stimulate this pathway, activating the
inhibitor of �B kinases (IKK� and IKK�), which prompts the
nuclear localization of NF-�B transcription factors. These tran-
scription factors bind NF-�B response elements on atrophy
genes, such as MuRF1, FoxO3, and Runx1 among others,54 and
promote their transcription. Overexpression of a negative reg-
ulator of this system (inhibitor of NF-�B�) is sufficient to
block disuse-induced atrophy,55,56 and muscle-specific aboli-
tion of IKK� and IKK� via genetic knockout (KO), or expression
of a dominant negative form, is also protective of muscle
mass.57–59 Attenuation of myofiber atrophy in these mod-
els appears to result from a decrease in the activity of the
NF-�B transcription factors and coactivators,55,58,60 the most
important of which are p50 and Bcl-3, which have notable
roles in the expression of many genes associated with muscle
atrophy.54,61 Moreover, NF-�B signaling has also been demon-
strated to impair mitochondrial biogenesis in skeletal muscle
(Fig. 1).62–64 Thus, NF-�B signaling also contributes to muscle
atrophy by promoting a decline in mitochondrial content and
function, increasing mitochondrial reactive oxygen species
(ROS) production and stimulating nuclear apoptosis.
Recently, the cytokine TNF-like weak inducer of apopto-
sis (TWEAK) and its receptor Fn14 have emerged as major
effectors of disuse-induced atrophy. The expression of Fn14
is upregulated during conditions of muscle disuse,54,65 as

dx.doi.org/10.1016/j.imr.2014.09.001
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Fig. 1 – Alterations in gene expression and mitochondria during chronic muscle disuse.
During chronic muscle disuse, FoxO and NF-�B transcription factors (p50, p65) and Bcl-3 translocate to the nucleus and
upregulate (+) the expression of a host of components related to proteolytic degradation pathways, resulting in increased
activity of the autophagy–lysosome pathway (ALP) and the ubiquitin–proteasome system (UPS). Concurrently, the
expression of factors associated with mitochondrial biogenesis and protein import are downregulated (-), and this is
associated with an impairment in the import of proteins into the organelle. This may be due, in part, to a dysfunction in the
electron transport chain, because respiration and mitochondrial membrane potential are impaired whereas reactive oxygen
species (ROS) production surges. Dysfunctional mitochondria express PTEN-induced putative kinase 1 (PINK1) on their
outer membrane (OM), which recruits Parkin. Along with Mul1, Parkin aids in the ubiquitination of OM proteins, including
Mfn1/2. The adaptor factor p62 links ubiquitinated proteins to the main constituent of the autophagosomal membrane, LC3.
The mitochondrial protein NIX also serves as a bridge between depolarized mitochondria and LC3. Incorporation of LC3 into
the membrane continues until dysfunctional mitochondria are sequestered, at which point they can be transported to the
lysosome for degradation. Mitochondrial ROS production can also promote the opening of the mitochondrial permeability
transition pore (mtPTP), allowing for the release of proapoptotic factors, cytochrome c (Cyt c), and apoptosis inducing factor
(AIF) into the cytosol. These factors promote the fragmentation of nuclear DNA and muscle atrophy.
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Fn14 promoter methylation by DNA methyltransferase 3a is
decreased.66 The importance of the TWEAK–Fn14 dyad in dis-
use atrophy is highlighted by the TWEAK-KO mouse model,
which is resistant to denervation atrophy, through impaired
NF-�B signaling and MuRF1 expression.65 Downstream of the
TWEAK–Fn14 system is the ubiquitin ligase TNF receptor-
associated factor 6 (TRAF6). TRAF6 is a relatively unique
ubiquitin ligase, in that it mediates the conjugation of Lys-63-
linked polyubiquitin chains, as opposed to the more typical
Lys-48-linked chains, to target proteins for degradation.67,68

Denervation increases the expression of TRAF6, which coor-
dinates the breakdown of muscle-specific proteins as well as
mitochondrial factors.69

