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Abstract

We compute two-loop low-energy effective actions in Abelian Chern–Simons matter models with N = 2
and N = 3 supersymmetry up to four-derivative order. Calculations are performed with a slowly-varying
gauge superfield background. Though the gauge superfield propagator depends on the gauge fixing pa-
rameter, it is shown that the obtained results are independent of this parameter. In the massless case the
considered models are superconformal. We demonstrate that the superconformal symmetry strongly re-
stricts the form of two-loop quantum corrections to the effective actions such that the obtained terms have
simpler structure than the analogous ones in the effective action of three-dimensional supersymmetric elec-
trodynamics (SQED) with vanishing topological mass.
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1. Introduction

Three-dimensional gauge field theories have one important difference from the four-dimensi-
onal ones: they allow for a gauge invariant topological mass term described by the Chern–Simons
action. In supersymmetric gauge theories, the Chern–Simons term appears to be crucial in con-
struction of N = 8 and N = 6 superconformal models, known as the BLG [1–6] and ABJM
[7] ones, which are central objects in the AdS4/CFT3 correspondence. As is stressed in the re-
cent paper by John Schwarz [8], it is important to study the low-energy effective action in these
models to check the conjecture that it describes the dynamics of probe M2 brane in the AdS4
background.

Leaving the issue of low-energy effective action in ABJM and BLG models for further studies,
in the present paper we consider a simple problem: what is the dependence of low-energy effec-

tive action in three-dimensional supersymmetric models on the topological mass m = kg2

2π
, where

g is the three-dimensional gauge coupling constant and k is the Chern–Simons level. There are
two special cases, g → ∞ with k finite and k = 0 with g finite. The latter corresponds to the
gauge theory without the Chern–Simons term (e.g., SQED or SQCD) while the former case de-
scribes a gauge theory with infinitely large topological mass. The aim of this paper is to compare
the structure of low-energy effective actions in three-dimensional gauge theories in these two
particular cases.

We address this question by considering low-energy effective action in Abelian N = 2 super-
symmetric gauge theories with matter. In the recent paper [9] the two-loop low-energy effective
action in N = 2, d = 3 SQED (with vanishing topological mass) was computed, owing to the
background field method in N = 2, d = 3 superspace [10–12]. In the present paper we consider
a similar model, but with the Chern–Simons kinetic term for the gauge superfield rather than the
Maxwell one (i.e., infinitely large topological mass). We compute two-loop low-energy effective
action in this model up to the four-derivative order and compare it with the similar terms in the
effective action of N = 2, d = 3 SQED with vanishing topological mass considered in [9]. To be
more precise, we consider a part of the effective action which includes only the gauge superfield
because these terms can be naturally compared with the ones studied in [9]. In general, the effec-
tive action involves also contributions with the chiral matter superfields which are not considered
here. The study of such terms in the effective action is a separate problem.

The one-loop effective action in gauge superfield sector (supersymmetric one-loop Euler–
Heisenberg effective action) originates from the loop of matter chiral superfields with external
gauge superfield. It is independent of both couplings g and k. So, we have to consider the two-
loop effective action to study the problem described above. In three-dimensions, the N = 2
gauge superfield V has not only Grassmann-odd superfield strengths Wα and W̄α , but also the
Grassmann-even scalar superfield strength G. Up to four-derivative order, the low-energy effec-
tive action for these superfields has the following structure (see Section 2.2 for a more detailed
discussion):

Γ =
∫

d7z
[
f1(G) + f2(G)WαW̄βNαβ + f3(G)W 2W̄ 2], (1.1)

where fi(G) are some functions and Nαβ = DαWβ . In the present paper we find two-loop quan-
tum contributions to the functions fi(G) and compare them with similar results in the N = 2,
d = 3 SQED without the Chern–Simons term.

The function f1(G) in (1.1) is the leading term in the low-energy effective action for the gauge
superfield. In components, it is responsible for the F 2 terms and its supersymmetric completions,
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with Fmn being the Maxwell field strength. In the N = 2 SQED with the pure Maxwell kinetic
term for the gauge superfield this function has a good geometrical interpretation: its second
derivative defines the moduli space metric in Coulomb branch [13]. In particular, in [9] we com-
puted two-loop quantum corrections to the moduli space in the N = 2 SQED. However, it is
known [14] that the Coulomb branch is absent in three-dimensional gauge theories with non-
trivial Chern–Simons term because the corresponding equations of motion do not have constant
solutions for scalar fields in the gauge multiplet. In the present paper we show that the function
f1(G) does not receive two-loop quantum corrections in the N = 2 Chern–Simons electrody-
namics, but it has non-trivial one-loop contributions found in [10]. This one-loop contribution
to f1(G) originates from the loop of chiral superfields with external gauge superfields and it is
independent of whether we have the super-Maxwell or Chern–Simons propagator for the gauge
superfield.

The functions f2(G) and f3(G) in (1.1) are responsible for the F 4 component term and its
supersymmetric completions. This term is present in the effective action in both cases, when
the gauge superfield is described by the Maxwell and Chern–Simons terms. Clearly, the form
of these functions f1 and f2 should be different in these two cases. Indeed, the conventional
three-dimensional SQED with the Maxwell kinetic term for the gauge superfield involves the
dimensionful gauge coupling constant g, [g2] = 1, such that the model is not conformal. As a
consequence, in the SQED with the Maxwell kinetic term the functions fi(G) in (1.1) are not
restricted by the conformal invariance. On the contrary, the (massless) Chern–Simons matter
theories are superconformal and the form of these functions is fixed, up to coefficients. We show
that the superconformal invariance requires the vanishing of two-loop quantum corrections to f1
and f2 in the Chern–Simons matter models while f3 is expressed in terms of superconformal
invariants in the N = 2, d = 3 superspace constructed in [10]. These results are also generalized
to the Abelian N = 2 Chern–Simons theory with one chiral matter superfield (in Section 3.1)
and to N = 3 Chern–Simons matter model (in Sect 3.2).

