Quaternionic matrices: Unitary similarity, simultaneous triangularization and some trace identities

Dragomir Ž. Doković *, Benjamin H. Smith

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received 11 August 2006; accepted 8 August 2007
Available online 10 October 2007
Submitted by R. Guralnick

Abstract

We construct six unitary trace invariants for $2 \times 2$ quaternionic matrices which separate the unitary similarity classes of such matrices, and show that this set is minimal. We have discovered a curious trace identity for two unit-speed one-parameter subgroups of $\text{Sp}(1)$. A modification gives an infinite family of trace identities for quaternions as well as for $2 \times 2$ complex matrices. We were not able to locate these identities in the literature.

We prove two quaternionic versions of a well known characterization of triangularizable subalgebras of matrix algebras over an algebraically closed field. Finally we consider the problem of describing the semi-algebraic set of pairs $(X, Y)$ of quaternionic $n \times n$ matrices which are simultaneously triangularizable. Even the case $n = 2$, which we analyze in more detail, remains unsolved.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 15A33; 15A18; 16R30

Keywords: Quaternionic matrices; Unitary similarity; Simultaneous triangularization; Trace identities; Semi-algebraic sets

* The first author was supported by an NSERC Discovery Grant, and the second by an NSERC Undergraduate Student Research Award.

* Corresponding author.

E-mail addresses: djokovic@uwaterloo.ca (D.Ž. Doković), bh2smith@uwaterloo.ca (B.H. Smith).

0024-3795/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2007.08.022
1. Introduction

We denote by \( \mathbb{R}, \mathbb{C}, \mathbb{H} \) the field of real numbers, complex numbers and the division ring of real quaternions, respectively. Throughout we use \( D \) to represent an element from the set \( \{ \mathbb{R}, \mathbb{C}, \mathbb{H} \} \) and \( M_n(D) \) denotes the algebra of \( n \times n \) matrices over \( D \). Also, we let \( \mathcal{U}_n(D) \) resp. \( \mathcal{L}_n(D) \) denote the space of upper resp. lower triangular matrices in \( M_n(D) \). In the case where \( D = \mathbb{H} \) we will omit parentheses and write \( M_n, U_n, L_n \).

The maximal compact subgroup of the general linear group \( GL_n(D), O(n) \) in the real case, \( U(n) \) in the complex case and \( Sp(n) \) in the quaternionic case, acts on \( M_n(D) \) by conjugation, i.e., \( (X, A) \mapsto XAX^{-1}, A \in M_n(D) \). It is an old problem to determine an explicit minimal set of generators for the algebra of polynomial invariants for this action. Explicit results are known (in all three cases) for small values of \( n \). Let us mention that the algebra of real polynomial \( Sp(n) \)-invariants is generated by the trace functions \( \text{Tr}(w(X, X^*)) \) where \( \text{Tr} : M_n \to \mathbb{R} \) is the quaternionic trace (see next section for definition) and \( w \) is any word in two letters.

The first question that we consider is that of separating the orbits of the above action by means of a minimal set of polynomial invariants. The real and complex cases have been studied extensively. For instance, Pearcy shows in [12] that \( A, B \in M_2(\mathbb{C}) \) are unitarily similar if and only if \( \text{tr}(X), \text{tr}(X^2) \) and \( \text{tr}(XX^*) \) take the same values on \( A \) and \( B \). He also gives a list of nine words in \( X \) and \( X^* \) whose traces distinguish the unitary orbits in \( M_3(\mathbb{C}) \). This is reduced to a minimal set of seven words by Sibirski˘ı [16]. As far as we know, there are no such results in the quaternionic case except for the case \( M_1 \), which is trivial.

In Section 3 we extend the first of Pearcy’s results to \( M_2 \), i.e., the \( 2 \times 2 \) quaternionic matrices. In this case we show that six words suffice (see Theorem 3.5), and that our set of six words is minimal.

In Section 4 we consider two unit-speed one-parameter subgroups of \( Sp(1) \), say \( \phi_p(s) = e^{ps}, \phi_q(t) = e^{qt} \) where \( p \) and \( q \) are pure quaternions of norm 1. We prove (Theorem 4.1) that the real part of \( \prod_{i=1}^{k} \phi_p(s_i)\phi_q(t_i); \quad s_i, t_i \in \mathbb{R} \) remains the same when \( p \) and \( q \) are switched.

This fact remains true for arbitrary pure quaternions \( p \) and \( q \) provided we take \( k = 2 \) and set \( s_1 = t_1 \) and \( s_2 = t_2 \). From here we obtain an infinite family of trace identities for quaternions (see Proposition 4.2 and it’s corollaries), which we were not able to find anywhere in literature. For instance we show that \( \text{Tr}(x^m y^m x^n y^n) = \text{Tr}(y^m x^n y^n x^n) \) is valid for all quaternions \( x, y \) and nonnegative integers \( m, n \). One can easily convert these identities into trace identities for \( M_2(\mathbb{C}) \).

Section 5 is about the simultaneous triangularization of subalgebras of \( M_n \). In [15] Radjavi and Rosenthal give several characterizations of triangularizability of unital subalgebras of finite dimensional linear operators over an algebraically closed field. By changing the equality in part (iv) of [15, Theorem 1.5.4] to an inequality we are able to extend that result to the quaternionic case (see Theorem 5.7). Next, we observe a peculiar polynomial equation which is satisfied on any triangularizable subalgebra \( \mathcal{A} \subseteq M_n \), namely that \( \text{Tr}([X, Y]^3) = 0 \), and we investigate its significance. We introduce the concept of quasi-triangularization (generalizing the triangularization) which refers to the possibility of obtaining a simultaneous block upper triangular form with
the diagonal blocks restricted to $M_1$ or $M_2(\mathbb{C})$. Based on our trace identity for complex matrices given in Section 4, we find that a unital subalgebra $\mathcal{A} \subseteq M_n$ is quasi-triangularizable if and only if the identity $\operatorname{Tr}([X, Y]_3) = 0$ is valid on $\mathcal{A}$.

In Section 6 we explore the semi-algebraic set $\mathcal{W}_n$ of pairs of quaternionic matrices which are simultaneously triangularizable. Hence $\mathcal{W}_n$ is generated from $\mathcal{W}_n \times \mathcal{W}_n$ via the simultaneous conjugation action of the group $\operatorname{GL}_n(\mathbb{H})$. One can replace here $\operatorname{GL}_n(\mathbb{H})$ by $\operatorname{Sp}(n)$ and deduce that $\mathcal{W}_n$ is closed (in the Euclidean topology). For generic $A \in M_n$, i.e., one with $n$ distinct eigenvalues, we find that the fibre of the first projection given in Section 4, we find that a unital subalgebra $J$ of $M_n$ is closed (in the Euclidean topology). For generic $A \in M_n$, i.e., one with $n$ distinct eigenvalues, we find that the fibre of the first projection $\mathcal{W}_n \to M_n$ is the union of $n!$ real vector spaces, each of dimension $2n(n + 1)$, with a pairwise intersection a common subspace of dimension $\geq 4n$. We deduce that the dimension of $\mathcal{W}_n$ is $2n(3n + 1)$. We also construct two infinite families of polynomial equations (and some inequalities) which are satisfied on $\mathcal{W}_n$.

The problem of pairwise triangularizability in $M_2$ is of special interest as the first nontrivial case of the above mentioned general problem. Here, the set $\mathcal{W}_2$ can be defined geometrically as the set of quaternionic matrix pairs which share a common eigenvector. In [6] Friedland describes exactly when this occurs in the complex case, see Theorem 7.1 below. In Section 7, we look at his result and attempt to extend it to the quaternionic case. We now give some details.

Let $P_2$ be the algebra of real polynomial functions on $M_2 \times M_2$, and $P'_2$ resp. $P''_2$ the sub-algebra of $\operatorname{GL}_2(\mathbb{H})$ resp. $\operatorname{Sp}(2)$-invariants. Let $J_2 \subseteq P_2$ be the ideal of functions that vanish on $\mathcal{W}_2$, and set $J'_2 = J_2 \cap P'_2$ and $J''_2 = J_2 \cap P''_2$. The Zariski closure $\bar{\mathcal{W}}_2$ of $\mathcal{W}_2$ is the set of common zeros of $J_2$, and the same is true for the ideal $J'_2$ of $P'_2$. While the codimension of $\mathcal{W}_2$ in $M_2 \times M_2$ is only 4, we can show that a minimal set of generators of $J'_2$ has cardinal $\geq 92$. Let $J'_m \subseteq J'_2 \subseteq P'_2$ be the ideal of $P'_2$ generated by all polynomials $f \in J'_2$ of (total) degree $\leq m$. We have constructed a minimal set of generators of $J'_m$ for $m \leq 14$ (see Table 2 for the generators of $J'_9$).

In the last section, 8, we state four open problems.

We thank the referee and R. Guralnick for their valuable comments and suggestions.

