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Abstract

The field of neutron interferometry achieved one of its most significant successes with the detection of the influ
gravity in the quantum mechanical phase of a thermal neutron beam. From the latest experimental readouts in this c
intriguing discrepancy has been elicited. Indeed, theory and experiment dissent by one per cent, and though this fact
consequence of the mounting of the experimental device, it might also embody a difference between the way in whic
behaves in classical and quantum mechanics. In this work the effects, upon the interference pattern, of space–time t
be analyzed heeding its coupling with the spin of the neutron beam. It will be proved that, even with this contribution,
enough leeway for a further discussion of the validity of the equivalence principle in nonrelativistic quantum mechanic
 2005 Elsevier B.V.

PACS: 04.80.-y; 04.80.Cc

1. Introduction

The quantum mechanical phase, induced by gravity in a neutron interferometer, detected in 1975 by
Overhauser, and Werner[1], spurred a series of experiments (usually known as COW), in which the invo
interferometric techniques showed an increasing sophistication[2,3]. This last fact opened up the possibility
testing the equivalence principle in the quantum realm resorting to a series of experiments, where the impr
of the accuracy thrived significantly[3].

All these experimental efforts finally paid off, since a disturbing discrepancy, on the order of one p
between theory and experiment, emerged from the measurement readouts[4]. Clearly, a further analysis of the ro
of the equivalence principle in nonrelativistic quantum mechanics requires first the study of the consequ
some, not always taken into account, variables.
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For instance, in the case of a 1/2-spin particle immersed in a Riemann–Cartan space–time, how does the
bution to the interference pattern, stemming from the coupling spin-torsion, look like, as a function of the
which neutron beam has been constructed? In other words, let us suppose that the spin part of the neutro
wave function is the coherent linear superposition of two contributions, one withz-component of the spin 1/2,
and the other one with−1/2. One question that could be posed at this point is the feasibility of the detect
the coupling spin-torsion looking at the changes that appear in the interference pattern as a function of th
which the superposition is constructed.

At this point it is noteworthy to mention that, though, there are already some analysis of the conseq
in a interferometric experiment, of space–time torsion, the aforesaid question has not been considered[5]. In the
present work the effects, upon the interference pattern, of a contribution term stemming from torsion, are
However, here we prove that the presence of torsion could be detected, in principle, heeding the changes th
as a function of the way in which the superposition is done.

Additionally, it will be shown that the quantum mechanical trait of this effect depends on powers ofm/h̄, and
hence has a striking similarity with its counterpart in the common COW experiment[1]. This dependence ha
been understood, by some authors[6], as a possible quantum mechanical protrusion of a nongeometric feat
gravity, and therefore, bearing this remark in mind we may assert that nongeometricity pervades the mov
a quantum system immersed in a Riemann–Cartan manifold.

2. Torsion and rotation in spin space

Let us consider a neutron interferometer[1], and neglect the consequences of the Earth’s rotation on this
of experimental construction[7,8]. The main reason behind this approximation relies upon the fact that we w
like to use this kind of approaches also as a test for the equivalence principle in the quantum realm. The an
rotation effects not only requires the locality hypothesis, in addition it imposes a generalization of this assu
since it is necessary to know how accelerated observers measure wave characteristics in such a way th
eikonal limit, the recovery of the hypothesis of locality is ensured[8]. From the last argument it is readily seen th
the introduction of rotation entails the presence of a cluster of assumptions that could cloud the final interp
of our results.

The Hilbert space in this case is the tensor product of two contributions, to wit, spin state space,Es and the
orbital state space,Er . The dynamics of the state vector associated with the neutron beam will be described
nonrelativistic limit of the Dirac equation, in a Newtonian approximation of Riemann–Cartan space–time, n
the Pauli equation[9].

(1)ih̄
∂|ψ〉
∂t

= − h̄2

2m
∇2|ψ〉 − i

h̄2

m
κ(0)σ

l∂l |ψ〉 − mV |ψ〉 − h̄cκlσ
l |ψ〉.

In the foregoing expression the following terms have been considered,c is the speed of light,V the Newtonian
gravitational potential,σ l Pauli matrices, andκµ the axial part of the space–time torsion. Inasmuch as the rot
of the neutron interferometer has been neglected, we explain the absence of a coupling term between
ferometer and the Earth’s rotation in this last equation. Additionally, in(1) we will consider thatκ(0) = 0. This
simplification will allow us to fathom, in a clear manner, the consequences, upon the interefometric pattern
space part of the axial part of the torsion.

(2)ih̄
∂|ψ〉
∂t

= − h̄2

2m
∇2|ψ〉 − mV |ψ〉 − h̄cκlσ

l |ψ〉.
Hence, denoting byφ the spin state vector, we find that its dynamics is governed by

(3)ih̄
∂φ = −h̄cκ σnφ.

∂t

n
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It is readily seen that the solution reads

(4)φ(t) = exp

{
ic

t∫
0

κnσ
n dt ′

}
φ(t = 0).