Recent data have also identified the transcription fac-
tors p53 and ATF4 as mediators of novel and distinct
signaling pathways facilitating atrophy during disuse. ATF4
has previously been implicated in muscle atrophy, because
its downstream target Gadd45a induces muscle loss during
disuse through enhanced autophagy and caspase-mediated
proteolysis.70 Muscle-specific deletion of either p53 or ATF4
confers partial resistance to disuse atrophy, whereas com-
bined deletion has a synergistic impact on the preservation
of myofiber size. These transcription factors have a common
downstream effector, p21, which is elevated during muscle
disuse and appears to be sufficient to induce muscle loss.71

Interestingly, loss of p53 also results in reduced mitochondrial
content and increased ROS production.72 Thus the atten-
uation of muscle mass loss with p53 deletion is unlikely
to involve mitochondrial pathways. Indeed, the increase in
p53 protein content in muscle observed with denervation71

might be considered an important transcriptional drive that
promotes muscle atrophy. Further work on this pathway is
warranted.

ROS are elevated in skeletal muscle during disuse.2,73–76

Although mitochondria are not the sole site of ROS production
in the cell, the increase in mitochondrial-specific ROS during
muscle inactivity is notable. In particular, ROS are implicated
in the damage of mitochondrial membranes, proteins, and
DNA,77–80 as well as the opening of the mitochondrial perme-
ability transition pore,81 an event that reduces mitochondrial
membrane potential, decreases ATP production, and promotes
the release of proapoptotic proteins that induce myonuclear
decay. Several studies have noted increases in apoptotic pro-
tein expression, DNA fragmentation,2,82–85 and heightened
mitochondrial susceptibility to permeability transition pore
opening with denervation.86 Although controversial,87 this
potential loss of myonuclei could impair the capacity of the
cell to maintain a sufficient transcription of genes required for
the maintenance of muscle mass and mitochondrial content.
In support for a role in mitochondrially-mediated apoptosis,
deletion of the proapoptotic protein Bax, alone or in combina-
tion with Bak, attenuates apoptotic signaling, oxidative stress,
and loss of muscle mass, illustrating at least a partial role
for apoptotic cell death in disuse atrophy.88,89 In addition, the
pharmacological inhibition of calpain and caspase-3, two pro-
teases implicated in the activation of the UPS and apoptosis,

has been shown to attenuate myofiber atrophy during mus-
cle disuse.90 These data suggest that an elevated incidence of
apoptotic signaling during skeletal muscle disuse is a likely
contributor to muscle atrophy.
Integr Med Res ( 2 0 1 4 ) 161–171

Taken together, it is evident that the regulation of muscle
mass during muscle inactivity largely depends on the inter-
play between the regulation of protein turnover, the activity of
apoptotic signaling, and the balance between cellular energy
supply and demand mediated by mitochondrial form and
function.

3. Expression of nuclear genes encoding
mitochondrial proteins during muscle disuse

During muscle disuse, the loss of muscle mass is accompa-
nied, or preceded, by decrements in mitochondrial content
and function. This is likely due to a reduced drive for
mitochondrial biogenesis, and an increased removal of dys-
functional organelles. Research delving into the alterations in
the pathways governing mitochondrial biogenesis and degra-
dation in the context of muscle disuse has gained significant
ground in recent years, and the resolution of these mecha-
nisms will provide formidable insight into the maintenance of
skeletal muscle health during periods of prolonged inactivity.

Mitochondrial biogenesis is a product of the integrated con-
tributions of both the nuclear and mitochondrial genomes,
and the coordinated expression of these genomes is required
for optimal mitochondrial function. Although the nuclear
genome encodes >99% of the proteins within mitochondria,
the mitochondrial genome contributes 13 proteins critical
to electron transport chain (ETC) function, which is embed-
ded within the inner mitochondrial membrane (IMM).91,92