2. Preliminaries

Let $\mathbb{H} = \{a + ib + jc + kd : a, b, c, d \in \mathbb{R}\}$ represent the skew-field of real quaternions. We shall identify the field $\mathbb{C}$ with the subfield $\{a + ib : a, b \in \mathbb{R}\}$ of $\mathbb{H}$. For a quaternion $q = a + ib + jc + kd$ we define the norm, real part, pure part and conjugate of $q$ in the usual fashion as

$$|q|^2 := a^2 + b^2 + c^2 + d^2,$$
$$\Re(q) := a,$$
$$ib + jc + kd \quad \text{and}$$
$$\bar{q} := a - ib - jc - kd,$$

respectively. The adjoint of a matrix $A \in M_n$ is given by $A^* = \overline{A^{\top}}$, which is also known as the conjugate-transpose of $A$. With this, we can define the (compact) symplectic group, $\operatorname{Sp}(n)$, as the collection of quaternionic unitary matrices, namely

$$\operatorname{Sp}(n) := \{U \in M_n : U^*U = I_n\},$$
where $I_n$ is the identity matrix see e.g. [2]. Consider the equivalence relation $\sim$ defined on $M_n$ by the conjugation action of $\text{Sp}(n)$. To be precise, we have:

$$A \sim B \iff \exists U \in \text{Sp}(n), \quad A = UBU^{-1}.\,$$

This shall be referred to as $\text{Sp}(n)$-equivalence. We will speak of individual $\text{Sp}(n)$-equivalence class for a given matrix $A \in M_n$ and thus, denote this orbit by $O_A = \{UAU^{-1} : U \in \text{Sp}(n)\}$. It is well known that $M_n$ can be embedded nicely into $M_{2n}(\mathbb{C})$. For this purpose, given $A \in M_n$ we write

$$A = A_1 + jA_2$$

with $A_1, A_2 \in M_n(\mathbb{C})$. Then

$$\chi_n : M_n \to M_{2n}(\mathbb{C}), \quad \chi_n(A) = \begin{bmatrix} A_1 & -\bar{A}_2 \\ A_2 & \bar{A}_1 \end{bmatrix}$$

is an injective homomorphism of $\mathbb{R}$-algebras. From this, the quaternionic matrices inherit various analogous properties regarding invertibility, triangularizability, canonical forms, decomposition, determinants, numerical range and more. See [18] for detailed results on quaternionic linear algebra.

Given $A \in M_n$, there exists $P \in \text{GL}_n(\mathbb{H})$ such that $PAP^{-1} \in \mathbb{H}_n$ with successive diagonal entries $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ and imaginary parts $\Im(\lambda_i) \geq 0$. The sequence $(\lambda_1, \ldots, \lambda_n)$ is unique up to permutation and we refer to $\lambda_1, \ldots, \lambda_n$ as the eigenvalues of $A$. We shall use the word “eigenvalues”, in the context of quaternionic matrices, exclusively in this sense. Note that the eigenvalues of the complex matrix $\chi_n(A)$ are $\lambda_1, \ldots, \lambda_n$ and $\bar{\lambda}_1, \ldots, \bar{\lambda}_n$ (counting multiplicities).

We seek to classify exactly when two $2 \times 2$ quaternionic matrices are $\text{Sp}(2)$-equivalent using polynomial functions which remain constant on the equivalence classes. It is known that the algebra of polynomial invariants for complex matrices under the action of conjugation by unitary group is generated by a finite number of particular known trace functions on $M_n(\mathbb{C})$ for $n = 2, 3, 4$. Since $M_2$ embeds into $M_4(\mathbb{C})$ as seen by $\chi_2$, it is only natural to assume a classification of this type can be extended in some way to the quaternionic case. That is, we should be capable of defining explicitly which functions separate orbits.

First, we will need to introduce the notion of trace for quaternions and matrices of such which will be preserved by $\chi_n$ above. For the general definition of the reduced trace and the reduced norm for central simple algebras we refer the reader to [13,7].

**Definition 2.1.** The quaternionic trace of $A = [a_{ij}] \in M_n$ is,

$$\text{Tr}(A) := \sum_{i=1}^{n} (a_{ii} + \bar{a}_{ii}) = 2\Re\left(\sum_{i=1}^{n} a_{ii}\right).$$

In particular, when $n = 1$ we have

$$\text{Tr}(q) = q + \bar{q} = 2\Re(q).$$

It is important to notice the clear distinction between the usual trace, $\text{tr}$, on a matrix algebra over a field and the quaternionic analog presented above. For instance, we have $\text{tr}I_n = n$ while $\text{Tr}I_n = 2n$. Some properties which follow directly from our definition as well as the simple fact that $\Re(pq) = \Re(qp)$ for all quaternions $p, q$ are as follows:

- $(1) \text{Tr}(A) = \text{tr}\chi_n(A)$
- $(2) \text{Tr}(A + B) = \text{Tr}(A) + \text{Tr}(B)$
- $(3) \text{Tr}(\lambda A) = \lambda \text{Tr}(A), \quad \lambda \in \mathbb{R}$
(4) $\text{Tr}(AB) = \text{Tr}(BA)$
(5) $\text{Tr}(w(PP^{-1}, BP^{-1})) = \text{Tr}(w(A, B))$
(6) $\text{Tr}(w(UA, U^*A^*)) = \text{Tr}(w(A, A^*))$

Observe, properties (2), (3) and (6) tell us that the quaternionic trace of any $\mathbb{R}$-linear combination of any words on $\{A, A^*\}$ is invariant under the action of $\text{Sp}(n)$.

3. $\text{Sp}(2)$-equivalence of matrices

For our purposes it is essential to introduce the following six trace polynomials on $M_2$:

$$(p_1, p_2, p_3, p_4, p_5, p_6) := \text{Tr}(A, A^2, A^3, AA^*, A^2A^*)$$

We proceed in showing that these form a minimal set of $\text{Sp}(2)$-invariants that separate orbits in $M_2$.

Let us first describe a simple canonical form for $2 \times 2$ quaternionic matrices under $\text{Sp}(2)$-equivalence.

Definition 3.1. Denote by $\mathcal{K}$ the set of all matrices of the form

$$A = \begin{bmatrix} \alpha & z \\ 0 & \beta \end{bmatrix},$$

such that $\alpha, \beta \in \mathbb{C}$; $\Im(\alpha), \Im(\beta) \geq 0$; $z = z_1 + jz_3$; $z_1, z_3 \geq 0$; and if $\alpha$, or $\beta$ is real then $z_3 = 0$.

Notice that $\mathcal{K}$ is a semi-algebraic set of dimension 6. Eventually, we will see $\mathcal{K}$ intersects each $\text{Sp}(2)$-equivalence class at either one or two points. The following result shows that $\mathcal{K}$ meets every orbit $O_A$ at least once.

Lemma 3.2. Every $2 \times 2$ quaternionic matrix is $\text{Sp}(2)$-equivalent to some matrix $A \in \mathcal{K}$.

Proof. First, by the generalization of Schur’s theorem for quaternionic matrices found in [18] any matrix in $M_2$ is $\text{Sp}(2)$-equivalent to a matrix of the form

$$\begin{bmatrix} \alpha & z \\ 0 & \beta \end{bmatrix},$$

with $\alpha, \beta \in \mathbb{C}$; and $\Im(\alpha), \Im(\beta) \geq 0$. If we write $z = c_1 + jc_2$; $c_1, c_2 \in \mathbb{C}$, we can reduce our matrix as follows:

$$\begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix} \begin{bmatrix} \alpha & c_1 + jc_2 \\ 0 & \beta \end{bmatrix} \begin{bmatrix} u^{-1} & 0 \\ 0 & v^{-1} \end{bmatrix} = \begin{bmatrix} \alpha & |c_1| + j|c_2| \\ 0 & \beta \end{bmatrix}.$$

It suffices to choose unit complex numbers $u$ and $v$ such that $uc_1v^{-1} = |c_1|$ and $uc_2v^{-1} = |c_2|$, which is always possible. If, say, $\beta$ is real then we can set $u = 1$ and choose a unit quaternion $v$ such that $zv^{-1}$ is real nonnegative. \( \square \)

Now we provide a technical result which simplifies the form of $p_6$ when restricted to $\mathcal{K}$. This will be useful for later computations.
Lemma 3.3. Let $A = \begin{bmatrix} \alpha & z \\ 0 & \beta \end{bmatrix}$ be as in Definition 3.1. In particular $z = z_1 + jz_3$ with $z_1, z_3 \geq 0$. Then,

$$\frac{1}{2} p_6(A) = |\alpha|^4 + |\beta|^4 + |\alpha + \beta|^2 |z|^2 + z_1^2 (\alpha - \bar{\alpha})(\beta - \bar{\beta}).$$

Proof. We have

$$p_6(A) = \text{Tr}(A^2A^{*2}) = 2(|\alpha|^4 + |\beta|^4 + (|\alpha|^2 + |\beta|^2)|z|^2 + 2\Re(\alpha z\bar{\beta}z)).$$

and

$$z\bar{\beta}z = (\bar{\beta}z_1^2 + \beta z_3^2) + jz_1z_3(\beta + \bar{\beta}).$$

Notice that the second term above is a pure quaternion even upon multiplication by $\alpha$ and so has zero real part. So

$$2\Re(\alpha z\bar{\beta}z) = z_1^2(\alpha\bar{\beta} + \bar{\alpha}\beta) + z_3^2(\alpha\beta + \bar{\alpha}\bar{\beta})$$

$$= |z|^2(\alpha\beta + \bar{\alpha}\bar{\beta}) + z_3^2(\alpha\beta + \bar{\alpha}\beta - \alpha\beta + \bar{\alpha}\bar{\beta})$$

$$= |z|^2(\alpha\beta + \bar{\alpha}\bar{\beta}) + z_1^2(\alpha - \bar{\alpha})(\beta - \bar{\beta}).$$

With this formulation in place, we can classify $\text{Sp}(2)$-equivalence between matrices which lie in $\mathcal{K}$. In fact we shall prove that an orbit $\mathcal{O}_A$ meets $\mathcal{K}$ in two points when $A$ has distinct eigenvalues and in a single point otherwise.

