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We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive
QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in
literature. As is expected, the quadratic correction is dual to a long perturbative series and one should
use one of them but not both. However, this might be true only for very long perturbative series,
with number of terms needed in most cases exceeding the number of terms available. What has not
been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this
would imply a crucial modification of the dogma. We confront this quadratic correction against existing
phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of αs from
τ -decay). We find no contradiction and (to some extent) better agreement with the data and with recent
lattice calculations.

© 2009 Published by Elsevier B.V.
1. Introduction

Because of the asymptotic freedom, predictions for short-
distance processes are very simple in QCD and essentially re-
duce to parton model, or to lowest order perturbation theory.
This is true, however, only in the leading order approxima-
tion. As far as corrections are concerned, there is a double sum
which includes expansion in αs(Q 2) where Q 2 is a generic large
mass parameter and powers of (ΛQCD/Q )k . Consider for exam-
ple the best studied case of current correlators which deter-
mine QCD sum rules [1] (for a review, see e.g. [2]). Then, one
usually assumes the following form of the correlator in the x-
space:

〈0| J (x), J(0)|0〉 ≈ C I
(
αs(x)

)
I + CG2

(
αs(x)

)
G2(0)x4 + · · · , (1)

where J (x) is the hadronic current, I is the unit operator and
G2 is the dimension four operator. The coefficient functions C I,G2

are calculable perturbatively as infinite sums in the running cou-
pling.

Moreover, Eq. (1) does not apparently contain quadratic cor-
rections, while such corrections are included in many cases on
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the phenomenological grounds (see in particular [3–9]). These
quadratic corrections and their phenomenological significance will
be in fact focus of our attention. Let us remind the reader what is
understood by these corrections.

Start with the heavy quark potential at short distances. The Cor-
nell version of this potential (which describes the lattice data very
well) is very simple:

V Q Q̄ (r) ≈ −4

3

αs

r
+ σ · r, (2)

where r is the distance, αs ≡ g2/(4π) is the QCD coupling, σ ≈
0.2 GeV2 is the string tension. The fit in Eq. (2) works well at
all distances. The question is whether such a form of the po-
tential at short distances – let it be only approximate – is ac-
ceptable theoretically. There are papers which ascertain a positive
answer to this question (see, in particular, [3,4]). The observable
(heavy-quark potential in our case) is viewed as represented by
a short perturbative series (a single const/r term in our case)
plus a leading power correction (quadratic correction, in our case,
σ · r).

The version used in some other papers (see, in particular, [10])
looks as:

lim
r→0

V Q Q̄ (r) ≈ 1

r

n=4∑
anα

n
s (r) + (const) + σ̃n · r, (3)
n=1
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where n = 4 is the realistic number of perturbative terms calcu-
lated explicitly and const stands for an infrared renormalon contri-
bution (this could be added to the version in Eq. (2) as well). The
last term, proportional to σ̃n imitates the power correction.

It is quite common [10] to identify the parameters σ from
Eq. (2) and σ̃ from Eq. (3) and compare their numerical values.
Our point is that such an identification is not justified1:

There are two dual descriptions: either one uses a short perturbative
series and adds the leading quadratic correction by hand, or one uses
long perturbative series and then there is no reason to add the quadratic
correction.

Numerically both Eqs. (2) and (3) work well. Chronologically,
the papers in the series [3,4] appeared first. At that time, the
common belief was that the Voloshin–Leutwyler potential is valid
non-perturbatively. This would correspond to a cubic correction in
Eq. (2) (or (3)). The papers [3,4] established validity of the uncon-
ventional (at that time) quadratic correction. The emphasis in later
papers [10] was in fact on finding another interpretation to the
already known quadratic power correction.

The problem of mixing between power-like corrections and per-
turbative series is not new at all. The standard view is that power
corrections are related to divergences in perturbative series due to
the factorial growth of the expansion coefficients (for review see,
e.g., [12]). This viewpoint formulated long time ago still dominates
theoretical thinking. In practice, however, no factorial growth of
the expansion coefficients has been observed so far. The reason
could be that the ability to calculate the expansion coefficients is
limited and the series known explicitly are not long enough.

Here we come actually to a key point. Because in phenomeno-
logical applications, one usually assumes, explicitly or tacitly, that
large-order asymptote sets in immediately after the terms known
explicitly (see, e.g., [13,14] and references therein).