Let us now consider the case in which we perform an experiment similar to COW[1], i.e., two particles, starting
at point(O), move along two different trajectories,C andC̃, and afterwards they are detected at a certain p
S. Here we assume that the size of the wavelengths of the packets is much smaller than the size in which
changes considerably (i.e., we are always in the short wavelength limit), and in consequence we may co
semiclassical approach in the analysis of the wave function. TrajectoryC is made up of two contributions, name
(O)–(A) which is horizontal, whose length readsl, and (A)–(S), vertical, and with length equal toL. C̃ comprises
also two parts, (O)–(B) vertical, with lengthL, and (B)–(S) horizontal, and sizel. The horizontal axis isx, andy

points upwards, such that the Newtonian potential readsV = gy.
Additionally, we assume that

(5)κn(A) = κn(0) + ∂κn

∂x (0)
l,

(6)κn(B) = κn(0) + ∂κn

∂y (0)

L.

Hence, it is deduced that at the screen, (S), (for the spin wave function that passes through (A), φA(S), and for that
passing through (B), φB(S)) we have

(7)φA(S) = exp

{
icσ n

[
αAκn(0) + βA

∂κn

∂x (0)
+ γA

∂κn

∂y (A)

]}
φ(t = 0),

(8)φB(S) = exp

{
icσ n

[
αBκn(0) + βB

∂κn

∂x (B)
+ γB

∂κn

∂y (0)

]}
φ(t = 0).

In these last two expressions we have (approximately)

(9)αA = mλ̃

h̄

{
l + L/2−

(
mλ̃

h̄

)2

gL2/8

}
,

(10)βA = mλ̃

h̄
l

{
(l + L)/2−

(
mλ̃

h̄

)2

gL2/8

}
,

(11)γA = mλ̃

h̄

{
L2/2

[
1/4−

(
mλ̃

h̄

)2

gL/4

]
+ lL

[
1/2−

(
mλ̃

h̄

)2

g(2L + 3l)/4

]}
,

(12)αB = mλ̃

h̄

{
l + L/2+

(
mλ̃

h̄

)2

gL[l − L/8]
}
,

(13)βB = 3L2mλ̃

h̄

{
1/4−

(
mλ̃

h̄

)2

gL/8

}
,

(14)γB = mλ̃

h̄
L2

{
3/4 −

(
mλ̃

h̄

)2

13gL/(48)

}
.
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In all our equations̃λ = λ/(2π), and λ denotes the initial wavelength of the neutron beam. These two w
functions may be written in terms of a rotation of the initial state

(15)φn(S) = exp

{
− i

2
θv �nv · �σ

}
φ(t = 0).

Herev = A,B. The definition of the components of the unit vectors and the rotation angles are given by

(16)τ (A)
n =

{
αAκn(0) + βA

∂κn

∂x (0)
l + γA

∂κn

∂y (A)

}
,

(17)(�nA)n = τ
(A)
n√

(τ
(A)
x )2 + (τ

(A)
y )2 + (τ

(A)
z )2

,

(18)θA = −2c

√(
τ

(A)
x

)2 + (
τ

(A)
y

)2 + (
τ

(A)
z

)2
.

Likewise for case (B).
From our results we may distinguish two different situations:

(1) |l ∂κn

∂y
|, |l ∂κn

∂x
| � |κn|. Therefore�nA = �nB , the axis of rotation of the beams is the same, and they differ on

the angle of rotation,θA �= θB .
(2) Whereas if the foregoing condition does not hold, then not onlyθA �= θB , but additionally�nA �= �nB .

3. Interference patterns and superposition of quantum states

3.1. General case

Let us now assume thatφ(t = 0) is the linear coherent superposition of statesχ(+) andχ(−), whereσzχ(±) =
±χ(±), namely

(19)φ(t = 0) = c(+)χ(+) + c(−)χ(−).

The interference pattern atS is a function of the complete state vector, i.e.,|ψ〉, whose dynamics evolve
according to (1). We may rephrase this last argument statingI = |(|ψ〉(A)+|ψ〉(B))|2, and it comprises two differen
contributions, one stemming fromEs and the second one fromEr . In other words, we find that

(20)I = 2+ 2 cos

((
m

h̄

)2

glLλ̃

)[
φ

†
A(S)φB(S) + φ

†
B(S)φA(S)

]
.

Taking into account our previous definitions we have that

I = 2+ 2 cos

((
m

h̄

)2

glLλ̃

)[
cos

(
θA

2

)
cos

(
θB

2

)
+ [�nA · �nB ]sin

(
θA

2

)
sin

(
θB

2

)]

− 2 sin

((
m

h̄

)2

glLλ̃

)[
sin

(
θA

2

)
sin

(
θB

2

)
[�nA × �nB ] + sin

(
θA

2

)
cos

(
θB

2

)
�nA

(21)− sin

(
θB

2

)
cos

(
θA

2

)
�nB

]
· [2 Re

(
c∗
(+)c(−)

)�ex − 2 Im
(
c∗
(−)c(+)

)�ey + (|c(+)|2 − |c(−)|2
)�ez

]
.