Theorem 3.4. If $A = \begin{bmatrix} \alpha & z \\ 0 & \beta \end{bmatrix}$ and $B = \begin{bmatrix} \gamma & w \\ 0 & \delta \end{bmatrix}$ belong to $\mathcal{K}$, then

$$A \sim B \iff z = w \quad \text{and} \quad \{\alpha, \beta\} = \{\gamma, \delta\}.$$

Proof. When $A \sim B$ we get from $p_k(A) = p_k(B)$, $k \in \{1, 2, 3, 4\}$, that the sets of eigenvalues, $\{\alpha, \beta, \bar{\alpha}, \bar{\beta}\}$ and $\{\gamma, \delta, \bar{\gamma}, \bar{\delta}\}$, for $\chi_2(A)$, $\chi_2(B)$ are the same. So we get that $\{\alpha, \beta\} = \{\gamma, \delta\}$ as well. Also, from $p_5(A) = p_5(B)$ which is $|\alpha|^2 + |\beta|^2 + |z|^2 = |\gamma|^2 + |\delta|^2 + |w|^2$, we can see that $|z|^2 = |w|^2$. Recall that $z = z_1 + jz_3$ and $w = w_1 + jw_3$, where $z_1, z_3, w_1, w_3$ are real and nonnegative. Now, $p_6(A) = p_6(B)$ and Lemma 3.3 above show that $z_1^2 = w_1^2$, and since both $z_1$ and $w_1$ are nonnegative we have $z_1 = w_1$. It follows that also $z = w$.

To prove the converse, we may assume that $A \neq B$. Thus $\delta = \alpha, \gamma = \beta$ and $\alpha \neq \beta$. So, we know $A$ is $\text{Sp}(2)$-equivalent to a matrix $A' = \begin{bmatrix} 0 & w \\ \beta & 0 \end{bmatrix} \in \mathcal{K}$, since Schur’s theorem allows us to place the eigenvalues in any order along the diagonal. Hence, by the first part of the proof and the hypothesis we have $w' = z = w$ and so $A \sim A' = B$. \hfill \Box

With Lemma 3.2 along with Theorem 3.4, we have reached the promised canonical form for $2 \times 2$ quaternionic matrices under $\text{Sp}(2)$-equivalence. It is unique up to permutation of the diagonal entries.

Now we may begin looking to find polynomial invariants which separate the $\text{Sp}(2)$-equivalence classes. Also, it is ideal for computational purposes to obtain the least number of these polynomials which do the job.

Theorem 3.5. Two matrices $A, B \in M_2$ are $\text{Sp}(2)$-equivalent if and only if the following six equations hold:
Table 1
Examples for minimality

1. \[
\begin{bmatrix}
\sqrt{3} - i & 0 \\
0 & -\sqrt{3} + i
\end{bmatrix}
\begin{bmatrix}
-\sqrt{3} + i & 0 \\
0 & -\sqrt{3} - i
\end{bmatrix}
\]

2. \[
\begin{bmatrix}
2 + i & 1 \\
0 & -2 - i
\end{bmatrix}
\begin{bmatrix}
1 + 2i & -1 \\
0 & -1 - 2i
\end{bmatrix}
\]

3. \[
\begin{bmatrix}
-1 + 2i & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
-1 & 0 \\
0 & 1 + 2i
\end{bmatrix}
\]

4. \[
\begin{bmatrix}
0 & \sqrt{6} + j \\
0 & \sqrt{2} - i
\end{bmatrix}
\begin{bmatrix}
i & \sqrt{3} + 2j \\
0 & -i
\end{bmatrix}
\]

5. \[
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\]

6. \[
\begin{bmatrix}
i & 1 \\
0 & i
\end{bmatrix}
\begin{bmatrix}
i & j \\
0 & j
\end{bmatrix}
\]

\[
\text{Tr}(A^i) = \text{Tr}(B^i), \ i \in \{1, 2, 3, 4\};
\]
\[
\text{Tr}(AA^*) = \text{Tr}(BB^*);
\]
\[
\text{Tr}(A^2 A^*^2) = \text{Tr}(B^2 B^*^2),
\]

\[i.e., \ p_k(A) = p_k(B) \text{ for } 1 \leq k \leq 6. \text{ Moreover, this is a minimal set of invariants with the mentioned property.}\]

**Proof.** First, if \(A \sim B\), our trace equations are trivially satisfied as \(\text{Tr}(A A^*) = \text{Tr}(B B^*)\) for all words \(w\) on two letters.

Conversely, suppose the given set of traces match for \(A\) and \(B\). By Lemma 3.2 we may assume that

\[A = \begin{bmatrix} \alpha & z \\ 0 & \beta \end{bmatrix}, \quad B = \begin{bmatrix} \gamma & w \\ 0 & \delta \end{bmatrix} \in \mathcal{K}.\]

We know the first four invariants of \(A, B\) uniquely determine the sets \(\{\alpha, \beta\}, \{\gamma, \delta\}\) respectively and since these invariants are the same, we have that these sets are equal. It remains to show that \(z = w\) which can be done using \(p_5\) and \(p_6\). We have from \(p_5(A) = p_5(B)\) that

\[|\alpha|^2 + |\beta|^2 + |z|^2 = |\gamma|^2 + |\delta|^2 + |w|^2.\]

As \(\{\alpha, \beta\} = \{\gamma, \delta\}\), we have \(|z| = |w|\). Similarly, from \(p_6(A) = p_6(B)\) and Lemma 3.3 we get

\[|\alpha|^4 + |\beta|^4 = |\alpha + \bar{\beta}|^2 |z|^2 + (\alpha - \bar{\alpha})(\bar{\beta} - \beta) = |\gamma|^4 + |\delta|^4 + |\gamma + \bar{\delta}|^2 |z|^2 + w_1^2 (\gamma - \bar{\gamma})(\delta - \bar{\delta}),\]

and so \(z_1^2 = w_1^2\). From our description of \(\mathcal{K}\) we know \(z_1, w_1 \geq 0\). This implies that \(z_1 = w_1\) and thus, \(z = w\). Now, it follows from Theorem 3.4 that \(A \sim B\).

Finally, to prove minimality, we provide pairs of matrices, each of which agree on all but one invariant from our list. In Table 1 the matrices in the \(k\)th row have distinct values of \(p_k\) only.

Thus, we have shown that our set of invariants is minimal. \(\square\)

Let us point out that the complex analog of this theorem is not valid. The reason is that, in the complex case, the polynomial invariants do not separate the orbits.
4. Some trace identities for quaternions

It is well known that every one parameter subgroup of Sp(1) has the form
\[ \phi_p(s) = e^{sp} := \sum_{i \geq 0} \frac{1}{i!} s^i p^i, \quad s \in \mathbb{R} \]
for a unique pure quaternion \( p \). Note that \( \phi_{\lambda p}(s) = \phi_p(\lambda s) \) for all real \( \lambda \) and
\[
u \phi_p(s)u^{-1} = \phi_{u p u^{-1}}(s) \tag{4.1}
\]
for any nonzero quaternion \( u \).

**Theorem 4.1.** If \( p \) and \( q \) are pure unit quaternions, then
\[
\text{Tr} \left( \prod_{i=1}^{k} \phi_p(s_i)\phi_q(t_i) \right) = \text{Tr} \left( \prod_{i=1}^{k} \phi_q(s_i)\phi_p(t_i) \right) \tag{4.2}
\]
is valid for any real numbers \( s_1, \ldots, s_k \) and \( t_1, \ldots, t_k \).