There exists, however, an example of a long perturbative series
which allows to check the current ideas on the expansion coeffi-
cients. We have in mind the perturbative calculations of the gluon
condensate [15–17]. This example indicates strongly that theorems
on the asymptotic behaviour of the expansion coefficients might
apply only in case of much longer series than are available in re-
ality. Thus, we argue that, in realistic phenomenological fits, one
should keep the quadratic corrections which are absent from the
symbolic expansion in Eq. (1).

Thus, our main point is that the properties of the relatively short per-
turbative series are different from properties of long perturbative series.

Another new point is the impact of the dual models. We will ar-
gue, basing on the results of [18], that there exists another source
of the quartic corrections, which are usually identified with the
infrared-sensitive part of the gluon condensate 〈G2〉. Namely, the
same short-distance contributions which control the quadratic cor-
rection taken to second order, produce a calculable quartic correc-
tion. We confront this insight brought by the dual models with
explicit perturbative calculations of papers in Refs. [15–17].

In Section 2, we discuss an argumentation in favor of the dual-
ity between the quadratic correction and long perturbative series.
In Section 3, we emphasize lessons for the generic structure of per-
turbative series brought by the explicit calculations of the gluon
condensate. In Section 4, we propose a simplified generic version
of perturbative series. In Section 5, we summarize lessons brought
by the holographic models. In Section 6, we discuss the unexpected
duality between the perturbative and quartic power corrections.
Section 7 is devoted to phenomenology of particular processes. In
Section 8, we present our conclusions.

1 The conjecture was made first in a conference talk [11]. Present, original paper
also includes material submitted to other proceedings by the authors.
2. Duality expected (quadratic correction)

2.1. Duality between s- and t-channels

Because of the existing confusion in the literature concerning
the duality between long perturbative series and quadratic correc-
tion, let us start with the notion of the duality itself.

Consider a hadronic reaction a + b → c + d at relatively low
energies. Then the following representation of the amplitude can
be reasonable:

A(a + b → c + d) ≈ (nearest s-channel exchange)

+ (nearest t-channel exchange). (4)

Such a phenomenology was popular a few decades ago and turned
successful.

Now, imagine that one starts improving Eq. (4) by summing up
the s-channel exchanges:

A(a + b → c + d) ≈
N particles∑

n=1

(s-channel exchange)

+ (t-channel exchange), (5)

where the sum over the s-channel resonances is taken.
Then, if N is large enough one would notice that there is no

more space for the t-channel exchanges. The conclusion could be
that there are no t-channel particles or that they are decoupled
from our hadrons a, b, c, d.

As everybody knows, beginning with the celebrated Veneziano’s
paper [19], such a conclusion would be wrong. Namely, if one uses
sums over the resonances, then it is either s-channel or t-channel
exchanges that are allowed but not both.

Similar things happen in the case of the quadratic corrections
to the parton model (of which a linear potential is an example).
One uses either a short perturbative series and adds a linear term
by hand. This is an analogy to the nearest-singularity amplitude in
Eq. (4) and corresponds to the form in Eq. (2). Or one uses a long
perturbative series and then does not add by hand the linear term.
Since it is already included into the perturbative series, by virtue
of the general theorems inherent to the Yang–Mills theories. This
is then the version in Eq. (3).

Thus, claiming that the parameter σ̃ ≈ 0 in Eq. (3) contradicts
σ �= 0 in Eq. (2) is like claiming that summing up the s-channel
exchanges proves that there are no t-channel particles in nature.

2.2. Quadratic correction and OPE

The proof [20] that there are no genuine non-perturbative
quadratic corrections is simple. Indeed, originally, the quadratic
correction was associated with the so-called ultraviolet renormalon
which corresponds to the following asymptotic series:

f
(

Q 2)
UV renorm. ∼

∞∑
Ncr

[
αs

(
Q 2)]k

(−1)kk!(b0)
k, (6)

where Q 2 is a generic large mass parameter inherent to the prob-
lem and b0 ≡ 1

4π (11 − (2/3)n f ) is the first coefficient in the β-
function for n f flavours. Note that if one treats the expansion in
Eq. (6) as an asymptotic series, then its uncertainty is a quadratic
correction, Λ2

QCD/Q 2. On the other hand, one can sum up the se-
ries à la Borel and then there is no uncertainty at all.