Our general conclusion about the Chern–Simons matter models is that the structure of low-
energy effective action in such theories is strongly constrained by superconformal invariance. On
the contrary, when the gauge superfield is described by non-conformal supersymmetric Maxwell
term, many new non-conformal terms appear in the low-energy effective action.

Before starting the main part of the paper, one more comment is in order. In general, the
off-shell effective action is known to be gauge dependent by construction.2 It becomes gauge in-
dependent only for background fields satisfying the effective equations of motion. In the present
paper we consider the low-energy effective action for slowly-varying gauge superfield back-
ground. The conditions determining such a background coincide with the N = 2 supersymmetric
Maxwell equations, rather than the equations of motion in the Chern–Simons matter models un-
der considerations. Hence, one can expect that, in general, the obtained effective action will be

2 The gauge dependence should not be confused with the gauge invariance of the effective action. In general, the effec-
tive action in gauge theories depends on gauge fixing conditions which are used for quantization and correct definition
of the path integral. The background field method is based on special class of gauge fixing conditions (the so-called
background field gauges, see e.g. [15] and references therein). The background field gauges allow one to construct the
effective action which is gauge invariant under the classical gauge transformations. However, there are infinitely many
background field gauges, for example if χ is an admissible background field gauge then αχ is also admissible background
field gauge with arbitrary real parameter α. As a result, the gauge invariant effective action constructed in framework
of background field method will depend on the parameter α. Therefore it is said that the effective action constructed in
framework of background field method is gauge invariant but gauge dependent. However, the S-matrix computed on the
basis of the effective action will be completely gauge independent. All these points are discussed, e.g., in [16].
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gauge dependent. In particular, the effective action can depend on the gauge-fixing parameter
appearing in the gauge superfield propagator. In our case, doing two-loop computation we use
the gauge superfield propagator with arbitrary gauge fixing parameter and prove that the obtained
low-energy results are independent of this parameter. This is a good evidence that the obtained
two-loop contributions to the effective action are, in fact, gauge independent although they are
derived with use of gauge superfield background which does not solve the classical (and effec-
tive) equations of motion.

Throughout this paper we use the N = 2, d = 3 superspace notations and conventions intro-
duced in earlier works [10,11].

2. N = 2 Chern–Simons electrodynamics

2.1. Classical action and propagators

The classical action of the considered model in N = 2, d = 3 superspace reads

S = k

2π

∫
d7zV G −

∫
d7z

(
Q̄+e2V Q+ + Q̄−e−2V Q−

)
−

(
m

∫
d5zQ+Q− + c.c.

)
, (2.1)

where V is a gauge superfield with superfield strength G = i
2D̄αDαV and Q± are chiral matter

superfields having opposite charges with respect to the gauge superfield. Here m is the mass of
the chiral superfield and k is the Chern–Simons level. For m = 0 this model is superconformal
[10]. The classical action (2.1) describes N = 2, d = 3 supersymmetric electrodynamics with
Chern–Simons rather than Maxwell kinetic term for the photon.

To study the effective action in the gauge superfield sector it is convenient to use the back-
ground field method which was developed for field theories in the N = 2, d = 3 superspace in
[12,17]. We split the gauge superfield V into the background V and quantum v parts,3

V → V + v. (2.2)

Upon this splitting the Chern–Simons term in (2.1) changes as

k

2π

∫
d7zV G → k

2π

∫
d7zV G + k

π

∫
d7z vG + ik

4π

∫
d7z vDαD̄αv, (2.3)

with the background superfields V and G in the r.h.s. The terms in (2.3) which are linear in v

are irrelevant for quantum loop computations. The chiral superfields Q± are treated as purely
quantum and should be integrated out in the functional integral.

The operator in the last term in (2.3) is degenerate and requires gauge fixing,

f = iD̄2v, f̄ = iD2v, (2.4)

where f is a fixed chiral superfield. This gauge is usually accounted by the following gauge
fixing term [18–20]:

3 Note that we denote the background gauge superfield by the same letter V as the original gauge superfield in the
classical action (2.1). We hope that it will not lead to any confusions since after the background-quantum splitting (2.2)
the original gauge superfield V never appears.
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Sgf = ikα

8π

∫
d7z v

(
D2 + D̄2)v, (2.5)

with α being a real parameter. Adding (2.5) to (2.1) we get the gauge fixed action for the quantum
superfields corresponding to internal lines of Feynman supergraphs,

Squant = S2 + Sint, (2.6)

S2 =
∫

d7z

(
ik

4π
vHv − Q̄+Q+ − Q̄−Q−

)
−

(
m

∫
d5zQ+Q− + c.c.

)
, (2.7)

Sint = −2
∫

d7z
[
(Q̄+Q+ − Q̄−Q−)v + (Q̄+Q+ + Q̄−Q−)v2] + O

(
v3), (2.8)

where the operator H reads

H = DαD̄α + α

2

(
D2 + D̄2). (2.9)

In (2.7) and (2.8) we introduced the notations Q± and Q̄± for covariantly (anti)chiral superfields
with respect to the background gauge superfield,

Q̄+ = Q̄+e2V , Q+ = Q+, Q̄− = Q̄−e−2V , Q− = Q−. (2.10)

Let us consider the propagator for the superfield v,

2i
〈
v(z)v

(
z′)〉 = G

(
z, z′), (2.11)

where the Green’s function G(z, z′) obeys the equation

ik

4π
HG

(
z, z′) = −δ7(z − z′). (2.12)

A formal solution to this equation reads

G
(
z, z′) = G1

(
z, z′) + G2

(
z, z′), (2.13)

where

G1
(
z, z′) = iπ

k

DαD̄α

� δ7(z − z′) = −π

k
DαD̄α

∞∫
0

ds

(4πis)3/2
e

iξ2

4s ζ 2ζ̄ 2, (2.14)

G2
(
z, z′) = iπ

2kα

D2 + D̄2

� δ7(z − z′) = − π

2kα

(
D2 + D̄2) ∞∫

0

ds

(4πis)3/2
e

iξ2

4s ζ 2ζ̄ 2. (2.15)

Here we applied the standard proper time representation for the inverse d’Alembertian operator
in terms of the components of supersymmetric interval ξm and ζ ’s (see the details and references
in Appendices A and B).