**Proof.** Since \( |p| = |q| = 1 \) there exists a 180°-rotation, in the three-dimensional space of pure quaternions, which interchanges \( p \) and \( q \). Consequently, there exists a pure unit quaternion \( u \) such that \( u p u^{-1} = q \) and \( u q u^{-1} = p \) (if \( p + q \neq 0 \) one can choose \( u \) in the direction of \( p + q \), and otherwise just to be orthogonal to \( p \)). It suffices now to observe that conjugation by \( u \) interchanges the two products in (4.2). □

The identity (4.2) is not valid for arbitrary pure quaternions \( p \) and \( q \). Let us look at the special cases where
\[
s_1 = t_1, s_2 = t_2, \ldots, s_k = t_k. \tag{4.3}
\]

**Proposition 4.2.** Let \( p \) and \( q \) be arbitrary pure quaternions, then

(a) For every \( s, t \in \mathbb{R} \), we have
\[
\text{Tr}(\phi_p(s)\phi_q(t)\phi_p(s)\phi_q(t)) = \text{Tr}(\phi_q(s)\phi_p(s)\phi_q(t)\phi_p(t));
\]
(b) When at least two of \( r, s, t \in \mathbb{R} \) are equal, we have
\[
\text{Tr}(\phi_p(r)\phi_q(r)\phi_p(s)\phi_q(s)\phi_p(t)\phi_q(t)) = \text{Tr}(\phi_q(r)\phi_p(r)\phi_q(s)\phi_p(s)\phi_q(t)\phi_p(t)).
\]

**Proof.** Let us prove (a). We can write \( p = \lambda p_0 \) and \( q = \mu q_0 \), where \( p_0 \) and \( q_0 \) are pure unit quaternions and \( \lambda, \mu \geq 0 \). From (4.1) we may assume that \( p_0 = i \) and \( q_0 = i \cos \rho + j \sin \rho \). Then we have
\[
\phi_p(s) = \phi_{\lambda p_0}(s) = \phi_{p_0}(\lambda s) = \cos \lambda s + i \sin \lambda s, \\
\phi_q(s) = \cos \mu s + (i \cos \rho + j \sin \rho) \sin \mu s.
\]
Next we get that
\[
\phi_p(s) \phi_q(s) = \cos \lambda s \cos \mu s - \sin \lambda s \sin \mu s \cos \rho \\
+ i(\cos \lambda s \sin \mu s \cos \rho + \sin \lambda s \cos \mu s) \\
+ j \cos \lambda s \sin \mu s \sin \rho \\
+ k \sin \lambda s \sin \mu s \sin \rho.
\]

From here, we compute the product \(\phi_p(s_1) \phi_q(s_1) \phi_p(s_2) \phi_q(s_2)\) and verify (we did it using Maple) that its real part remains the same when \(p\) and \(q\) are switched. Hence, proving part (a).

The proof of the part (b) is similar and we omit the details. \(\Box\)

A discrete version of the last proposition can be extended to arbitrary quaternions \(x, y\) by considering their polar decompositions. Thus, we have the following corollary.

**Corollary 4.3.** Let \(m, n, r\) be nonnegative integers. Then
\[
\text{Tr}(x^m y^n x^n y^n) = \text{Tr}(y^m x^n y^n x^n)
\]
is valid for all \(x, y \in \mathbb{H}\). If \(m, n, r\) are not distinct, then
\[
\text{Tr}(x^m y^n x^n y^n x^n y^n x^n) = \text{Tr}(y^m x^n y^n x^n y^n x^n y^n x^n)
\]
is also valid.

As a result of this identity for quaternions we obtain another important corollary about \(M_2(\mathbb{C})\).

**Corollary 4.4.** Let \(m, n, r\) be nonnegative integers. Then
\[
\text{tr}(x^m y^n x^n y^n) = \text{tr}(y^m x^n y^n x^n)
\]
is valid for all \(x, y \in M_2(\mathbb{C})\). If \(m, n, r\) are not distinct, then
\[
\text{tr}(x^m y^n x^n y^n x^n y^n x^n) = \text{tr}(y^m x^n y^n x^n y^n x^n y^n x^n)
\]
is also valid.

**Proof.** We have a direct decomposition \(M_2(\mathbb{C}) = \chi_1(\mathbb{H}) \oplus i\chi_1(\mathbb{H})\). Since the left hand side is a complex analytic polynomial (in eight indeterminates) which we know from Corollary 4.3 vanishes on \(\chi_1(\mathbb{H})\), it follows that this polynomial must be identically zero and our identity holds. \(\Box\)

The referee supplied a simple proof of these two corollaries for any algebra with trace. For simplicity we sketch his argument in the setting of Corollary 4.3. By expanding products, one can easily check that the identity
\[
\text{Tr}((a + bx)(c + dy)(e + fx)(g + hy)) = \text{Tr}((c + dy)(a + bx)(g + hy)(e + fx))
\]
holds for all real scalars \(a, b, c, d, e, f, g, h\) and quaternions \(x, y\). This implies the first identity since \(x^m = u + vx\) etc for some real scalars \(u, v\). The second identity can be deduced from the first by using the fact that the elements of \(\mathbb{H}\) are quadratic over \(\mathbb{R}\).

For convenience we shall use the standard notation for the commutator. That is \([A, B] := AB - BA\). Notice that
\[\text{Tr}([A, B]^3) = 3\text{Tr}(A^2B^2AB - B^2A^2BA) = -3\text{Tr}(AB^2A[A, B]),\] 

as this will be useful for further results.

5. Triangularizable subalgebras of \(M_n\)

A set \(\mathcal{S} \subseteq M_n(D)\) is triangularizable if there is a \(P \in \text{GL}_n(D)\) such that \(P\mathcal{S}P^{-1} \subseteq \mathcal{U}_n(D)\). In the recent book [15] one can find several characterizations of triangularizable complex subalgebras of \(M_n(\mathbb{C})\). Some of these results can be easily transferred to the quaternionic case while others are no longer valid. In particular, it is trivial to see that the next proposition does not hold for the quaternionic case. First, we introduce the notion of permutable functions.

**Definition 5.1.** Let \(\mathcal{S} \subseteq M_n(D)\) be a collection of matrices. For a function \(f\) on \(M_n(D)\), taking values in the center of \(D\), we say \(f\) is permutable on \(\mathcal{S}\) if

\[f(A_1A_2\cdots A_k) = f(A_{\sigma(1)}A_{\sigma(2)}\cdots A_{\sigma(k)})\]

for all \(A_1, A_2, \ldots, A_k \in \mathcal{S}\) and all permutations \(\sigma\) of \(\{1, 2, \ldots, k\}\).

One can find in [14] the following characterization of triangularizable subalgebras of \(M_n(\mathbb{C})\). See [8] for generalization to other fields.

**Proposition 5.2.** Let \(\mathcal{A} \subseteq M_n(\mathbb{C})\) be a unital complex subalgebra. Then \(\mathcal{A}\) is triangularizable if and only if trace is permutable on \(\mathcal{A}\).

The analogous assertion for (real) subalgebras of \(M_n\) is invalid because \(\text{Tr}\) is not permutable on \(\mathcal{U}_n\). This is due to the lack of commutativity of \(\mathbb{H}\).

To prove our result giving a characterization of triangularizable subalgebras of \(M_n\) we shall use the concept of quaternionic representations of real algebras.

**Definition 5.3.** Let \(\mathcal{A}\) be an associative unital \(\mathbb{R}\)-algebra. A quaternionic representation of \(\mathcal{A}\) is a \(\mathbb{R}\)-algebra homomorphism

\[\rho : \mathcal{A} \rightarrow \text{End}_H(\mathcal{V}),\]

where \(\mathcal{V}\) is a right quaternionic vector space. We also say that \(\mathcal{V}\) is a quaternionic (left) \(\mathcal{A}\)-module. We say that \(\rho\) is irreducible if \(\mathcal{V}\) is non-zero and has no proper non-zero \(\mathcal{A}\)-invariant quaternionic subspaces.

Let us briefly outline the basic facts regarding quaternionic representations of finite-dimensional unital \(\mathbb{R}\)-algebras \(\mathcal{A}\). If \(\mathcal{R}\) is the radical of \(\mathcal{A}\), then \(\mathcal{A}/\mathcal{R} \cong \mathcal{A}_1 \times \cdots \times \mathcal{A}_s\), where each \(\mathcal{A}_i\) is a simple algebra. Thus, each \(\mathcal{A}_k\) is isomorphic to one of the algebras \(M_r(\mathbb{R})\), \(M_r(\mathbb{C})\) or \(M_r(\mathbb{H})\), for some integer \(r \geq 1\). In each of these three cases, the right quaternionic space \(\mathbb{H}^r\) (column vectors) is an irreducible quaternionic \(\mathcal{A}_k\)-module, and also an irreducible quaternionic \(\mathcal{A}\)-module. In this way we obtain all irreducible quaternionic \(\mathcal{A}\)-modules (up to isomorphism). Moreover, the \(\mathcal{A}\)-modules arising for different values of \(k\) are pairwise non-isomorphic.
Remark 5.4. Let us also mention another useful fact: There exists a subalgebra $B \subseteq A$ such that $A = R \oplus B$ see [13, Wedderburn–Malcev Theorem, p. 209].

The following proposition plays a crucial role in the sequel.

Proposition 5.5. Let $A \subseteq M_n$ be a unital subalgebra and $\rho : A \rightarrow M_r$ an irreducible quaternionic representation. Let $p(x, y)$ be a polynomial, in two non-commuting variables $x$ and $y$, with real coefficients. If the inequality
\[ \text{Tr}(p(x, y)) \leq 0 \]
is satisfied for all $x, y \in A$, then it is also satisfied for all $x, y \in \rho(A)$. The same assertion remains valid if the inequality sign is replaced by equality.