The crucial observation is that the factorial growth of the ex-
pansion coefficients in Eq. (6) are associated with an integration
over very large momenta, p2 � Q 2. However, because of the
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asymptotic freedom, this region of integration should not be a
source of uncertainty in QCD. Indeed, by introducing a cut off a
and using the coupling αs(a) normalized in the UV, one eliminates
the integration over momenta p2 > a−2 and, therefore, there is no
ambiguity of order 1/Q 2 [20].

From the point of view of the operator product expansion (OPE)
in Eq. (1), the quadratic correction we are discussing is hidden in
the coefficient function in front of the unit operator, C I (αs(x)) and,
in no way, violates the OPE.

However, the QCD (spectral) sum rules were originally based
[1] (for a review, see e.g. [2]) on a simplified assumption that the
coefficient functions can be approximated by the first terms, while
the effect of the confinement is encoded in the power corrections.
It is only within this terminology that one might say that the form
in Eq. (2) violates the OPE. In a more correct but longer language,
what is violated is the assumption that the coefficient functions
are approximated by their first terms. More advanced applications
of the sum rules are keeping longer and longer perturbative se-
ries. Then, the terminology with ‘violations of the OPE’ due to the
quadratic correction becomes obsolete.

Another source of confusion is the observation that, in the Eu-
clidean space, one can ascribe a gauge-invariant meaning to the
vacuum matrix element of dimension-two operator (Aa

μ)2 [21].

The quantity 〈0|(Aa
μ)2|0〉min turns to be of significant interest in

many applications. This does not change of course the fact that
〈0|(Aa

μ)2|0〉min does not appear in the operator product expan-
sion (1). None of the papers in Ref. [3] claims either violation
of the OPE with ‘long’ perturbative expansions or appearance of
〈0|(Aa

μ)2|0〉min in the OPE equations. Nevertheless, sometimes one
fights just with these would-be-made claims [10].

From the perspective of the perturbative expansion, the most
difficult question is: why the quadratic correction could be at all
important? Therefore, it is worth emphasizing that the quadratic
correction is required by phenomenology, not yet by the theory.
For example, on the lattice, one can give a definition of the ‘non-
perturbative’ heavy quark potential (for review see e.g. [22]). Then,
this potential is pure linear starting from the smallest distances
available:

V Q Q̄ (r)
∣∣

non-pert ≈ σ · r. (7)

Moreover, this non-perturbative contribution encodes confinement
as well. Thus, it is strongly suggested by the phenomenology that
the effects of the confinement are encoded in the quadratic cor-
rection which is not explicit in the general OPE in Eq. (1).2 As we
argue in Section 5, a natural framework for the quadratic correc-
tion is provided by the stringy, or holographic formulation of QCD
(for a review see, e.g., [23]).

3. Lessons from PT calculation of 〈αs G G〉

The best check of this logic is provided by the beautiful results
for perturbative calculation of the gluon condensate on the lattice
(the most advanced calculations are due to Rakow et al. [15–17]):
More precisely, the results refer to perturbative evaluations of the
quantity:

a4 π

12Nc

[−b0 g3

β(g)

]
〈αsGG〉 = 1 +

N∑
n=1

pn g2n + ΔN , (8)

2 A phenomenologically successful fit to the power corrections is provided by the
‘short-distance’ gluon mass (see [4–6,8,9]). However, the very notion of the short-
distance gluon mass can be introduced only in the Born approximation and only for
a certain class of processes [3,4].
where a is the lattice spacing and αs(a) is the running coupling
normalized at the ultraviolet cut off, pn are the expansion coef-
ficients which are calculated explicitly up to n = N . Finally the
difference ΔN is known numerically since the total value of the
l.h.s. of Eq. (8) coincides with the plaquette action and is known
to a very good precision. Moreover, the difference is fit to power-
like corrections:

ΔN = bN
2 (ΛQCD · a)2 + bN

4 (ΛQCD · a)4, (9)

where the coefficients b2,4 are fitting parameters which depend on
the number of perturbative terms calculated explicitly.

Explicit results [15–17] demonstrate that, indeed, the power
corrections in Eq. (8) depend strongly on the number N of pertur-
bative terms taken into account explicitly. Namely, up to N ≈ 10
the power corrections are dominated by a quadratic term:

ΔN ≈ bN
2 · (a · ΛQCD)2 for N � 10.

That is, the coefficient bN
4 is consistent with zero for such N .