Note that G2(z, z
′) depends on the gauge-fixing parameter α while G1(z, z

′) does not. We do
not fix particular values of this parameter to keep control on gauge dependence of the effective
action.

The action (2.8) is responsible for cubic and quartic interaction vertices while the terms in
(2.7) give the propagators for the chiral matter superfields,
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i
〈
Q+(z)Q−

(
z′)〉 = −mG+

(
z, z′),

i
〈
Q̄+(z)Q̄−

(
z′)〉 = mG−

(
z′, z

)
,

i
〈
Q+(z)Q̄+

(
z′)〉 = G+−

(
z, z′) = G−+

(
z′, z

)
,

i
〈
Q̄−(z)Q−

(
z′)〉 = G−+

(
z, z′). (2.16)

Properties of Green’s functions in the r.h.s. of (2.16) were studied in [9,10]. Explicit expressions
for them are given in Appendix B.

2.2. General structure of effective action

Our aim is to study the low-energy effective action in the model (2.1) in the gauge superfield
sector. It can be written as

Γ = Scl + Γ̄ , (2.17)

where Scl = k
2π

∫
d7zV G is the classical Chern–Simons term and Γ̄ takes into account quantum

corrections to the effective action. In what follows we will consider only Γ̄ omitting ‘bar’ for
brevity.

In general, Γ is a functional of superfield strengths G, Wα , W̄α and their derivatives, Nαβ =
DαWβ , N̄αβ = D̄αW̄β ,

Γ =
∫

d7zL(G,Wα, W̄α,Nαβ, N̄αβ, . . .), (2.18)

where dots stand for higher-order derivatives of the superfield strengths. It is very difficult to find
the effective action (2.18) taking into account all derivatives of the fields. Therefore, to simplify
the problem, we restrict ourself to the terms with no more than four space–time derivatives of
component fields. A typical bosonic representative in components is f (φ)(FmnFmn)

2, where
Fmn is the Maxwell field strength and f (φ) is some function of the scalar field φ which is part
of the N = 2, d = 3 gauge multiplet. It is clear that to find this term in the effective action it
is sufficient to consider constant fields Fmn and φ. In terms of superfields, such a background
corresponds to the following constraints on the superfield strengths:

(i) Supersymmetric Maxwell equations,

DαWα = 0, D̄αW̄α = 0; (2.19)

(ii) Superfield strengths are constant with respect to the space–time coordinates,

∂mG = ∂mWα = ∂mW̄α = 0. (2.20)

We emphasize that though Eqs. (2.19) are not the equations of motion in the theory under
consideration, they, together with Eqs. (2.20), single out the slowly varying gauge superfield
background. In components, such a background contains constant scalar φ, spinor λα , λ̄α and
Maxwell Fmn fields while the auxiliary field D vanishes owing to (2.19). For the gauge super-
field background constrained by (2.19) and (2.20) we can use the exact expressions for the chiral
superfield propagators (B.7), (B.8) and (B.9) which were derived in [9].

Note that the superfields Nαβ and N̄αβ and not independent subject to the constraints (2.19)
and (2.20),

Nαβ = −N̄αβ . (2.21)
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Hence, we keep only Nαβ and discard N̄αβ in what follows assuming that the latter is expressed
from the former.

Under the constraints (2.19) and (2.20) the effective action (2.18) in components contains
Maxwell field strength in arbitrary power and, so, involves arbitrary number of space–time
derivatives. The superfield action which contains the terms with no more than four derivatives is
given by

Γ =
∫

d7z
[
f1(G) + f2(G)WαW̄βNαβ + f3(G)W 2W̄ 2], (2.22)

with some functions fi(G), i = 1,2,3. Indeed, the full superspace measure d7z involves the
Grassmann-odd coordinate part d2θ d2θ̄ ∝ D2D̄2. Thus, it counts as two space–time derivatives.
Next, W 2W̄ 2 also contain effectively four D’s (which count as two ∂m) because of Wα = D̄αG

and W̄α = DαG. Hence, the first term in the r.h.s. of (2.22) is a two-derivative piece while the
other terms are four-derivative ones.

In principle, one could include in (2.22) also the term of the form
∫

d7zf (G)WαW̄α , but it
vanishes for the gauge superfield background subject to (2.19),∫

d7zf (G)WαW̄α = −1

2

∫
d5z

(
D̄αf (G)

)(
D̄αW̄β

)
Wβ

= −1

2

∫
d5zWαNβ

α Wβf ′(G) = 0. (2.23)

Here we passed from the full superspace to the chiral measure and used the fact that Nα
β is

traceless, Nα
α = 0, subject to (2.19).

Let us discuss the component structure of the effective action (2.22) in the bosonic sector. For
this purpose it is sufficient to consider the gauge superfield V of the special form:

V̂ = iθαθ̄αφ + θαθ̄βγ m
αβAm, (2.24)

where φ is a constant scalar and Am is a gauge vector field with constant Maxwell field strength,
Fmn = ∂mAn − ∂nAm. The superfield strengths constructed with the use of this gauge superfield
have the following component structure:

Ĝ = −φ − 1

2
εmnp(γp)αβθαθ̄βFmn, (2.25)

Ŵα = 1

2
εmnp(γp)βαθβFmn,

ˆ̄Wα = 1

2
εmnp(γp)βα θ̄βFmn. (2.26)

With these superfields, we find that the effective action (2.22) contains the following terms in its
component field decomposition:

Γ = 1

8

∫
d3x

{
f ′′

1 (−φ)FmnFmn + [
2f3(−φ) − f ′

2(−φ)
](

FmnFmn

)2} + · · · , (2.27)

where dots stand for other components which are related with the given ones by N = 2 super-
symmetry. Eq. (2.27) shows that the first term in r.h.s. of (2.22) is responsible for the F 2 term
while the terms with the functions f2 and f3 result in the F 4 term.