Mitochondrial biogenesis is a complex process that synchro-
nizes the transcription, translation, and subsequent import
of nuclear encoded-proteins into the mitochondrion, along
with the replication and expression of mitochondrial DNA
.7,92 Newly-synthesized mitochondrial proteins and lipids are
incorporated into the existing mitochondrial reticulum and
contribute to its expansion. The peroxisome proliferator acti-
vated receptor � coactivator-1 (PGC-1) family of transcriptional
coactivators is critical for the coordinated expression of these
genomes.93,94 A member of this family, PGC-1�1, is well estab-
lished as an orchestrator of mitochondrial biogenesis, as it
can bind a number of nuclear transcription factors, including
nuclear respiratory factors (NRF)-1 and -2, thereby promot-
ing the expression of nuclear genes encoding mitochondrial
proteins.92,95 One of these is mitochondrial transcription fac-
tor A (Tfam), a vital factor for mitochondrial DNA replication
and transcription.96–99

Because PGC-1�1 plays a fundamental role in the regula-
tion of mitochondrial biogenesis, the study of this coactivator
and its downstream effectors is of interest in the context
of muscle disuse. The reduced expression of this family of
coactivators with denervation-induced disuse occurs early
after the cessation of muscle activity.32,100 This is followed by
decreased expression of estrogen-related receptor � (ERR �),
NRF-1/2, and Tfam, in addition to the mitochondrial mark-
ers cytochrome c and COX IV at the mRNA and protein
level.2,100–103 Interestingly, an overexpression of either PGC-

1�1 or -� attenuates protein degradation and muscle atrophy
in denervated muscle,104 implying a role for these coactiva-
tors in the maintenance of muscle mass. The attenuation
of muscle atrophy by PGC-1� during disuse appears to be

dx.doi.org/10.1016/j.imr.2014.09.001
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ediated via a suppression of FoxO3-mediated transcription
f E3 ligases MuRF1 and atrogin-1.32 The protection conferred
y PGC-1�1 overabundance is also observed in the sarcopenic
uscle of aged mice, because overexpression of this coac-

ivator mitigates the age-associated reductions in muscular
unction, mitochondrial content, antioxidant response, and
rotein synthesis.105 Because muscle inactivity promotes a
trong reduction in PGC-1� expression, it is likely that the
GC-1�-induced suppression of FoxO3 signaling is released,
romoting myofiber atrophy.

In addition to a dampening of FoxO activity, a recent study
as demonstrated a role for PGC-1� in the neutralization of
WEAK-mediated muscle atrophy.62 PGC-1� overexpression is
ufficient to attenuate the loss of muscle mass during dener-
ation by restraining Fn14 expression and TWEAK-mediated
F-�B signaling, further highlighting the importance of this

ranscriptional coactivator in the protection of muscle mass.
The PGC-1 family of coactivators also facilitates the expres-

ion of genes involved in mitochondrial morphology. In
articular, the interaction between PGC-1�/� and ERR� sti-
ulates the transcription of mitofusin (Mfn) 2,106,107 which

egulates outer mitochondrial membrane (OMM) fusion.108,109

ecause these factors are downregulated during muscle dis-
se, it is not surprising that the integrity of the mitochondrial
eticulum is compromised. Muscle inactivity induces a sub-
tantial decrease in the expression of the OMM fusion proteins
fn2 and Opa1, presumably shifting the cellular balance in

avor of mitochondrial fission.9,103,110 An increase in fission
acilitates mitochondrial-specific degradation processes, such
s mitophagy,111,112 resulting in a net loss of mitochondria
rom muscle.

PGC-1� also plays a regulatory role in the biosynthesis
nd remodeling of cardiolipin (CL), a mitochondria-specific
hospholipid implicated in the physical stabilization of the
TC, and in the assembly of the protein import machin-
ry (PIM).113,114 Chronic muscle disuse is associated with

decrease in CL content within muscle,115,116 which is
inked with mitochondrial dysfunction. This impairment in

itochondrial function drives a vicious cycle, because the
roduction of mitochondrial ROS is enhanced, likely driving
he oxidation of CL. This facilitates the involvement of CL
n proapoptotic events,117–119 which mediate a portion of the

uscle atrophy observed with muscle disuse.

. Protein import into the mitochondrion

itochondria rely heavily on nuclear transcription for a major-
ty of the genes necessary for their proper function.120 Since

itochondria are not formed de novo, proteins that are trans-
ated from nuclear-derived transcripts must translocate into
he mitochondria via the PIM.121 The mechanisms of this pro-
ein import process are highly specialized and complex,122,123

nd the process represents a critical step at which mitochon-
rial content can be regulated.