Proof. If $R$ is the radical of $A$, then $A / R \cong A_1 \times \cdots \times A_s$, where each $A_i$ is a simple algebra. Let $W_k$ be the unique (up to isomorphism) irreducible quaternionic module of $A_k$. Then $W_1, \ldots, W_s$ are representatives of the isomorphism classes of irreducible quaternionic $A$-modules and let $\rho_1, \ldots, \rho_s$ be their corresponding representations. Let $0 = V_0 \subset V_1 \subset \cdots \subset V_n = H^n$ be a Jordan–Hölder series of $H^n$ (viewed as a quaternionic $A$-module). Denote by $n_k$ the number of indices $i \in \{1, 2, \ldots, m\}$ such that $V_i / V_{i-1} \cong W_k$. As $H^n$ is a faithful $A$-module, we have $n_k \geq 1$ for each $k$. For any $x, y \in A$, we have
\[ \text{Tr}(p(x, y)) = \sum_{i=1}^s n_i \text{Tr}(p(\rho_i(x), \rho_i(y))). \]
By the above remark, for a fixed $k \in \{1, 2, \ldots, s\}$ and any $x_k, y_k \in \rho_k(A)$ there exist $x, y \in A$ such that $\rho_k(x) = x_k, \rho_k(y) = y_k$, while $\rho_l(x) = \rho_l(y) = 0$ for $l \neq k$. For such $x, y$ we have
\[ \text{Tr}(p(x, y)) = n_k \text{Tr}(p(x_k, y_k)). \]
As $n_k \geq 1$ and $\text{Tr}(p(x, y)) \leq 0$, we conclude that $\text{Tr}(p(x_k, y_k)) \leq 0$. Since the representation $\rho$ is equivalent to some $\rho_k$, The first assertion is proved.

The second assertion is a consequence of the first. □

We shall also need the following easy lemma.

Lemma 5.6. Let $A = M_r(D)$ where $D \in \{R, \mathbb{C}, \mathbb{H}\}$.

1. If $\text{Tr}([A, B]^2) \leq 0$ holds for all $A, B \in A$ then $r = 1$.
2. $\text{Tr}([A, B]^3) = 0$ holds true in $A$ if and only if either $r = 1$ or $r = 2$ and $D \in \{R, \mathbb{C}\}$.

Proof. To prove (1), suppose $r = 2$ then the matrix pair
\[ A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \]
has $\text{Tr}([A, B]^2) = 4 > 0$. If $r \geq 3$, we may extend the matrices $A, B$ with rows and columns of zeros to see that inequality does not hold. Hence, we must have that $r = 1$.

Next we prove (2). If $r = 1$ or $r = 2$ and $D \in \{R, \mathbb{C}\}$ then Corollaries 4.3 and 4.4 give $\text{Tr}([A, B]^3) = 0$ on $A$. 

To prove the converse, we proceed by contradiction. If \( r = 2 \) and \( D = \mathbb{H} \) then
\[
A = \begin{bmatrix} 0 & 1 \\ 0 & j \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ i & 0 \end{bmatrix}
\]
satisfy \( \text{Tr}([A, B]^3) = -4 \neq 0 \). Similarly, for \( r \geq 3 \) we see our equality is invalid even for \( D = \mathbb{R} : \)
\[
A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
\]
have \( \text{Tr}([A, B]^3) = -6 \neq 0 \). Thus, by our argument in part (1) we are done. \( \square \)

The following theorem is a quaternionic version of Theorem 1.5.4 from [15]. The only change in the wording appears in part (4) where we have replaced their equality with an inequality.

**Theorem 5.7.** For a unital subalgebra \( \mathcal{A} \subseteq M_n \), the following are equivalent:

1. \( \mathcal{A} \) is triangularizable.
2. If \( A, B \in \mathcal{A} \) are nilpotent then so is \( A + B \).
3. If at least one of \( A, B \in \mathcal{A} \) is nilpotent then so is \( AB \).
4. \( \text{Tr}([A, B]^2) \leq 0 \) for all \( A, B \in \mathcal{A} \).

**Proof.** First, if we assume (1) holds then it is trivial to see that (2)–(4) are all satisfied.

Conversely, suppose at least one of (2), (3) or (4) holds. As in the proof of Proposition 5.5, choose a Jordan–Hölder series \( 0 = V_1 \subset V_2 \subset \cdots \subset V_m = \mathbb{H}^n \) for the quaternionic \( \mathcal{A} \)-module \( \mathbb{H}^n \). Let \( n_k \) be the quaternionic dimension of the quotient \( W_k = V_k/V_{k-1} \). It suffices to show that each \( n_k = 1 \).

There is a \( Q \in \text{GL}_n(\mathbb{H}) \) such that \( Q \mathcal{A} Q^{-1} \) consists of block upper triangular matrices with successive diagonal blocks square of size \( n_k \), \( k = 1, \ldots, m \). For any \( X \in \mathcal{A} \) let \( \rho_k(X) \) denote the \( k \)-th diagonal block of size \( n_k \) of the matrix \( QXQ^{-1} \). Each \( \rho_k(\mathcal{A}) \) is a simple real algebra isomorphic to \( M_{n_k}(D_k) \) with \( D_k \in \{ \mathbb{R}, \mathbb{C}, \mathbb{H} \} \). By Noether–Skolem Theorem we may assume that \( Q \) is chosen so that each \( \rho_k(\mathcal{A}) = M_{n_k}(D_k) \).

If (2) or (3) holds then \( n_k = 1 \) because otherwise the pair of nilpotent matrices \( \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \) will add and multiply to a matrix which is not nilpotent. If (4) holds, then Lemma 5.6 gives that \( n_k = 1 \). \( \square \)

**Remark 5.8.** The equivalence of (1)–(3) was also mentioned by Kermani at the recent ILAS Conference [10].

Our next objective is to characterize subalgebras of \( M_n \) that satisfy the identity \( \text{Tr}([X, Y]^3) = 0 \). For that purpose we need the concept of quasi-triangularizability which we now define.

Let us define a \( \{1, 2\} \)-sequence as a sequence \( \sigma = (\sigma_1, \sigma_2, \ldots, \sigma_m) \) of integers from \( \{1,2\} \). We say that \( m \) is its length and \( |\sigma| = \sigma_1 + \cdots + \sigma_m \) is its size. Assuming that \( |\sigma| = n \), we denote by \( M_\sigma \) the subalgebra of \( M_n \) consisting of all block triangular matrices.
A unital subalgebra $P$ by q.t.) if $Q \in \text{GL}_n(\mathbb{H})$ and some $\{1, 2\}$-sequence $\sigma$ of size $n$. (If all $\sigma_i$ can be taken to be 1, then $\mathcal{A}$ is triangularizable.)

**Theorem 5.10.** A unital subalgebra $\mathcal{A} \subseteq M_n$ is q.t. if and only if $\text{Tr}([A, B]^3) = 0$ for all $A, B \in \mathcal{A}$.

**Proof.** If $\mathcal{A} \subseteq M_n$ is q.t., then for $A, B \in \mathcal{A}$ there is a $P \in \text{GL}_n(\mathbb{H})$ and a $\{1, 2\}$-sequence $\sigma$ with $|\sigma| = n$ such that $P \mathcal{A} P^{-1} \subseteq M_\sigma$. For $A, B \in \mathcal{A}$ with diagonal blocks, denoted $A_1, \ldots, A_k$ and $B_1, \ldots, B_k$ for $PAP^{-1}, PB^{-1}$ respectively, we see that all satisfy the trace identity proven in Corollary 4.4. In particular the identity holds for integers $(m, n) = (2, 1)$. By Lemma 5.6 and the identity (4.4), we have

$$\text{Tr}([A, B]^3) = \sum_{i=1}^{k} \text{Tr}([A_i, B_i]^3) = 0.$$ 

Conversely, suppose that any $A, B \in \mathcal{A}$ satisfy the given identity. If $\mathcal{R}$ is the radical of $\mathcal{A}$ then we know that $\mathcal{A}/\mathcal{R} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_s$ where the $\mathcal{A}_i$’s are simple $\mathbb{R}$-algebras. That is, for each $i \in \{1, \ldots, s\}$ we have that $\mathcal{A}_i \cong M_{\rho_i}(D_i)$, for some positive integer $r$ and $D_i \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$. Proposition 5.5 guarantees that our trace identity remains true on each $\mathcal{A}_i$. Thus, Lemma 5.6 implies that the possibilities for $r_i$ and $D_i$ can be reduced to exactly one of $r_i = 1$ and $D_i \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ or $r_i = 2$ and $D_i \in \{\mathbb{R}, \mathbb{C}\}$.

Next, as in the proof of Proposition 5.5, we choose a Jordan–Hölder series $0 = V_0 \subset V_1 \subset \cdots \subset V_m = \mathbb{H}^n$ for the quaternionic $\mathcal{A}$-module $\mathbb{H}^n$. From the fact just proved above it follows that each irreducible quotient $V_i/V_{i-1}$ has quaternionic dimension $\sigma_i = 1$ or 2. Consequently, there exists $Q \in \text{GL}_m(\mathbb{H})$ such that $Q \mathcal{A} Q^{-1}$ is contained in the subalgebra of $M_n$ consisting of the block upper triangular matrices whose successive diagonal blocks have sizes given by the $\{1, 2\}$-sequence $\sigma = (\sigma_1, \ldots, \sigma_m)$ of size $n$. For any $X \in \mathcal{A}$ let $\rho_i(X)$ denote the $i$th diagonal block of the matrix $QXQ^{-1}$.