In the present paper we will perturbatively compute the functions fi in (2.22) in the two-loop
approximation,

fi(G) = f
(1)

(G) + f
(2)

(G), (2.28)
i i
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Fig. 1. Two-loop supergraphs in N = 2 supersymmetric electrodynamics.

where f
(1)
i (G) and f

(2)
i (G) correspond to one- and two-loop contributions, respectively. Note

that at the one-loop order the effective action (2.22) receives contributions from the loop of
(anti)chiral matter fields only. These contributions were calculated in [10]4:

f
(1)
1 = 1

2π

(
G ln

(
G +

√
G2 + m2

) −
√

G2 + m2
)
, (2.29)

f
(1)
2 = 0, (2.30)

f
(1)
3 = 1

128π

1

(G2 + m2)5/2
. (2.31)

Our aim now is to find the functions f
(2)
i which take into account two-loop quantum contributions

to the effective action (2.22).
The two-loop effective action is given by the following formal expression:

Γ (2) = ΓA + ΓB, (2.32)

ΓA = −2
∫

d7z d7z′G+−
(
z, z′)G−+

(
z, z′)G(

z, z′), (2.33)

ΓB = −2m2
∫

d7z d7z′ G+
(
z, z′)G−

(
z, z′)G(

z, z′). (2.34)

The two terms ΓA and ΓB are represented by corresponding Feynman graphs in Fig. 1.
Note that, in general, in the two-loop effective action the diagrams of topology “eight” are

also present. Such diagrams involve either G+− or G+ propagator and the gauge superfield
propagator (2.13) which should be considered at coincident superspace points. However, at co-
incident points the gauge superfield propagator (2.13) vanishes, G(z, z) = 0. Hence, there are no
contributions to the effective action from the graphs of topology “eight”.

2.3. Independence of two-loop effective action of the gauge-fixing parameter

The part of the gauge superfield propagator which depends on the gauge fixing parameter
α is given by (2.15). In this section we will demonstrate that the two-loop contributions to the
low-energy effective action of the form (2.22) are independent of this parameter. To prove this,
we check the vanishing of contributions to the two-loop effective actions (2.33) and (2.34) which
correspond to the propagator (2.15).

4 The function (2.29) was introduced for three-dimensional gauge theories in [21] in the study of non-linear sigma-
models with extended supersymmetry. In four dimensions, analogous function corresponds to the Lagrangian of improved
tensor multiplet (see e.g. [22]).
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Consider first the part of the effective action (2.33). The propagator (2.15) contains the oper-
ator D2 + D̄2 acting on the full superspace delta-function. With the use of integration by parts,
the operator D̄2 hits the Green’s function G−+(z, z′) (similarly, D2 hits G+−(z, z′)). According
to (B.5), one gets two terms:

1

4
∇̄2G−+

(
z, z′) = −δ+

(
z, z′) − m2G+

(
z, z′). (2.35)

The delta-function in (2.35) gives vanishing contribution to (2.33) since the expression (2.15)
already contains the Grassmann delta-function ζ 2ζ̄ 2 = δ2(θ − θ ′)δ2(θ̄ − θ̄ ′).

Consider the contributions to ΓA from the last term in (2.35). With the use of the heat kernel
representations of the propagators (B.7)–(B.8), the part of the effective action corresponding to
the last term in (2.35) reads

∫
d7z d7z′

∞∫
0

ds dt du

(4πiu)3/2
ζ 2ζ̄ 2e

iξ2

4u ei(s+t)m2
K+

(
z, z′∣∣s)K+−

(
z, z′∣∣t)

=
∫

d7z d3ξ

∞∫
0

ds dt du

(4πiu)3/2
e

iξ2

4u ei(s+t)m2
K+

(
z, z′∣∣s)K+−

(
z, z′∣∣t)∣∣. (2.36)

Here we integrated over one set of Grassmann variables using the delta-function. The symbol |
in the second line of (2.36) means that this expression is considered at coincident Grassmann
coordinates,

| ≡ |θ=θ ′, θ̄=θ̄ ′ . (2.37)

Note that the bosonic coordinates xm and x′
m remain different under this projection. We will

employ the notation (2.37) throughout the present paper.
It is important to note that the heat kernel K+ at coincident superspace points contains W 2,

see (B.26). Hence, the result of calculation of the expression (2.36) can always be represented in
the form∫

d7zW 2F(G), (2.38)

with some function F(G). One can easily see that the quantity (2.38) vanishes for the on-shell
gauge superfield (2.19). Indeed, passing to the chiral subspace one gets∫

d7zW 2F(G) = −1

4

∫
d5zW 2D̄2F(G) = −1

4

∫
d5zW 2W 2F ′′(G) ≡ 0. (2.39)

This expression vanishes as it contains too many Grassmann-odd superfields Wα .
Consider now the contributions to the effective action ΓB from the propagator (2.15). Simi-

larly as for ΓA, after integration by parts, the operator D̄2 hits K− and produces K+− because
of the identity

K+−
(
z, z′∣∣s) = 1

4
∇̄2K−

(
z, z′∣∣s). (2.40)

Hence, the part of the effective action ΓB gets the same form (2.36) and, thus, vanishes.
The present analysis was done for the operator D̄2 in (2.15). The operator D2 can be consid-

ered in a similar way with the same conclusion. Thus, we proved that the two-loop contributions
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to the effective action (2.22) with the propagator (2.15) vanish. In other words, the considered
low-energy effective action is independent of the gauge-fixing parameter α. In the following sec-
tions we will compute non-trivial contributions to the two-loop effective actions (2.33) and (2.34)
coming from the gauge superfield propagator G1 given by (2.14).