It is well known that chronic exercise or contractile

ctivity is accompanied by mitochondrial biogenesis that
s closely associated with the elevated expression of PIM
omponents124–126 as well as mitochondrial CL content.115,127

hronic contractile activity also augments the expression of
uscle disuse 165

factors important for the assembly of the translocase of the
outer mitochondrial membrane complex, which serves as the
main channel for protein import.124 Furthermore, contrac-
tile activity elicits increases in the expression of the cytosolic
and mitochondrial chaperone proteins Hsp60, mtHsp70, and
Hsp70,128 which are integral to the stabilization, import, and
refolding of precursor proteins into mitochondria. Indeed,
increases in the PIM following contractile activity correlate
well with the accelerated rates of import of proteins such
as mitochondrial Tfam into the mitochondrial matrix.125,129

Taken together, the increase in mitochondrial protein import
with contractile activity is critical for mitochondrial biogen-
esis, and it promotes the expansion of the mitochondrial
reticulum.

In direct contrast to contractile activity, chronic mus-
cle disuse results in substantial reductions in mitochondrial
content,2,76,116 which correlate well with diminished protein
import into the mitochondrion.76 This suggests that the reduc-
tion in mitochondrial content is mediated, at least in part, by
reductions in protein import. This is attributable to a number
of factors, including changes in the content and distribution
of CL, reductions in the expression of PIM components, and
an increase in the production of ROS.115,116 With respect to
CL, reductions in the content of this phospholipid can result
in destabilization of ETC complexes III and IV130–132 and a loss
of membrane potential, which impairs the import of proteins
into the organelle.133 Furthermore, muscle disuse may alter
the membrane localization of CL. A majority of mitochondrial
CL typically resides in the IMM.134,135 However, denervation
has been shown to increase the expression of phospholipid
scramblase-3, which serves to transport CL from the IMM to
the OMM.115 Since the location of CL can have an impact
on its cellular role in the context of apoptosis,117,136,137 the
probable increase in OMM CL with denervation may con-
tribute to the increased mitochondrial apoptosis observed
with denervation.2

In addition to CL, several PIM components have been
shown to be significantly reduced in response to muscle dis-
use, including Tim23, Tom20, and mtHsp70. These effects
were observed to occur as early as 3 days following denerva-
tion, and likely precede the loss in mitochondria and muscle
mass observed with denervation.76 In addition to the reduc-
tion in the expression of PIM components, the increase in
mitochondrial ROS noted with denervation also appears to
underlie deficits in mitochondrial matrix-destined import dur-
ing muscle disuse. Elevated ROS levels inhibit the import
of matrix-destined proteins and increase their susceptibil-
ity to proteasome-mediated degradation.76,138 The reduction
in import is likely related to the redox modulation of the
cysteine- or thiol-rich residues of the import components.
In the future, investigations should be conducted to identify
the principal mechanisms that enable ROS to inhibit protein
import.

5. Autophagy and mitophagy during

muscle disuse

Macroautophagy (hereafter referred to as autophagy) is a con-
served cellular process that is responsible for the elimination
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of long-lived proteins, as well as dysfunctional organelles.
The ALP is critical for the turnover and maintenance of
organelles in skeletal muscle in particular, because this
tissue is postmitotic. This process involves the formation
of double membrane vesicles, known as autophagosomes,
which sequester cytoplasmic materials that are destined
for degradation and deliver them to the lysosome. Upon
autophagosome–lysosome fusion, the acidic pH and hydro-
lases native to the lysosome digest the cargo into its
constituent parts, which can subsequently be utilized for
energy provision. Given its catabolic nature, it is not surpris-
ing that autophagy has been implicated in muscle atrophy.
The expression of multiple autophagic factors was found to
be upregulated under various atrophic conditions, including
denervation.3,29,139 These findings have raised interest in the
pharmacological inhibition of autophagy as a potential target
during muscle-wasting conditions. Studies involving animals
with a deficient ALP, specifically in skeletal muscle, however,
have revealed that an intact pathway is actually required
for the maintenance of muscle mass and function.140,141