Assume that $\sigma_i = 2$. Then $\rho_i(\mathcal{A})$ is a unital subalgebra of $M_2$ isomorphic to $M_2(\mathbb{R})$ or $M_2(\mathbb{C})$. By Noether–Skolem theorem see [13, p.230], there exists a matrix $P_i \in \text{GL}_2(\mathbb{H})$ such that the subalgebra $P_i \rho_i(\mathcal{A})P_i^{-1}$ is exactly equal to $M_2(\mathbb{R})$ or $M_2(\mathbb{C})$, respectively. If $\sigma_i = 1$ we just set $P_i = [1]$. Let $P \in \text{GL}_n(\mathbb{H})$ be the block diagonal matrix with successive diagonal blocks $P_1, \ldots, P_m$. Then we have $PQ \mathcal{A} Q^{-1} P^{-1} \subseteq M_\sigma$. Therefore, $\mathcal{A}$ is quasi-triangularizable. □

The referee remarks that the theory of polynomial identities (see e.g. [4]) is relevant for the last theorem. The algebras $\mathbb{H}$, $M_2(\mathbb{R})$ and $M_2(\mathbb{C})$ all satisfy the same polynomial identities over $\mathbb{R}$ because they are all central simple of dimension 4 over their respective centers, which need not
be \( \mathbb{R} \). Thus a unital subalgebra \( \mathcal{A} \) is quasi-triangularizable if and only if \( \mathcal{A} / \mathcal{R} \) satisfies all the polynomial identities of \( M_2(\mathbb{R}) \).

### 6. Simultaneously triangularizable matrix pairs

The pairs of matrices over a field that are Simultaneously triangularizable have been studied for a long time, see e.g. the book [15] and its references. Most of the known results deal with the problem of characterizing such matrix pairs. On the other hand the set of all such matrix pairs does not have a simple description, apart from a particular case which will be mentioned in the next section. In this section we make several observations concerning this problem for quaternionic matrices.

Let us start with the definition.

**Definition 6.1.** We denote by \( \mathcal{W}_n \), the set of all matrix pairs \((A, B) \in M_n \times M_n\) such that \( A \) and \( B \) are simultaneously triangularizable.

The problem of describing \( \mathcal{W}_n \) is apparently very hard (see next section for the case \( n = 2 \)). An easy observation is that this set is semi-algebraic. Indeed, the group \( G_n := \text{GL}_n(\mathbb{H}) \) is a real algebraic group and the map

\[
G_n \times \mathcal{U}_n \times \mathcal{U}_n \to M_n \times M_n
\]

which sends \((g, x, y)\) to \((gxg^{-1}, gyg^{-1})\) is regular. Now observe that \( \mathcal{W}_n \) is the set theoretic image of this map, and it is well known that the image of a regular map is a semi-algebraic set.

We proceed to show that \( \mathcal{W}_n \) is a closed set. We claim that the image of \( \text{Sp}(n) \times \mathcal{U}_n \times \mathcal{U}_n \) under the map (6.1) is the whole set \( \mathcal{W}_n \). Indeed, let \((x, y) \in \mathcal{W}_n\) and choose \( g \in G_n \) and \( a, b \in \mathcal{U}_n \) such that \( x = gag^{-1} \) and \( y = bgb^{-1} \). Let us write \( g = ut \) where \( u \in \text{Sp}(n) \) and \( t \in G_n \cap \mathcal{U}_n \). Then we have \( x = ucu^{-1}, y = udu^{-1} \) with \( c = tat^{-1} \) and \( d = tbt^{-1} \) in \( \mathcal{U}_n \). This proves our claim.

Since \( \text{Sp}(n) \) is a compact group and \( \mathcal{U}_n \times \mathcal{U}_n \) is a closed set, we infer that \( \mathcal{W}_n \) is closed in the ordinary (Euclidean) topology. Apparently, this is not true for the Zariski topology (see Problem 8.3).

Let \( \mathcal{P}_n \) denote the algebra of real polynomial functions on \( M_n \times M_n \). Denote by \( \mathcal{P}_n \) the subalgebra of \( G_n \)-invariant functions, i.e., functions \( f \in \mathcal{P}_n \) such that

\[
f(gxg^{-1}, gyg^{-1}) = f(x, y) \quad \forall g \in G_n \quad \forall x, y \in M_n.
\]

Similarly, let \( \mathcal{P}_n' \) denote the subalgebra of \( \mathcal{P}_n \) consisting of \( \text{Sp}(n) \)-invariant functions.

Since \( \mathcal{W}_n \) is \( G_n \)-invariant, its Zariski closure \( \overline{\mathcal{W}_n} \) is also \( G_n \)-invariant. Let \( \mathcal{I}_n \subseteq \mathcal{P}_n \) be the ideal consisting of all functions \( f \in \mathcal{P}_n \) that vanish on \( \mathcal{W}_n \), and set \( \mathcal{I}_n' = \mathcal{I}_n \cap \mathcal{P}_n' \) and \( \mathcal{I}_n'' = \mathcal{I}_n \cap \mathcal{P}_n'' \). By the definition of \( \overline{\mathcal{W}_n} \) we have

\[
\overline{\mathcal{W}_n} = \{ (x, y) \in M_n \times M_n : f(x, y) = 0, \forall f \in \mathcal{I}_n \}.
\]

By using the fact that \( \text{Sp}(n) \) is a compact group, one can easily show that also

\[
\overline{\mathcal{W}_n} = \{ (x, y) \in M_n \times M_n : f(x, y) = 0, \forall f \in \mathcal{I}_n' \}.
\]

The algebra \( \mathcal{P}_n \) is bigraded: We assign to the \( 4n^2 \) coordinate functions of the matrix \( x \) the bidegree \((1, 0)\), and to the coordinate functions of \( y \) the bidegree \((0, 1)\). The subalgebras \( \mathcal{P}_n' \) and \( \mathcal{P}_n'' \) inherit the bigradation from \( \mathcal{P}_n \). The ideals \( \mathcal{I}_n, \mathcal{I}_n' \) and \( \mathcal{I}_n'' \) are also bigraded.
We shall now exhibit two infinite families of concrete polynomials that belong to $\mathcal{I}'_n$. Let us first state an obvious result about matrices with purely imaginary eigenvalues.

**Lemma 6.2.** If all eigenvalues of $A \in M_n$ are purely imaginary, then $\text{Tr}(A^{2k-1}) = 0$, $\text{Tr}(A^{2k-2}) \leq 0$ and $\text{Tr}(A^{4k}) \geq 0$ for all integers $k \geq 1$.

It is clear that, for $(X, Y) \in \mathcal{W}_n$, all eigenvalues of $[X, Y]$ are purely imaginary. Hence, we obtain as a simple corollary from above our first family of polynomial equations (and inequalities) that are satisfied on $\mathcal{W}_n$.

**Corollary 6.3.** If $(X, Y) \in \mathcal{W}_n$, then
\[
\text{Tr}([X, Y]^{2k-1}) = 0, \quad \text{Tr}([X, Y]^{4k-2}) \leq 0, \quad \text{Tr}([X, Y]^{4k}) \geq 0
\]
are valid for all integers $k \geq 1$.

We can use the results of Section 4 to obtain our second family.

**Corollary 6.4.** If $(X, Y) \in \mathcal{W}_n$, then
\[
\text{Tr}(X^k Y^k X^m Y^m - Y^k X^k Y^m X^m) = 0
\]
for all integers $k, m \geq 1$.

To get more insight into the structure of the set $\mathcal{W}_n$, we shall analyze the generic fibres of the first projection map $\pi_1 : \mathcal{W}_n \to M_n$. As any matrix $A \in M_n$ is triangularizable, $\pi_1$ is surjective. We denote by $\mathcal{F}_A$ the fibre of $\pi_1$ over $A$, i.e.,
\[
\mathcal{F}_A = \pi_1^{-1}(A) = \{(A, B) : (A, B) \in \mathcal{W}_n\}.
\]
We say that a matrix $A \in M_n$ is *generic* if it has $n$ distinct eigenvalues. The set of all generic matrices is an open dense subset of $M_n$. We shall now describe the generic fibres of $\pi_1$, i.e., the fibres $\mathcal{F}_A$ with $A$ generic.

For convenience, let us identify the symmetric group $S_n$ with the group of $n \times n$ permutation matrices.

**Proposition 6.5.** For generic $A \in M_n$, the fibre $\mathcal{F}_A$ is the union of $n!$ real vector spaces, each of dimension $2n(n+1)$. Any two of these spaces intersect in a common vector subspace of dimension $\geq 4n$.

**Proof.** Let $\lambda_1, \ldots, \lambda_n$ be the distinct eigenvalues of $A$. If $P \in G_n$ then
\[
\mathcal{F}_{PA^{-1}} = \pi_1^{-1}(PA^{-1}) = P\pi_1^{-1}(A)P^{-1} = P\mathcal{F}_A P^{-1}.
\]
Hence, without any loss of generality, we may assume that $A$ is a diagonal matrix $A = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Then it suffices to prove that
\[
\mathcal{F}_A = \bigcup_{P \in S_n} \mathcal{F}_{A,P},
\]
where
\[
\mathcal{F}_{A,P} = \{A\} \times P\mathcal{W}_n P^{-1}.
\]
Let $P \in S_n$. Since $P^{-1} \mathcal{F}_{A,P} P = \{P^{-1}AP\} \times \mathcal{U}_n \subseteq \mathcal{U}_n \times \mathcal{U}_n$, we have $\mathcal{F}_{A,P} \subseteq \mathcal{W}_n$. It follows that $\mathcal{F}_{A,P} \subseteq \mathcal{F}_A$ for all $P \in S_n$.