2.4. Two-loop graph A

Consider the part of the effective action (2.33) and represent all the Green’s functions in terms
of the corresponding heat kernels,

ΓA = −2π

k

∫
d7z d3ξ

∞∫
0

ds dt du

(4πiu)3/2
e

iξ2

4u ei(s+t)m2∇αK+−
(
z, z′∣∣s)∇̄αK−+

(
z, z′∣∣t)∣∣. (2.41)

Here we integrated by pats the derivatives DαD̄α which come from the gauge superfield propa-
gator (2.14). To find the effective action we need to compute the derivatives of the heat kernels,
∇αK+−(z, z′|s) and ∇̄αK−+(z, z′|t). In general, this problem is very hard since the heat kernels
themselves have very complicated form (B.20) and (B.21). However, we will take into account
the following simplifications:

• Upon computing the derivative of the heat kernels we omit the terms which vanish in the
limit θ = θ ′, θ̄ = θ̄ ′.

• Since we are interested in the low-energy effective action of the form (2.22), it is sufficient to
consider only the terms which depend on superfield strengths G, Wα , W̄α , but which contain
Nαβ at most in the first power. Terms with higher orders of Nαβ should be systematically
neglected.

For instance, the formulas (B.22) up to the first order in Nαβ read

Wα(s) ≈ Wα − sNα
β Wβ, W̄α(s) ≈ W̄α − sNα

β W̄β, (2.42)

ζ α(s) ≈ ζ α − sWα + 1

2
s2Nα

β Wβ, (2.43)

ζ̄ α(s) ≈ ζ̄ α − sW̄α + 1

2
s2Nα

β W̄β, (2.44)

ξm(s) ≈ ξm − i
(
γ m

)αβ
[
s(Wαζ̄β + W̄αζβ)

− s2

2
Nαγ

(
Wγ ζ̄β + W̄ γ ζβ

) + s3

6
NαβWW̄

]
. (2.45)

Here and further the symbol “≈” means that the expressions are considered in the corresponding
approximation up to the first order in Nαβ and all terms of order O(N2) are omitted.

To compute the expression (2.41) we have to find ∇αK+−(z, z′|s)| and ∇̄αK−+(z, z′|t)|. Us-
ing (B.20) these quantities can be recast as

∇αK+−
(
z, z′∣∣s)∣∣ = Mα(s) · K+−

(
z, z′∣∣s)∣∣,

∇̄αK−+
(
z, z′∣∣t)∣∣ = M̃α(t) · K−+

(
z, z′∣∣t)∣∣, (2.46)

where
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Mα(s) =
[

2isGW̄α + i

2

(
F coth(sF )

)
mn

ρm(s)∇αρn(s) + ∇αR
(
z, z′) + ∇αI

(
z, z′)

+
s∫

0

dτ ∇α

(
R′(τ ) + Σ(τ)

)]∣∣∣∣∣, (2.47)

M̃α(t) =
[

2itGWα + i

2

(
F coth(tF )

)
mn

ρ̃m(t)∇̄αρ̃n(t) + ∇̄αR̃
(
z, z′) + ∇̄αI

(
z, z′)

+
t∫

0

dτ ∇̄α

(
R̃′(τ ) + Σ(τ)

)]∣∣∣∣∣. (2.48)

Here ρm and ρ̃m are versions of the bosonic interval with specific chirality properties (B.17).
The two-point quantities R(z, z′), R̃(z, z′) and Σ(z, z′) are written down explicitly in (B.15),
(B.16) and (B.23), respectively. Basic properties of the parallel transport propagator I (z, z′) are
summarized in Appendix A.

Using Eqs. (2.45), (A.5), (B.15) and (B.24) we compute derivatives of various objects in (2.47)
and (2.48),

∇αρm(s)
∣∣ ≈ is2γ m

βγ Nβ
α W̄ γ , (2.49)

∇αR
(
z, z′)∣∣ ≈ −1

2
ξαβW̄β, (2.50)

∇αI
(
z, z′)∣∣ ≈ 1

2
ξαβW̄βI

(
z, z′), (2.51)

s∫
0

dτ ∇α

(
R′(τ ) + Σ(τ)

)∣∣ ≈ is2GNαβW̄β + 2is2W̄ 2Wα. (2.52)

One can easily find similar expressions involving the derivative ∇̄α in the l.h.s. Substituting
(2.49)–(2.52) into (2.47) we get

Mα(s) ≈ 2isGW̄α + is2GNαβW̄β + 2is2W̄ 2Wα − s

2
ξmγ m

βγ Nβ
α W̄ γ − 3i

4
s3W̄ 2NαβWβ,

M̃α(t) ≈ 2itGWα + it2GNαβWβ − 2it2W 2W̄α + t

2
ξmγ m

βγ Nγ
α Wβ + 3i

4
t3W 2NαβW̄β.