Moreover, the absence of a functional autophagy program
during muscle disuse only exacerbates muscle wasting.140

Thus, aberrant autophagy underlies several myopathies
and muscular dystrophies,141–145 and interventions restor-
ing ALP functionality ameliorate some of the myopathic
phenotypes.141–144 Conversely, excessive autophagy can also
be detrimental by inducing a net catabolic effect, culminat-
ing in loss of muscle mass as demonstrated by overactive
autophagy.146 Nonetheless, it appears that the maintenance
of a basal level of autophagy is required for the appropriate
turnover of long-lived proteins and organelles in skeletal mus-
cle, and that constrained activity of the ALP is essential for
muscle mass maintenance and health.

Interestingly, many of the myopathies characterized by
deficient autophagy also exhibit the accumulation of dysfunc-
tional and swollen mitochondria, which certainly contribute
to disease pathogenesis.140,142 This is likely due to the
insufficient turnover of mitochondria in these conditions,
highlighting the integral relationship between rigorous mito-
chondrial quality control and muscle health. Although
mitochondrial content can be regulated in a variety of ways,
mitochondria-specific autophagy, known as mitophagy, is cur-
rently the only known mechanism for the wholesale removal
of mitochondria from postmitotic tissues, such as skeletal
muscle. This process is required for the proper progression
of the mitochondrial life cycle and is therefore vital for mito-
chondrial vigor.147

Mitophagy is a constitutively active housekeeping mecha-
nism in all cells, and can be further induced under conditions
of energetic distress. During an energy deficit, AMPK is acti-
vated whereas mTOR is inhibited, leading to the induction
of autophagosome formation by the activation and lipidation
of microtubule-associated protein light chain 3 (LC3). This is
achieved through a coordinated effort by various AuTophaGy
(ATG) related genes-dependent conjugation steps. Continuous
incorporation of membrane-bound LC3 leads to the forma-

tion and elongation of the autophagosome around the tagged
cargo until it is completely encapsulated. The specific target-
ing of mitochondria for elimination by mitophagy is thought
to be mediated by two generally distinct pathways: one being
Integr Med Res ( 2 0 1 4 ) 161–171

indirect and requiring the recruitment of an E3 ubiquitin
ligase; and the other necessitating a mitophagy-specific recep-
tor. Current evidence suggests that mitochondrial dysfunction
often results in the activation of the indirect pathway, whereas
removal of mitochondria under a programed biological event
is carried out by the receptor-mediated pathway.148,149

With respect to the indirect pathway, loss of mitochon-
drial membrane potential or a surge in ROS production
prompt the stabilization of PTEN-induced putative kinase 1
(PINK1) on the mitochondrial membrane. PINK1 subsequently
recruits Parkin, which ubiquitinates various OMM proteins.148

Interestingly, mice that lack Parkin are partially protected
against loss of muscle mass and mitochondria in denervated
slow-twitch but not fast-twitch muscle, suggesting a fiber
type-specific preference for Parkin-mediated mitophagy.150 In
addition to Parkin, several mitochondria-associated E3 ubi-
quitin ligases have been implicated in mitophagy, including
Mul1 and Gp78.151–153 These ligases preferentially ubiquitinate
the OMM proteins of dysfunctional mitochondria, allowing
for their recognition by autophagy adaptor proteins such as
p62 and NBR1,154,155 which effectively link the autophago-
some to the malfunctioning mitochondrion, allowing it to
be sequestered. Interestingly, Parkin and Mul1 have both
been implicated in disuse atrophy. Parkin KO mice showed
resistance to denervation in slow-twitch muscle, likely due
to reduced denervation-induced proteasomal activation via
Nuclear Factor Erythroid 2-Like 1 (NFE2L1/Nrf1).150 More-
over, Lokireddy et al152 demonstrated that Mul1 expression
is induced by denervation through a mechanism mediated
by FoxO1/3 transcription factors, and that Mul1 appears to
be both sufficient and required for mitophagy in skeletal
muscle.152 Interestingly, E3 ligases appear to compensate for
one another, because Mul1 was recently demonstrated to play
a role in maintaining mitochondrial integrity in light of a loss
in PINK1/Parkin.156