Conversely, let $(A, B) \in \mathcal{F}_A$. Choose $Q \in G_n$ such that $(QAQ^{-1}, QBQ^{-1}) \in \mathcal{U}_n \times \mathcal{U}_n$. Since $QAQ^{-1}$ has $n$ distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ and $QAQ^{-1} \in \mathcal{U}_n$, there is an invertible upper triangular matrix $R$ such that $RQAQ^{-1}R^{-1}$ is a diagonal matrix with diagonal entries $\lambda_1, \ldots, \lambda_n$ in some order. Hence, $RQAQ^{-1}R^{-1} = P^{-1}AP$ for some $P \in S_n$.

It follows that $S := PRQ$ commutes with $A$ and so $S$ is a diagonal matrix. Now $RQBQ^{-1}R^{-1} \in \mathcal{U}_n$ implies that $B \in S^{-1}P \mathcal{U}_nP^{-1}S = P \mathcal{U}_nP^{-1}$, i.e., $(A, B) \in \mathcal{F}_{A,P}$. This concludes the proof of the first assertion.

The second assertion follows from the assertion that, for each $P \in S_n$, $P \mathcal{U}_nP^{-1}$ contains the space of diagonal matrices. □

We show next that $\mathcal{W}_n$ is the image of a smooth map defined on a suitable vector bundle. The group $T_n = G_n \cap \mathcal{U}_n$ acts on $\mathcal{U}_n \times \mathcal{U}_n$ by simultaneous conjugation $(t, x, y) \mapsto (txt^{-1}, tyt^{-1})$, where $t \in T_n$ and $x, y \in \mathcal{U}_n$. There is also the right action of $T_n$ on $G_n$ by right multiplication. By using these two actions one can construct a vector bundle

$$G_n \times_{T_n} (\mathcal{U}_n \times \mathcal{U}_n)$$

with base the homogeneous space $G_n/T_n$ and fibre $\mathcal{U}_n \times \mathcal{U}_n$. For more details about this construction we refer the reader to [1, p. 46].

The map (6.1) induces a smooth map from the above vector bundle to $M_n \times M_n$. Since $\mathcal{W}_n$ is the image of this induced map, we have

$$\dim \mathcal{W}_n \leq \dim(G_n \times_{T_n} (\mathcal{U}_n \times \mathcal{U}_n)) = 4n^2 + 2n(n + 1) = 2n(3n + 1).$$

We shall see next that the equality sign holds here.

**Corollary 6.6.** $\dim \mathcal{W}_n = 2n(3n + 1)$.

**Proof.** Since the generic matrices form an open submanifold of $M_n$ and each generic fibre has dimension $2n(n + 1)$, we conclude that

$$\dim \mathcal{W}_n \geq 4n^2 + 2n(n + 1) = 2n(3n + 1).$$

Hence, equality holds. □

We conclude that $\mathcal{W}_n$ has codimension $2n(n - 1)$ in $M_n \times M_n$. Consequently, $\mathcal{G}_n$ must have at least $2n(n - 1)$ generators. In the next section we shall see that this bound is too low when $n = 2$.

### 7. Matrix pairs in $M_2$ with a common eigenvector

In this section we shall consider the special case $n = 2$. The set $\mathcal{W}_2$ can be described also as the set of all ordered pairs $A, B \in M_2$ such that $A$ and $B$ share a common eigenvector. For complex matrices, this special case has been fully resolved (see e.g. [11, 9, 6]). Let us recall the result.
Theorem 7.1. For a pair of matrices $A, B \in M_2(\mathbb{C})$ the following are equivalent:

(a) $A$ and $B$ are simultaneously triangularizable,
(b) $[A, B]^2 = 0$,
(c) $\text{tr}([A, B]^2) = 0$,
(d) $\text{tr}(A^2B^2 - (AB)^2) = 0$,
(e) $(2\text{tr}(A^2) - (\text{tr}(A))^2)(2\text{tr}(B^2) - (\text{tr}(B))^2) = (2\text{tr}(AB) - \text{tr}(A)\text{tr}(B))^2$.

Clearly, this result is much stronger than what Proposition 5.2 gives in this case.

We continue with an easy lemma of independent interest.

Lemma 7.2. Both eigenvalues of the matrix $A \in M_2$ are purely imaginary if and only if

(1) $\text{Tr}(A) = \text{Tr}(A^3) = 0$,
(2) $\text{Tr}(A^2) \leq 0$ and
(3) $2\text{Tr}(A^4) \leq (\text{Tr}(A^2))^2 \leq 4\text{Tr}(A^4)$.

Proof. Necessity of (1) and (2) follows directly from Lemma 6.2. For (3), we may assume $A = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ with $\alpha, \beta \geq 0$. Then $\text{Tr}A^2 = -2(\alpha^2 + \beta^2)$ and $\text{Tr}A^4 = 2(\alpha^4 + \beta^4)$. It is clear from this that (3) is satisfied.

Suppose now that the conditions (1–3) hold and let $\lambda_1, \lambda_2$ be the eigenvalues of $A$. If $f(z) = z^4 - e_1z^3 + e_2z^2 - e_3z + e_4$ is the characteristic polynomial for $\chi_2(A)$ then $e_1, e_2, e_3, e_4$ are elementary symmetric functions of the eigenvalues $\lambda_1, \lambda_2, \bar{\lambda}_1, \bar{\lambda}_2$ of $\chi_2(A)$. By (1) and Newton’s identities, we have

$$e_1 = e_3 = 0, \quad e_2 = -\frac{1}{2}\text{Tr}A^2, \quad e_4 = \frac{1}{8}((\text{Tr}A^2)^2 - 2\text{Tr}A^4).$$

So we have that

$$f(z) = z^4 - \frac{1}{2}(\text{Tr}A^2)z^2 + \frac{1}{8}((\text{Tr}A^2)^2 - 2\text{Tr}A^4).$$

The inequalities of the lemma show that this quadratic polynomial in $z^2$ has two real roots, both $\leq 0$. Hence the eigenvalues are indeed purely imaginary. $\square$

As in the previous section, we obtain the following corollary.

Corollary 7.3. Let $(A, B) \in \mathcal{W}_2$ and let $\mathcal{A} \subseteq M_2$ be the unital subalgebra generated by $A$ and $B$. Then for all $X, Y \in \mathcal{A}$ we have

(1) $\text{Tr}([X, Y]^3) = 0$,
(2) $\text{Tr}([X, Y]^2) \leq 0$, and
(3) $2\text{Tr}([X, Y]^4) \leq (\text{Tr}([X, Y]^2))^2 \leq 4\text{Tr}([X, Y]^4)$.

Proof. It suffices to observe that $\mathcal{A} \times \mathcal{A} \subseteq \mathcal{W}_2$. $\square$

It is known that the algebra $\mathcal{P}_2$ (see the previous section for the definition) has a minimal set of bihomogeneous generators (MSG) of cardinality 32 (see [5,3]). In the remainder of this section
we shall summarize the results that we obtained while trying to construct an MSG of the ideal \( I'_2 \subseteq \mathcal{P}'_2 \). In our computations we used the generators constructed in [3].

Let \( I'_2(k, l) \) denote the subspace of \( \mathcal{I}'_2 \) consisting of homogeneous functions of bidegree \( (k, l) \) and let \( d_{k,l} \) be its dimension. Let \( I'_2(s) \) be the sum of the \( I'_2(k, s - k) \) for \( k = 0, 1, \ldots, s \) and set \( d_s = \dim I'_2(s) \). Since \( \mathcal{W}'_2 \) is invariant under the switching map \( (x, y) \mapsto (y, x) \), we have \( d_{l,k} = d_{k,l} \) for all \( k \) and \( l \). We have computed the dimensions \( d_{k,l} \) for \( k + l \leq 15 \), as seen in Fig. 1.

The sequence, seen isolated in Fig. 1, 

\[
(d_{k,3})_{k \geq 0} = 0, 0, 0, 1, 2, 48, 13, 20, 30, 42, 57, 76, \ldots
\]

is apparently the same as the sequence A061866 in the On-Line Encyclopedia of Integer Sequences [17]. The latter sequence \((a_k)_{k \geq 0}\) has the following definition: The integer \( a_k \) is the number of integer triples \((x, y, z)\) such that \( 1 \leq x < y < z \leq k \) and \( x + y + z \equiv 0 \) (mod 3). The middle “vertical” sequence 

\[
(d_{k,k})_{k \geq 0} = 0, 0, 0, 1, 6, 37, 180, 698, \ldots
\]

is not recorded in this encyclopedia.