(2.53)

Eqs. (2.46) include also the heat kernels K+− and K−+ at coincident Grassmann points
(B.27). We have to expand (B.27) up to the first order in Nαβ . In particular, the functions (B.28)
in this approximation are

fα
β(s) ≈ −s2δβ

α + 1

3
s3Nβ

α , (2.54)

f (s) ≈ − 7

12
s3, (2.55)

f m
αβ(s) ≈ − s

γ m
αβ + 1

s2εαβ

(
γ m
ρσ Nρσ

) + 3
s2(γ m

βγ Nγ
α + γ m

αγ N
γ
β

)
. (2.56)
2 12 4
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Substituting these functions into (B.27) we find

K+−
(
z, z′∣∣s)∣∣ ≈ − 1

(4iπs)3/2
e

i
4s

ξ2+isG2
eX(ξm,s), (2.57)

where

X
(
ξm, s

) = is2GWαW̄α − i

3
s3GWαNβ

α W̄β − s

2
ξmγ m

αβWαW̄β

+ 1

12
s2ξm

(
γ mN

)
WαW̄α + 3

2
s2ξmγ m

γ (αN
γ

β)W
αW̄β − 7i

24
s3W 2W̄ 2. (2.58)

With the use of (2.46) and (2.57) the part of the effective action (2.41) can be recast as

ΓA = − 2π

k(4πi)9/2

∫
d7z d3ξ

∞∫
0

ds dt du

(stu)3/2
e

iξ2

4 ( 1
s
+ 1

t
+ 1

u
)ei(s+t)(G2+m2)

× Mα(s)M̃α(t)eX(ξm,s)+X(−ξm,t). (2.59)

The expression in the second line in (2.59) should be expanded in a series up to the first order
in Nαβ ,

Mα(s)M̃α(t)eX(ξm,s)+X(−ξm,t)

≈ −4stG2WαW̄α + 2stG2(s − t)W̄ αWβNαβ

+ 4st (t − s)GW 2W̄ 2 + 2ist
(
s2 + t2)G3W 2W̄ 2

+ istGξmγ m
ρσ Nσ

α

(
W̄αWρ + W̄ρWα

)
+ st

[
i

2
(s + t) + G2

12
(s − t)(5s − t)

]
ξm

(
γ mN

)
W 2W̄ 2. (2.60)

Here we used explicit forms of the quantities Mα(s) and X(ξm, s) given in (2.53) and (2.58),
respectively. The terms in the last two lines in (2.60) contain bosonic interval ξm in the first
power. They do not contribute to the effective action because of the identity∫

d3ξ ξme
iξ2

4 ( 1
s
+ 1

t
+ 1

u
) = 0. (2.61)

For the terms in the first two lines in (2.60) the integration over d3ξ is simply Gaussian,

∫
d3ξ e

i
4 aξ2 = −

(
4iπ

a

) 3
2

, a = 1

s
+ 1

t
+ 1

u
. (2.62)

Hence, after integration over du, the effective action (2.59) can be recast as

ΓA = i

16π2k

∫
d7z

∞∫
0

ds dt

√
st

s + t
ei(s+t)(G2+m2)

[−4G2W̄αWα

+ 2(s − t)G2W̄αWβNαβ − 4(s − t)GW 2W̄ 2 + 2i
(
s2 + t2)G3W 2W̄ 2]. (2.63)

The expression (2.63) contains the term with WαW̄α . This term vanishes on shell because
of (2.23). There are also two terms in (2.63) containing (s − t). These terms are also vanishing
since they are odd under the change of integration variables s ↔ t . So, only the last term in (2.63)
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remains non-trivial for the considered gauge superfield background. Performing the integration
over s and t in this term we get the final result for the effective action ΓA:

ΓA = − 15

256πk

∫
d7z

G3W 2W̄ 2

(G2 + m2)4
. (2.64)

2.5. Two-loop graph B

Consider the part of the effective action (2.34) with the gauge superfield propagator (2.14),

ΓB = −2πm2

k

∫
d7z d3ξ

∞∫
0

ds dt du

(4πiu)3/2
e

iξ2

4u ei(s+t)m2∇αK+
(
z, z′∣∣s)∇̄αK−

(
z, z′∣∣t)∣∣.

(2.65)

Here we integrated by parts the operator DαD̄α and integrated out one set of Grassmann variables
using the delta-function. For computing this part of the effective action we need to find the
derivatives of the heat kernels (B.18) and (B.19) at coincident Grassmann points,

∇αK+
(
z, z′∣∣s)∣∣ = 1

(4πis)3/2
Pα(s)eY (s)eisG2

e
iξ2

4s I
(
z, z′)∣∣, (2.66)

where

Y(s) = i

4

(
F coth(sF )

)
mn

ξm(s)ξn(s) − iξ2

4s
− 1

2
ζ̄ β (s)ξβγ (s)Wγ (s)

+
s∫

0

dt Σ
(
z, z′∣∣t), (2.67)

Pα(s) = ∇αζ 2(s) + ζ 2(s)∇αY (s). (2.68)

It is sufficient to compute the derivatives of all objects in (2.68) up to the first order in Nαβ ,

∇αξm(s)
∣∣ ≈ isγ m

αβW̄β − is2

2
γ m
αβNβ

γ W̄ γ , (2.69)

∇αζ 2(s)
∣∣ ≈ −2sWα − s2NαβWβ, (2.70)

−1

2
∇α

(
ζ̄ β(s)ξβγ (s)Wγ (s)

)∣∣
≈ − s

2
W̄βξmγ m

βγ Nγ
α + 3i

4

(
s2W̄ 2Wα − s3W̄ 2NαβWβ

)
, (2.71)

s∫
0

dt ∇αΣ
(
z, z′∣∣t)∣∣

≈ −isGW̄α + is2

2
GNαβW̄β − is3

6
W 2NαβWβ − s

12
ξm

(
γ mN

)
W̄α. (2.72)

Substituting these formulas to (2.68) and expanding up to the first order in Nαβ we get
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Pα(s)eY (s)
∣∣ ≈ −2sWα − s2NαβWβ + is3GW 2W̄α − s2

2
ξmγ m

αβW̄βW 2

+ 3s3

4
ξmNγ

α γ m
βγ W̄βW 2 − 5s3

12
ξm

(
γ mN

)
W̄αW 2

+ is4

6
GNαβW̄βW 2. (2.73)

In a similar way we find

∇̄αK−
(
z, z′∣∣s)∣∣ = 1

(4πis)3/2
P̃α(s)eỸ (s)eisG2

e
i

4s
ξ2 ∣∣, (2.74)