However, the numerical value of the coefficient bN
2 in front of

the power correction diminishes with increasing N . Thus, pertur-
bative corrections ‘eat up’ the power correction. In more refined
terminology, the perturbative terms are dual to the leading power
correction.

At N > 10, a quartic correction emerges as a result of subtract-
ing the perturbative contributions from the total matrix element
〈αsG2〉:

ΔN ≈ const · (a · ΛQCD)4 for N � 10. (10)

And, finally, at about N ≈ 16 one restores the value of the quartic
correction which is [15,16]:
〈
αsG2〉

pert ≈ 0.12 GeV4, (11)

with a large error, but the result is comparable in magnitude with
the standard gluon condensate entering the QCD (spectral) sum
rules. Another remarkable finding [15,16] is that perturbative co-
efficients pn entering (8) are well approximated by a simple geo-
metric series:

rn ≡ pn

pn+1
= u

(
1 − 1 + q

n + s

)
, (12)

where the fitting parameters u = 0.961(9), q = 0.99(7), s =
0.44(10). The perturbative series with such coefficients is conver-
gent for∣∣g2

∣∣ < |u|−1.

This simple geometrical series fits explicit calculations of the PT
coefficients at least for the first 16 terms. Extending n → ∞ (n �
50), the geometric series reproduces the full answer to the accu-
racy better than 10−3, which is a remarkable result.

4. Geometric growth of the PT coefficients?

Physics-wise, one can say that the series found in [15–17] is
determined by the singularity due to the crossover from strong to
weak coupling. This is true in pure gluonic channel. This could also
be true with account of quarks. Then, we would have, in differ-
ent channels, geometric series, with approximately the same range
of convergence. To see whether a such hypothesis can be ruled
out, we compile below the calculated expressions of the Adler-like
function in the Euclidian region3 for different channels.

3 One can notice that the PT corrections in the theory of τ -decay: δ(0) = as +
5.202a2

s + 26.366a3
s + 127.079a4

s [24–27] indicates a geometric growth, but the
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In the vector channel with massless quarks, it reads [27,29,30]:

−Q 2 d

dQ 2
ΠV

(
Q 2)

= Nc

12π2

[
1 + as + 1.64a2

s + 6.31a3
s + 49.25a4

s

]
. (13)

The perturbative corrections to this expression due to the strange
quark mass for the neutral (resp. charged) vector current, read [24,
31]:

Q 2Π D=2
s̄s = −6m̄2

s

4π2

[
1 + 2.67as + 24.14a2

s + 250a3
s

]
,

Q 2Π D=2
ūs = −3m̄2

s

4π2

[
1 + 2.33as + 19.58a2

s + 202a3
s

]
. (14)

The difference from α2
s is due to the light by light scattering dia-

gram contributing in the neutral vector two-point correlator.
For the pseudoscalar channel, the QCD expression of the Adler-

like function reads for n f = 3 [32–34]:

−Q 2 d

dQ 2
Π5

(
Q 2)

= Nc

8π2

[
1 + 5.67as + 45.85a2

s + 465.8a3
s + 5589a4

s

]
. (15)

Similarly, one can also present the PT expressions of moments in
deep-inelastic scatterings. The ones of the well-known Ellis–Jaffe4

for polarized electroproduction or of the Gross–Llewellyn Smith
sum rule for neutrino–nucleon scattering, read, for n f = 3 [35,36]:

1∫
0

dx g p(n)
1 � (

1 − as − 3.58a2
s − 20.22a3

s

)[±|g A |
12

+ a8

36

]

− a0

9

(
1 − 0.33as − 0.55a2

s − 4.45a3
s

)
,

1∫
0

dx F ν̄p+νp
3 � 6

(
1 − as − 3.58a2

s − 18.976a3
s

)
, (16)

where a8 and a0 are the octet and singlet structure functions. One
can notice that, in all the cases, the series found, do not show any
factorial growth nor an alternate sign but, are consistent with ge-
ometric series, with sizable corrections at small n similar to the
case of the gluon condensate.5 Thus, there is an exciting perspec-
tive that all the perturbative series are in fact quite simple in large
orders.

5. Insight from dual models

5.1. Holographic quadratic correction

In the holographic language, one evaluates the same observ-
ables, as within the field theoretic formulation of QCD, but in
terms of strings living in extra dimensions. There is no direct
derivation of the metrics of the extra dimensions in the QCD case.
One rather uses phenomenologically motivated assumptions (see,
e.g., [18]).

effects due to the analytic continuation and to the β-functions induced by the
renormalization group equation obscure the exact behaviour of the coefficients. In-
terpretations of a this fact require more involved analysis (see e.g. [28]).