In principle one can construct an MSG of \( \mathcal{I}'_2 \) by the following routine procedure. Denote by \( \mathcal{I}'_m \) the ideal of \( \mathcal{P}'_2 \) generated by the subspaces \( \mathcal{I}'_2(k) \) for \( k \leq m \). Define the subspaces \( \mathcal{I}'_m(k, l) \) and \( \mathcal{I}'_m(s) \) similarly to \( \mathcal{I}'_2(k, l) \) and \( \mathcal{I}'_2(s) \). Clearly we have that \( 0 = \mathcal{I}'_0 \subseteq \mathcal{I}'_1 \subseteq \cdots \) and \( \mathcal{I}'_m \subseteq \mathcal{I}'_2 \) for all \( m \). Since \( d_m = 0 \) for \( m < 6 \), we also have \( \mathcal{I}'_m = 0 \) for \( m < 6 \). Since \( d_6 = d_{3,3} = 1 \), \( \mathcal{I}'_6 \) is generated by a single polynomial \( f_1 \in \mathcal{I}'_2(3, 3) \), see Table 2 and formula (4.4). Since \( \dim \mathcal{I}'_6(3, 4) = \dim \mathcal{I}'_6(4, 3) = 1 \), while \( d_{3,4} = d_{4,3} = 2 \), the ideal \( \mathcal{I}'_7 \) is generated by \( f_1 \) and two new generators: \( f_2 \in \mathcal{I}'_2(3, 4) \) and \( f_3 \in \mathcal{I}'_2(4, 3) \). Similarly, \( \mathcal{I}'_8 \) is generated by \( f_1, f_2, f_3 \) and four new generators:

\[
f_4 \in \mathcal{I}'_2(3, 5); \quad f_5, f_6 \in \mathcal{I}'_2(4, 4); \quad f_7 \in \mathcal{I}'_2(5, 3).
\]
Table 2
An MSG of the ideal \( \mathcal{J}_9 \)

<table>
<thead>
<tr>
<th>( f_1 )</th>
<th>( f_2 )</th>
<th>( f_3 )</th>
<th>( f_4 )</th>
<th>( f_5 )</th>
<th>( f_6 )</th>
<th>( f_7 )</th>
<th>( f_8 )</th>
<th>( f_9 )</th>
<th>( f_{10} )</th>
<th>( f_{11} )</th>
<th>( f_{12} )</th>
<th>( f_{13} )</th>
<th>( f_{14} )</th>
<th>( f_{15} )</th>
<th>( f_{16} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{Tr}(xy^2 x[x, y]) )</td>
<td>( \text{Tr}(x^3 y[x, y]) )</td>
<td>( \text{Tr}(yx^2 y[x, y]) )</td>
<td>( \text{Tr}([x, y][x^2, y][x, y^2]) )</td>
<td>( \text{Tr}(xy^3 x[y, y]) )</td>
<td>( \text{Tr}([x, y][x^2, y][x, y^2]) )</td>
<td>( \text{Tr}(x^2 y^2 x[x, y]) )</td>
<td>( \text{Tr}(xy^3 x[y, y]) )</td>
<td>( \text{Tr}([[x, y], y][x, y]) )</td>
<td>( \text{Tr}([[x, y], x][x, y]) )</td>
<td>( \text{Tr}([[x, y], y][x, y]) )</td>
<td>( \text{Tr}(x^2 y^2 x[x, y]) )</td>
<td>( \text{Tr}([[x, y], y][x, y]) )</td>
<td>( \text{Tr}(xy^3 x[y, y]) )</td>
<td>( \text{Tr}([[x, y], y][x, y]) )</td>
<td>( \text{Tr}(x^2 y^2 x[x, y]) )</td>
</tr>
</tbody>
</table>

\[
\begin{array}{ccccccccc}
1 & 1 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14
\end{array}
\]

Fig. 2. Bidegree multiplicities of an MSG of \( \mathcal{J}_2' \).

An MSG for \( \mathcal{J}_9' \) consists of \( f_1, \ldots, f_7 \), and ten new generators:

\[
f_8, f_9 \in \mathcal{J}_2'(3, 6); \quad f_{10}, f_{11}, f_{12} \in \mathcal{J}_2'(4, 5); \quad f_{13}, f_{14}, f_{15} \in \mathcal{J}_2'(5, 4); \quad f_{16}, f_{17} \in \mathcal{J}_2'(6, 3).
\]

To obtain an MSG for \( \mathcal{J}_{10}' \), one has to add to this MSG of \( \mathcal{J}_9' \) additional 19 generators \( f_{18}, \ldots, f_{36} \). For \( \mathcal{J}_{11}' \) we need additional 22 generators.

By Hilbert’s Basis Theorem we know that this procedure must terminate and so \( \mathcal{J}_m' = \mathcal{J}_2' \) holds for sufficiently large \( m \). However we do not know the value of \( m \). Our computations suggest that \( \mathcal{J}_{13}' = \mathcal{J}_2' \).

We were able to find the first 92 generators using this procedure and hence, compute the ideal \( \mathcal{J}_m' \) for \( m \leq 14 \). In Table 2, we give our minimal set of generators for \( \mathcal{J}_9' \).

By using our MSG for \( \mathcal{J}_{11}' \), we can show that an MSG for \( \mathcal{J}_{12}' \) requires additional 28 generators and \( \mathcal{J}_{13}' \) requires 6. We find it surprising that an MSG of \( \mathcal{J}_2' \) is so large (it has at least 92 generators). The number of generators of the given bidegree (bidegree multiplicity) contained in an MSG of \( \mathcal{J}_2' \) is shown in Fig. 2 for all bidegrees \( (k, l) \) with \( k + l \leq 14 \). The top entry corresponds to the generator \( f_1 \) of bidegree \( (3, 3) \).

Let us now describe one of the methods that we used to compute these generators, along with an example. We begin with the trace functions that we know vanish on \( \mathcal{W}_2 \) (see Corollaries 6.3, and 6.4 for available families). Notice that all these traces have bidegree of the form \((k, k)\) and thus do not provide us with all the generators. We make the simple observation that \( \mathcal{W}_2 \) is invariant under the substitution \((x, y) \mapsto (x + \alpha, y + \beta)\) where \( \alpha, \beta \in \mathbb{R} \).
Consider the partial derivation operators $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ on the polynomial algebra in two noncommuting indeterminates $x$ and $y$. For instance

$$\frac{\partial}{\partial x} (xyxy^2) = yxy^2 + xy^3.$$ 

For a given noncommutative polynomial $p(x, y)$, with $\text{Tr}(p(x, y))$ in $I'_2(k, l)$, we obtain that

$$0 = \text{Tr}(p(x + \alpha, y + \beta)) = \text{Tr} \left( \sum_{i, j=0}^{k, l} p_{i, j}(x, y) \alpha^{k-i} \beta^{l-j} \right),$$

which implies that $\text{Tr}(p_{i, j}(x, y)) \in I'_2(i, j)$ for all $i, j$.

We claim that if $\text{Tr}(p(x, y)) \in I'_2$ then also $\text{Tr} \left( \frac{\partial}{\partial x} p(x, y) \right), \text{Tr} \left( \frac{\partial}{\partial y} p(x, y) \right) \in I'_2$.

This follows from our observation above, along with the fact that $\frac{\partial}{\partial x} p(x, y)$ is equal to the coefficient of $\alpha$ in the expansion of $p(x + \alpha, y)$, and similarly for the other derivative.

With this, we give explicit computation of $f_{13}$.

**Example 7.4.** Consider $p(x, y) = x^3y^3x^2y^2 - y^3x^3y^2x^2$. By Corollary 4.3 we have that $\text{Tr}(p(x, y)) \in I'_2(5, 5)$. Then, we can find an element from $I'_2(5, 4)$ by computing

$$\frac{\partial}{\partial y} p(x, y) = 3x^3y^2x^2y^2 + 2x^3y^3x^2y - 3y^2x^3y^2x^2 - 2y^3x^3yx^2,$$

and observing that the trace of this element is equal to $-2\text{Tr}(x^2y^3x^2[y, x])$.

Thus, we obtain the generator $f_{13} \in I'_2(5, 4)$.

We have verified using Maple that the Jacobian matrix of the generators $f_1, f_2, f_3, f_6$ generically has rank 4. This shows that these generators are algebraically independent and agrees with the fact that $W_2$ has codimension 4.

8. Some open problems

We conclude with the list of four open problems related to the topics discussed in this paper. The first problem, suggested by Lemma 6.2, is about complex numbers.

**Problem 8.1.** Let $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ and set $\tau_k := \Re(\lambda_1^k + \cdots + \lambda_n^k)$ for $k = 1, 2, 3, \ldots$. Characterize the sequences $(\lambda_1, \ldots, \lambda_n)$ for which $\tau_{2k-1} = 0, \tau_{4k-2} \leq 0$ and $\tau_{4k} \geq 0$ for all integers $k \geq 1$.

We warn the reader that the conditions imposed on the $\tau_k$’s do not imply that all $\lambda_i$’s are purely imaginary. Replacing some of the numbers $\lambda_i$ with $\bar{\lambda}_i$ does not affect the conditions of the problem. Hence, without any loss of generality one may assume that all $\Re(\lambda_i) \geq 0$.

The problem we discussed in Sections 6 and 7 remains open.

**Problem 8.2.** Find a finite set of polynomial equations and inequalities that define $W_2$ as a semi-algebraic set.
Problem 8.3. Describe the Zariski closure \( \overline{W}_2 \) and compute an MSG for the ideals \( I_2, I'_2 \) and \( I''_2 \). In particular, is it true that the pair \( \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) belongs to \( \overline{W}_2 \)?

Note that this pair does not belong to \( W_2 \). We have verified that all 92 generators of \( J'_{14} \) vanish on it.

Finally, Fig. 1 suggests the following problem.

Problem 8.4. (a) Prove that the sequence \((d_k, 3)_{k \geq 0}\) is identical to the sequence A061866. Also construct a bijection from the set of integer triples \((x, y, z)\), used in the definition of A061866, to a suitable basis of \( I'_2(k, 3) \).

(b) Identify the sequence \((d_{k, k})_{k \geq 0}\). For instance, find the generating function or an explicit formula for the \( d_{k, k} \).

References