Fibrolipomatous hamartoma is an uncommon congenital disorder, which is characterized by disproportionate hyperplasia of adipose tissue infiltrating along the perineurium, the epineurium and the affected nerve trajectory. We present a case of combined fibrolipomatous hamartoma and macrodystrophia lipomatosas of the median nerve. The involved sites included the left palm, wrist and forearm. Part of the patient’s middle finger had been amputated due to previous macrodystrophia lipomatosas; however, the lesion continued to enlarge and was accompanied by numbness. Magnetic resonance imaging demonstrated a typical fibrolipomatous hamartoma with high signal intensity of fat on both T1-weighted and T2-weighted images, characteristic coaxial cable appearance on axial images, and spaghetti appearance on sagittal images. A similar skipped lesion at the median nerve of the middle forearm was also noted. To the best of our knowledge, this has not been reported in the English literature. [J Chin Med Assoc 2010;73(9):499–502]

Key Words: fibrolipomatous hamartoma, macrodystrophia lipomatosas, magnetic resonance imaging, median nerve
At the age of 25 years, he had a second operation in another hospital that specialized in symptom relief. During the operation, the surgeon noted a large amount of adipose tissue along the trajectory of the median nerve, which extended to the proximal forearm. The wrist lesion was confirmed to be neural fibrolipoma after biopsy. His symptoms improved postoperatively but relapsed several months later. The patient was then referred to our hospital owing to recurrent tumor growth and symptoms.

At our plastic surgery clinic, a neurological examination revealed decreased sensation in the 1st to 4th fingers and the palm. Nerve conduction study demonstrated chronic axonal degeneration of the median nerve. Sonographic and magnetic resonance imaging (MRI) studies were requested to evaluate carpal tunnel syndrome.

Radiographs of the affected hand, wrist and forearm revealed mild enlargement of the proximal phalanx of the 3rd finger stump accompanied by prominent low density soft tissue surrounding the finger stump and 3rd metacarpal, which extended to the volar aspect of the wrist. MRI of the hand confirmed soft tissue hypertrophy along the volar aspect of the 3rd metacarpal and the finger stump. The soft tissue lesion had high signal intensity on spin echo (SE) T1-weighted imaging, was signal void on fat-suppressed fast spin echo proton density-weighted imaging, and showed no enhancement after intravenous gadolinium administration. At the level of the carpal tunnel and distal forearm, the deposition of fat tissue along the nerve fascicles resulted in prominent enlargement of the median nerve with characteristic coaxial cable appearance on axial imaging (Figure 2) and spaghetti appearance on sagittal imaging (Figure 3). The MRI features were consistent with fibrolipomatous hamartoma of the median nerve associated with macrodystrophia lipomatosa. Another skipped lesion of the median nerve was noted in the middle third of the forearm. It presented with fusiform enlargement, fat signal and poor contrast enhancement. The intervening segment of the median nerve between the 2 lesions was normal in caliber and signal intensity.
Discussion

Fibrolipomatous hamartoma, also known as neural fibrolipoma or lipomatosis of nerve (WHO classification), was first reported in the English literature in 1953. Fibrolipomatous hamartoma is composed of a disproportionate amount of fibroadipose tissue infiltrating the perineurium and epineurium surrounding nerve bundles and causes fusiform enlargement of the affected nerve. The median nerve and its branches are most commonly affected, followed by the radial nerve, ulnar nerve, nerves at the dorsal aspect of the foot, brachial plexus and cranial nerves. MRI is the key diagnostic tool. Surgical biopsy is unnecessary for...
fibrolipomatous hamartoma lesions that demonstrate the typical MRI findings of coaxial cable appearance on axial imaging and spaghetti appearance on coronal or sagittal imaging. The etiopathogenesis remains unknown, but a congenital, abnormal growth of fibroadipose tissue of the nerve sheath is believed to be the most likely mechanism. Histological examination usually discloses fibrolipomatous proliferation that surrounds and separates the nerve bundles and follows their branching pattern. The reported age of onset ranges from birth to 25 years. About 22–67% of patients with fibrolipomatous hamartoma may have associated macrodactyly, or macrodystrophia lipomatosa if it is present at birth.

Macrodystrophia lipomatosa was first described by Feriz in 1925. In addition to the proliferation of fibroadipose tissue unilaterally, conventional radiographs show characteristic findings of hypertrophic bone overgrowth, involving the median or plantar nerve trajectory of 1 or more of the digits of the extremities. But it ceases spontaneously at puberty for unknown reason.

The relationship between fibrolipomatous hamartoma and macrodystrophia lipomatosa is not clear, and may be confusing due to similar MRI findings and histological expression of fat deposition and nerve fibrosis. Therefore, fibrolipomatous hamartoma with or without associated macrodactyly is thought to be a proper term.

Fibrolipomatous hamartoma is usually located in the carpal tunnel and extends distally to the palm or fingers. The proximal portion of the median nerve above the wrist is rarely involved. In a review study, the proximal end of lesions of 5 of 6 patients with isolated fibrolipomatous hamartoma of the median nerve were identified in the distal forearm at the level of the pronator quadratus. In our case, the skipped lesion of the affected median nerve in the proximal forearm was confirmed by imaging studies and pathology. The finding of skipped lesion of affected median nerve, to the best of our knowledge, has not been previously reported.

The main goals of management of fibrolipomatous hamartoma with or without macrodystrophia lipomatosa are symptomatic relief and cosmetic considerations since total tumor resection cannot be achieved without sacrificing the affected nerve. Multiple or debulking surgeries, instead, are often adopted.

Fibrolipomatous hamartoma with or without macrodystrophia lipomatosa is an uncommon disease. Radiographic, ultrasonographic and MRI features may lead to accurate diagnosis and obviate unnecessary biopsy. Finally, in addition to the wrist, fibrolipomatous hamartoma of the median nerve may co-occur in the middle forearm.

References