4 The Bjorken sum rule corresponds to:
∫ 1

0 dx (g p
1 − gn

1).
5 A geometric growth of the PT coefficient has been assumed in [25] for predict-

ing the α4
s term of the PT series of the D-function in the V + A channel. This result

has been (approximately) confirmed later on by the analytic calculation of [27].
The crucial element is the metrics z in the fifth dimension. Fol-
lowing [18], let us choose the following model:

ds2 = R2 h(z2)

z2

(
dx2

i + dz2), (17)

where R2 is a constant whose explicit definition is not important
for us here and the function h(z2) is specified below. Note that, at
z → 0, one needs h(z2) → const in order to reproduce an approx-
imate conformal symmetry of the Yang–Mills theories (due to the
asymptotic freedom).

We would like to define the function h(z2) in such a way as to
ensure confinement at large distances and to reproduce the (lead-
ing) quadratic power correction at short distances. The following
choice:

h
(
z2) = exp

(
c2z2/2

)
(18)

satisfies these conditions. Note that, while the condition to repro-
duce confinement, or the area law for the Wilson line is com-
mon to all the holographic models, the condition to reproduce the
quadratic correction at short distances assumes that it is this cor-
rection which encodes the confinement at short distances. One can
demonstrate that, assuming Eq. (18), is equivalent to assuming the
Cornell potential for the heavy quarks interaction. The numerical
value of the constant c can be fixed in terms of the string tension,
c2 = (0.9 GeV)2.

The simple model in Eqs. (17) and (18) turns to be success-
ful phenomenologically (see, in particular, [37] and references
therein).

A crucial advantage of using the holographic language is that it
allows for a perfectly gauge invariant way to introduce and param-
eterize the quadratic correction. Also, the simple expression (18)
looks much more ‘natural’ than the assumption on approximate
equality of the long perturbative series and quadratic correction
plus short series discussed above. What is lacking, is further ap-
plications of the same metrics in Eq. (18) to evaluate quadratic
corrections to the parton model in other cases, such as the current
correlators.

5.2. Holographic quartic correction

Presence of the quadratic correction in the string-based ap-
proach is an assumption which allows to model the metric in the
fifth dimension. However, once the metric is fixed, one can calcu-
late the full answer for the gluon condensate [38].

The model does not account for the running of the coupling but
allows to evaluate power corrections. In particular, it produces the
value of the ‘physical gluon condensate’ of the magnitude:

〈
αsG2〉

holographic ≈ 0.03 GeV4, (19)

which is reasonable phenomenologically [1].
What appears even more important is that the dual-model ap-

proach provides a new qualitative picture for the power correc-
tions. Namely, in the holographic language 〈αsG2〉 ∼ Λ4

QCD appears
as a second-order effect in the coefficient c introduced in Eq. (18):

〈
αsG2〉

holographic ∼ c2 ∼ Λ4
QCD. (20)

Since the coefficient c (or the quadratic correction in the holo-
graphic language) is associated with short distance, the same is
true for the gluon-condensate contribution in Eq. (20).

In short, the stringy calculation does not have a counterpart to
the infrared-renormalon contribution which is taken for granted in
field theoretic approach. This point is worthy to be elaborated.
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In both cases of field theory and of stringy calculation, one
deals with a propagator, of a particle or a string respectively. In
both cases, the leading contribution comes from short distances.
If the typical size is of order a, then, in both cases, 〈αsG2〉 ∼ a−4.
However, the probability for a (virtual) particle to propagate to the
distance of order Λ−1

QCD is power-like suppressed:

a4〈αsG2〉
IR, particle ∼ (ΛQCD · a)4, (21)

as revealed by the infrared renormalon (see, e.g., [12]). In the case
of strings, the suppression of the infrared region turns to be expo-
nential:

a4〈αsG2〉
IR, string ∼ exp

(−const/[ΛQCD · a]γ )
, (22)

where γ is positive. Intuitively, this strong suppression is due to
the fact that string corresponds to a collection of particles.

6. Duality unexpected: quartic correction

Let us emphasize again that the standard assumption is that
the quartic correction in Eq. (10) emerges simultaneously with the
factorial divergence in expansion coefficients an (see Eq. (8)):(

pn+1

pn

)
IR renormalon

∼ n for n � 1. (23)

This divergence is due to the infrared renormalon (for a review,
see [12]).