Clearly, cos((m
h̄
)2glLλ̃) corresponds to the interference term in COW[1,6]. This means that if we discard torsio

then we recover COW. Additionally,�e denotes the unit vector along then-axis.
n
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3.2. Particular cases

(1) c(+) = c(−) = 1/
√

2
Under these conditions we have that

(22)I = 2+ 2 cos

((
m

h̄

)2

glLλ̃

)[
cos

(
θA

2

)
cos

(
θB

2

)
+ [�nA · �nB ]sin

(
θA

2

)
sin

(
θB

2

)]
.

(2) c(+), c(−) ∈ 

Here we considerc(+) �= c(−).

I = 2+ 2 cos

((
m

h̄

)2

glLλ̃

)[
cos

(
θA

2

)
cos

(
θB

2

)
+ [�nA · �nB ]sin

(
θA

2

)
sin

(
θB

2

)]

− 2 sin

((
m

h̄

)2

glLλ̃

)[
sin

(
θA

2

)
sin

(
θB

2

)
[�nA × �nB ] + sin

(
θA

2

)
cos

(
θB

2

)
�nA

(23)− sin

(
θB

2

)
cos

(
θA

2

)
�nB

]
· [|c(+)|2 − |c(−)|2

]�ez.

If, additionally, we neglect all derivatives of the axial part of the torsion, a condition that implies�nA = �nB , we
obtain

I = 2+ 2 cos

((
m

h̄

)2

glLλ̃

)
cos

((
mλ̃

h̄

)3

gcl2K

)

(24)− 2κ(0)z/K
[|c(+)|2 − |c(−)|2

]
sin

((
m

h̄

)2

glLλ̃

)
sin

((
mλ̃

h̄

)3

gcl2K

)
.

In the foregoing expression the following definition has been introducedK =
√

κ2(0)x + κ2(0)y + κ2(0)z.

4. Conclusions

Expression(21) allows us enough leeway to consider the possibility of detecting the consequences of t
upon the interference pattern, modifying the values ofc(+) andc(−). For instance, choosingc(+) = 1 andc(−) = 0,

(25)

I = 2+ 2 cos

((
m

h̄

)2

glLλ̃

)
cos

((
mλ̃

h̄

)3

gcl2K

)
− 2κ(0)z/K sin

((
m

h̄

)2

glLλ̃

)
sin

((
mλ̃

h̄

)3

gcl2K

)
.

Resorting now toc(+) = 0 andc(−) = 1

(26)

I = 2+ 2 cos

((
m

h̄

)2

glLλ̃

)
cos

((
mλ̃

h̄

)3

gcl2K

)
+ 2κ(0)z/K sin

((
m

h̄

)2

glLλ̃

)
sin

((
mλ̃

h̄

)3

gcl2K

)
.

As we switch from{c(+) = 1, c(−) = 0} to {c(+) = 0, c(−) = 1} a sign change, in the second term of t
right-hand side, emerges. This effect disappears if torsion vanishes. In other words, this sign change is
consequence of torsion, and appears only if we modify the linear superposition of the starting spin state ve
a matter of fact, considering a series of experiments, in which we begin with{c(+) = 1, c(−) = 0}, and gradually
we change these two values (the first parameter diminishes, whereas the second one increases), then th
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the absolute value of the second term plays, would peter out, this happens whenc(+) = 1/
√

2. Afterwards, it starts
to appear, once again.

Let us now estimate the order of magnitude of the torsion contributions, and afterwards confront them w
current experimental discrepancy. To circumvent all possible encumbrance in the physical analysis we will
thatc(+) = 1 andκ(0)z/K = 1. In this way

(27)I = 2

{
1+ cos

((
m

h̄

)2

lgλ̃

[
L + m

h̄
clλ̃2K

])}
.

The theoretical result, no torsion included[6], shows a discrepancy on the order of one percent in the phase
[3]. Denoting the contribution to this discrepancy, stemming from torsion, withΓ , we have

(28)

(
m

h̄

)2

lgλ̃

[
L + m

h̄
clλ̃2K

]
=

(
m

h̄

)2

lgλ̃L[1+ Γ ].

The most stringent experimental bound readsK ∼ 10−15 m−2 [9], and hence (employing the typical expe
mental values[1,3,6]), we deduce

(29)Γ ∼ 10−16.

Firstly, one of the conclusions to be drawn from(29) comprises the assertion that the involved experime
discrepancy cannot be fathomed resorting, exclusively, to torsion effects, and in consequence, there is
leeway to continue the discussion around the validity of the equivalence principle in the quantum realm[10].

Secondly, it is noteworthy to comment that though our main result, see expression(28), hinges upon the mas
of our test particles, this trait does not necessarily imply the presence of nongeometricity in the quantum
Forsooth, it is possible to cast the phase shift[11] in such a way that it is independent of the mass parameter
in this manner the gravitational interaction can be geometrized, as an operational procedure, even in the
domain[12].
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