Mitochondria can also be directly targeted for degrada-
tion by the receptor-mediated pathway involving BNIP3 and
the BNIP3-like protein NIX. These factors are regulated by
FoxO3 and are able to localize to the mitochondrial mem-
brane, anchoring it to the autophagosome directly via their
LC3 interacting region. BNIP3 and NIX were both found
to be sufficient to induce muscle wasting, and appear to
mediate, in part, FoxO3-induced muscle atrophy.157 BNIP3
has also been documented to have a role in mitochon-
drial fragmentation, a prerequisite for mitophagy.158 Indeed,
mitochondrial morphology and dynamics play a key role
in sealing mitochondrial fate, and organelle fission alone is
sufficient to activate mitophagy.159 In skeletal muscle, mito-
chondrial fragmentation induced by Fis1 enhances muscle
wasting by leading to energetic stress and the activation of the
AMPK–FoxO3 axis. Pharmacological inhibition of mitochon-
drial fragmentation was sufficient to dampen autophagy, as
well as muscle atrophy.41,160 Of note, the profusion proteins
mitofusin1 and 2 are well-characterized targets of both Parkin
and Mul1.152,156,161 Thus, mitochondrial dynamics appear to
play a key role in muscle atrophy and this effect may be medi-

ated, at least in part, by the activation of mitophagy.

Increases in autophagy and mitophagy have been noted
during various models of muscle atrophy. We have previously
demonstrated an upregulation in the expression of numerous
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utophagy proteins and transcripts in response to dener-
ation. Furthermore, denervation resulted in the increased
ocalization of LC3-II, p62, and Parkin to mitochondrial mem-
ranes, indicating an enhanced targeting of mitochondria
or degradation by autophagy.88,139,162 This may be due to
he decrements in mitochondrial oxygen consumption, which
rompt an increase in ROS production observed during muscle
isuse.2,76 ROS promote skeletal muscle autophagy and this
ffect is mediated, in part, through activation of the AMPK and
nhibition of Akt, because the scavenging of ROS significantly
ecreased autophagic flux in mouse skeletal muscles.163

Thus, autophagy and mitophagy are activated during a
ariety of muscle-wasting conditions and participate in mus-
le atrophy. However, these pathways act as a double-edged
word whereby suppression of mitophagy may temporarily
ttenuate muscle loss, but if left unchecked can result in
itochondrial dysfunction and cellular oxidative stress, exac-

rbating myofiber atrophy. It is still unclear whether the
ctivation of autophagy and mitophagy in skeletal muscle
uring disuse atrophy is a byproduct of the loss of energetic
omeostasis, or whether these processes themselves instigate
uscle wasting.

. Conclusion

he regulation of skeletal muscle mass during chronic dis-
se largely depends on the balance between protein synthesis
nd protein degradation, with cellular energetic status playing
key role in the signals that fine-tune protein turnover and

xpression. Mitochondrial quality control is at the epicenter
f cellular metabolic regulation and contributes meaningfully
o muscle mass maintenance. During periods of muscle dis-
se, decreases in mitochondrial biogenesis, protein import,
nd oxidative phosphorylation, coupled with enhanced frag-
entation and removal of organelles by mitophagy, lead

o a net loss of mitochondrial content and an increase
n mitochondrially-mediated nuclear apoptosis. All of these
reatly contribute to the observed atrophy. Thus, resolving
nergetic distress by improving mitochondrial function and
nhancing mitochondrial network formation appear to be pro-
ective of muscle mass in this scenario. With this in mind,
ew studies have examined the early signaling events that
ccur upon the onset of muscle disuse, making it difficult to
redict the kinetics or infer causality between mitochondrial
lterations and muscle wasting during disuse. Further studies
elineating these early signaling events responsible for mito-
hondrial malfunction and its relation to muscle wasting are
arranted.
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