So far [15–17], one does not run into the problem of the diver-
gence in Eq. (23):(

pn+1

pn

)
n<15

∼ 1. (24)

It is even more amusing that, with presently available perturba-
tive terms in Eq. (8), one can extract [15–17] the ‘genuine’ gluon
condensate in Eq. (10):

a4〈αsG2〉 ∼ (ΛQCD · a)4, (25)

so that the quartic correction gets disentangled from the infrared
renormalon. This observation, if confirmed, is a radical change of
dogma.

It is not ruled out that the infrared renormalon still shows up
in higher orders of perturbation theory, say, at n ∼ 25, as discussed
in [15,16]. However, its contribution will be in any case smaller
than the condensate in Eq. (25) determined from perturbative se-
ries which looks like a geometric series and exhibits no factorial
growth of the coefficients.

It is amusing that the dual models independently provide a
mechanism of generating the quartic correction from short dis-
tances [see discussion in Eq. (8)]. The condensate in Eq. (8) is not
related to any divergence of the perturbative theory either. Thus,
two independent approaches result in similar pictures.

7. Phenomenology of 1/ Q 2 corrections

In this section we review results of numerical fits which keep
both a few-term perturbative series and a quadratic correction (as-
suming, therefore that considerably more perturbative terms are
needed to apply the duality).

7.1. Tachyonic gluon mass squared λ2

From the phenomenological point of view, it would be im-
portant to relate the quadratic corrections in various channels.
A model which turns successful in this respect is the introduc-
tion of a tachyonic gluon mass λ2 at short distances [3,4]. From
the calculational point of view one changes the gluon propagator:

Dab
μν

(
k2) = δabδμν

k2
→ δabδμν

k2

(
1 + λ2

k2

)
(26)

and checks that the quadratic correction is associated with large
momenta k2 ∼ Q 2. To the lowest order the analysis is gauge in-
variant. The model in Eq. (26) is purely heuristic in nature and can
be used only for estimates in conjunction with short perturbative
series.

7.2. Estimate of 〈αsG2〉 and of αsλ
2

One can extract these two parameters by using ratio of ex-
ponential QCD (spectral) sum rules in e+e− → hadrons data [5],
which is not sensitive to the leading αs corrections. It is worth
mentioning that FESR may not be appropriate for extracting such
small quantities, as it requires a cancellation of two large numbers
which depend on the high-energy parametrization of the spectral
function. This feature is signaled by the large range spanned by the
determinations of power corrections using FESR [39] and the dis-
crepancies of the estimated quadratic corrections in [40] and [41],
which both also differ from the one using the ratio of exponential
Borel/Laplace (LSR) used in [5].

In addition to previous channels, the gluon condensate can be
also obtained using a ratio of LSR for the J/ψ–ηc and Υ –ηb mass-
splittings, which has a minimum sensitivity on the heavy quark
mass effects and on the αs corrections [42].6

The resulting values of the parameters are [2,5,6,42]:〈
αsG2〉 = (6.8 ± 1.3) × 10−2 GeV4,

asλ
2 = −(6.5 ± 0.5) × 10−2 GeV2, (27)

where as ≡ αs/π and where the value of the gluon condensate
is about 2 times the original SVZ value as expected from Bell–
Bertlmann analysis [43].7

One can also use the pseudoscalar LSR for extracting asλ
2 [4].

Studying the stability of (mu + md) with respect to the change of
λ2, one obtains, at the stability region in λ, a reduction of the value
of light quark mass of about 5% and the corresponding λ-value:

asλ
2 = −(12 ± 6) × 10−2 GeV2, (28)

consistent with previous estimate from e+e→ hadrons data though
less accurate. Taking into account these uncertainties, we shall
consider the conservative value:

asλ
2 = −(7 ± 3) × 10−2 GeV2. (29)

These results indicate that these power corrections are small
though crucial for understanding the non-perturbative properties
of QCD. One can also notice that the new quadratic correction can
only slightly change the existing QSSR phenomenology because of
its smallness.

7.3. QCD (spectral) sum rule scales

Remarkably enough, the simple model in Eq. (26) brings in a
qualitative success, explaining various mass scales (details can be
found in the original paper [4]) revealed by analysis of the sum
rules [44]. To our knowledge, there is no alternative explanation of
the numerical hierarchy of such different scales.