P̃α(s)eỸ (s)
∣∣ ≈ 2sW̄α + s2NαβW̄β − is3GW̄ 2Wα + s2

2
ξmγ m

αβWβW̄ 2

− 3s3

4
ξmNγ

α γ m
γβWβW̄ 2 + 5s3

12
ξm

(
γ mN

)
WαW̄ 2

+ is4

6
GNαβWβW̄ 2. (2.75)

Substituting (2.66) and (2.74) into (2.65) and using explicit form of the functions (2.73) and
(2.75) we perform Gaussian integration over d3ξ ,

ΓB = im2

16π2k

∫
d7z

∞∫
0

ds dt
√

st

(s + t)
ei(s+t)(G2+m2)

× [−4WαW̄α + 2(s − t)WαNαβW̄β + 2i
(
s2 + t2)GW 2W̄ 2]. (2.76)

Note that the term containing WαW̄α in (2.76) does not contribute to the effective action accord-
ing to (2.23). The first term in the second line of (2.76) also vanishes since it is odd under the
change of integration variables s and t . After computing the integrals over s and t in the last term
in (2.76) we obtain

ΓB = − 15m2

256πk

∫
d7z

GW 2W̄ 2

(G2 + m2)4
. (2.77)

2.6. Summary of two-loop computations

The two-loop low-energy effective action is given by the sum of Eqs. (2.64) and (2.77),

Γ (2) = − 15

256πk

∫
d7z

GW 2W̄ 2

(G2 + m2)3
. (2.78)

This expression shows that the functions f1(G) and f2(G) in (2.22) receive no two-loop quantum
corrections,

f
(2)
1 (G) = f

(2)
2 (G) = 0, (2.79)

and only the function f3(G) gets non-trivial two-loop contribution,

f
(2)
3 (G) = − 15 G

2 2 3
. (2.80)
256πk (G + m )
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It is instructive to compare the two-loop low-energy effective action (2.78) with analogous
result in N = 2 SQED with vanishing topological mass considered in [9]. The latter is described
by the classical action similar to (2.1), but in which the gauge superfield V has N = 2 supersym-
metric Maxwell rather than the Chern–Simons term. The four-derivative low-energy effective
action has the same form (2.22), but with the functions fi given by (see Appendix C for details
of derivation of these functions)

f̃
(2)
1 = − g2

16π2
ln

(
G2 + m2), (2.81)

f̃
(2)
2 = 5g2

192π2

G

(G2 + m2)3
, (2.82)

f̃
(2)
3 = g2

π2

98G2 − 73m2

3072(G2 + m2)4
. (2.83)

Here we put tilde on these functions to distinguish them from (2.79) and (2.80).
The obvious difference of the functions f̃

(2)
i from f

(2)
i is that they contain dimensionful

gauge coupling constant g2. Therefore, even in the massless limit m = 0, the functions f̃
(2)
i

give non-conformal effective action while f
(2)
i do.

Let us discuss conformal properties of the effective action (2.78). Of course, the model (2.1)
is non-conformal as it explicitly involves the mass parameter m, but we can still get profit from
the power of constraints of the superconformal group either by considering the corresponding
massless theory, m = 0, or by promoting the mass parameter to a chiral superfield. The latter
option is closer to the N = 3 supersymmetric electrodynamics considered in Section 3.2, but
here, for the sake of simplicity, we will discuss only the massless case,

Γ (2)
∣∣
m=0 = − 15

256πk

∫
d7z

W 2W̄ 2

G5
. (2.84)

Being scale invariant, this effective action is not N = 2 superconformal as the superfields Wα

and W̄α are not quasi-primaries [10]. The latter means that these superfields do not have right
transformation lows of superconformal spin-tensors of engineering dimension 3/2.5 Neverthe-
less, this does not imply any anomaly of the superconformal symmetry. Recall that the expression
(2.84) was derived for the background gauge superfield obeying supersymmetric Maxwell equa-
tions (2.19). Now, one can add some terms with DαWα or D̄αW̄α to the action (2.84) to make it
superconformal.6

In [10] it was shown that the object

Ψ = i

G
DαD̄α lnG (2.85)

transforms as a scalar with vanishing scaling dimension under N = 2, d = 3 superconformal
group. Up to a term proportional to the super Maxwell equations (2.19), this superfield has the
following expression in terms of the superfield strengths Wα and W̄α :

Ψ = −i
WαW̄α

G3
. (2.86)

5 The representation of superconformal group in N = 2, d = 3 superspace was considered in [23].
6 Similar procedure was applied in N = 2, d = 4 superspace to construct superconformal off-shell effective action for

gauge superfield [24].
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Hence, the superconformal generalization of the action (2.84) reads

Γ (2)
∣∣
m=0 = 15

128πk

∫
d7z

(DαD̄α lnG)2

G
. (2.87)

Representing the action (2.84) in the superconformal form (2.87) has several important con-
sequences. First, we point out that for the action (2.87) we can now relax the constraints (2.19)
on the background gauge superfield which were used in the derivation of this result. Indeed, the
superconformal invariance allows us to uniquely restore in the final answer the terms propor-
tional to the supersymmetric Maxwell equations which were omitted in the intermediate steps of
deriving Eq. (2.84).

Second, it is clear now that the function f2(G) in (2.22) should vanish as the corresponding
term in the effective action does not have a superconformal generalization. The unique supercon-
formal generalization of the four-derivative term is given by (2.87) which corresponds to the last
term in (2.22).

Finally, it is clear now that it is the superconformal symmetry which forbids any higher-loop
quantum corrections to the function f1(G) in (2.22). Indeed, the superconformal generalization
of the two-derivative term in the effective action is given uniquely by

∫
d7zG lnG, which is

nothing but the one-loop contribution (2.29) in the massless limit.
Thus, we conclude that the superconformal invariance imposes strong constraints on the struc-

ture of two-loop quantum corrections to the low-energy effective action (2.22) in the model (2.1).
The similar model with the Maxwell term for the gauge superfields has no superconformal prop-
erties and the structure of its effective action is much reacher, as is seen in (2.81)–(2.83).