6 Some estimates of 〈αs G2〉 in the existing literature suffer from correlation with
αs and mQ . We plan to reanalyze these sum rules.

7 A detailed comparison with the SVZ result can be found in [2].
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Table 1
QSSR predictions of the light quark masses in units of MeV to order α3

s and includ-
ing the 1/Q 2 correction. For translating (mu + md) into ms (and vice versa), we
have used the ChPT prediction for ms/(mu + md).

Channels (m̄u + m̄d)(2) m̄s(2) Ref.

LSR Pion 8.6(2.1) ⇒ 107.4(22.0) [2,4]
LSR Kaon – 119.6(18.4) [2]
τ -decay – 93(30) [7]
e+e− – 104.3(15.4) [8]

Average 8.7(1.3) ⇐ 106.2(15.4)

7.4. Light quark masses

Effects of quadratic corrections in the determinations of the
light quark masses have been studied in [2,4,8]. As anticipated
previously, the absolute value of |λ2| tends to lower by 5–6% the
values of (mu + md) and of ms running masses obtained from
(pseudo)scalar sum rules, while it tends to increase the value of
ms in e+e− and in τ -decay data. These different results and their
first published average are summarized in Table 1.

These results are in better agreement with some recent lattice
calculations based on non-perturbative normalization than the re-
cent global average given in [2,8] which includes determinations
without the 1/Q 2-term.

7.5. αs from τ -decay

One of the sensitive places where the effect of the quadratic
term can be important is the precise extraction of αs from τ -
decays [24,25]. One of the authors has presented recently [6] anal-
ysis of the effect of the quadratic correction on the determination
of αs . The result is:

αs(Mτ ) = 0.3249(29)ex(9)st(74)nst

⇒ αs(M Z )
∣∣
τ

= 0.1192(4)ex(1)st(9)nst(2)ev, (30)

where the errors are due respectively to the data, to the standard
and non-standard corrections and to the evolution from Mτ to M Z .
This value of αs is in agreement with existing estimates [13,27,45–
47] obtained using different appreciations of the non-perturbative
contributions and of the large order perturbative series. This result
agrees with the ones from the Z -width [27] and from a global fit
of electroweak data at O(α4

s ) [45]:

αs(M Z )
∣∣

N3 L O = 0.1191(27)exp(1)th, (31)

and with the most recent world average [48]:

αs(M Z )
∣∣
world = 0.1189(10). (32)

One can notice that the 1/Q 2 contribution tends to decrease the
value of αs obtained without this term and improves the agree-
ment with the world average.

8. Conclusions

In conclusion, our main point here is that large-order pertur-
bative and non-perturbative contributions mix up as a matter of
principle. The duality between these corrections is expected theo-
retically.

The duality, however, was thought to be confined to the
quadratic corrections. The most recent and intriguing development
is that this perturbative–non-perturbative duality might extend to
the quartic correction as well. Basing on the existence of the in-
frared renormalon in perturbation theory, one would not expect
that the quartic correction is calculable via the long perturbative
series. Therefore, it is a challenge to explain the numerical obser-
vations on the perturbative series [15–17].

The holographic approach [18] does suggest a mechanism for
generating quartic corrections at short distances but much more is
needed to be done to finally clarify the issue. In the holographic
language the quadratic correction looks as a stringy correction.8

Taken at face values, these observations accumulate to a dras-
tic change of expectations on behaviour of perturbative series at
higher orders in pure gluonic sector. Instead of factorial diver-
gences in the expansion coefficients and related power-like terms,
there are emerging convergent and calculable series, or dual to
the power-like terms. We scrutinized the newly emerging picture
against the phenomenology and did not find any flaws.

Existence of the infrared renormalon has never been proven
since it corresponds only to a subclass of all the graphs in a
given order of the perturbation theory. However, within the field-
theoretic formulation it is equally difficult to imagine that these
graphs are cancelled. The dual, or stringy formulation provides
an alternative view. Within these models it is the power correc-
tions which are calculable most directly. They are coming from
short distances. Therefore they should be calculable perturbatively
within the field theory and one gets explanation why the infrared-
renormalon graphs cancel.

Thus, small steps in the phenomenological analysis of the
power corrections might accumulate to produce a new insight to
the fundamental issues of QCD. It goes without saying that further
checks of the novel picture are needed.
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