3. Generalizations to other Abelian Chern–Simons matter models

3.1. Two-loop effective action in supersymmetric electrodynamics with one chiral superfield

The results of the previous section can be easily extended to the Chern–Simons matter model
with one chiral superfield,

S = k

2π

∫
d7zV G −

∫
d7z Q̄e2V Q. (3.1)

This model is known to be superconformal [10], but has parity anomaly [25–27,14]. The parity
anomaly manifests itself in the presence of the Chern–Simons term in the one-loop effective
action [10],

Γodd = 1

4π

∫
d7zV G. (3.2)

The subscript “odd” here means that the induced Chern–Simons term is unique part of the effec-
tive action which is parity-odd. This induced Chern–Simons term gives half-integer shift to the
classical value of the Chern–Simons level k,

keff = k + 1

2
. (3.3)

In quantum theory the effective coupling keff rather than k quantizes in integers, keff ∈ Z.
The rest of the effective action is parity-even and we denote it as Γeven. So, all the conclusions

of Section 2.2 apply to it. Hence, its general structure should be the same as of (2.22). The
one-loop contributions to the functions fi(G) for the model (3.1) were found in [10],
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f
(1)
1 = 1

4π
G lnG, f

(1)
2 = 0, f

(1)
3 = 1

256π

1

G5
. (3.4)

Our aim now is to compute two-loop corrections to this result, i.e., to find f
(2)
i .

The two-loop effective action in the model (3.1) is given by the formula

Γ (2) = −
∫

d7z d7z′ G+−
(
z, z′)G−+

(
z, z′)G(

z, z′). (3.5)

This effective action corresponds to the first graph in Fig. 1.
The expression (2.33) resembles from (3.5) by the factor 2. Hence, we can immediately bor-

row the result from Section 2.4: One should divide by two Eq. (2.64) and apply the massless
limit m → 0,

Γ (2) = − 15

512πkeff

∫
d7z

W 2W̄ 2

G5
. (3.6)

Here we also used the effective Chern–Simons level keff which includes one-loop correction to
the classical value, (3.3).

The effective action (3.6) corresponds to the following values of the functions f
(2)
i in (2.22):

f
(2)
1 = f

(2)
2 = 0, f

(2)
3 = − 15

512πkeff

1

G5
. (3.7)

Since the model (3.1) is superconformal, the two-loop effective action (3.6) can be represented
in a superconformal form. Similarly as for the action (2.84), by adding the terms with DαWα and
D̄αW̄α , the quantity (3.6) can be recast as follows:

Γ (2) = 15

256πkeff

∫
d7z

(DαD̄α lnG)2

G
. (3.8)

Summarizing now one- and two-loop results, we get the parity-even part of the two-loop effective
action in the superconformal form,

Γeven = Γ (1) + Γ (2)

= 1

4π

∫
d7zG lnG + 1

128π

(
15

2keff
− 1

)∫
d7z

(DαD̄α lnG)2

G
. (3.9)

As is explained in Section 2.6, once the effective action is represented in the superconformal
form (3.9), the constraint (2.19) can be relaxed. Eq. (3.9) represents the parity-even part of the
low-energy effective action in the model (3.1) up to the four-derivative order.

The two-loop effective actions obtained in this and previous sections can be easily gener-
alized to Abelian N = 2 Chern–Simons matter models with arbitrary number of chiral matter
superfields.

3.2. N = 3 Chern–Simons electrodynamics

The classical action of N = 3 Chern–Simons electrodynamics reads

SN=3 = SCS
N=3 + Shyper, (3.10)

SCS
N=3 = k

2π

∫
d7zV G − ik

4π

∫
d5zΦ2 − ik

4π

∫
d5z̄ Φ̄2, (3.11)

Shyper = −
∫

d7z
(
Q̄+e2V Q+ + Q̄−e−2V Q−

) −
(∫

d5zΦQ+Q− + c.c.

)
, (3.12)
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Fig. 2. Two-loop supergraphs in N = 3 supersymmetric electrodynamics which involve (anti)chiral propagators 〈φφ〉
and 〈φ̄φ̄〉.

where Φ is a chiral superfield which is part of the N = 3 gauge multiplet (V ,Φ). Note that
this model reduces to (2.1) for Φ = m. However, in contrast to (2.1), the action of the N = 3
Chern–Simons electrodynamics (3.10) is superconformal.

Let us make the background-quantum splitting for the N = 3 gauge multiplet,

(V ,Φ) → (V ,Φ) + (v,φ), (3.13)

where the superfields (V ,Φ) in the r.h.s. are treated as background while (v,φ) as the quantum
ones. Under this splitting the part of the N = 3 Chern–Simons action which is quadratic with
respect to the quantum superfields reads

SCS
N=3 = ik

4π

(∫
d7z vDαD̄αv −

∫
d5zφ2 −

∫
d5z̄ φ̄2

)
+ · · · , (3.14)

where dots stand for the linear terms for the quantum superfields which are irrelevant in quantum
loop computations. Note that the superfield φ is gauge invariant since the gauge group is Abelian.
Hence, to fix the gauge freedom it is sufficient to add to (3.14) the same gauge fixing term (2.5) as
in the N = 2 case. This yields the following action for quantum superfields up to quartic order:

Squant = S2 + Sint, (3.15)

S2 =
∫

d7z

(
ik

4π
vHv − Q̄+Q+ − Q̄−Q−

)
−

∫
d5z

(
ik

4π
φ2 + ΦQ+Q−

)

−
∫

d5z̄

(
ik

4π
φ̄2 − Φ̄Q̄+Q̄−

)
, (3.16)

Sint = −2
∫

d7z
[
(Q̄+Q+ − Q̄−Q−)v + (Q̄+Q+ + Q̄−Q−)v2] −

∫
d5zφQ+Q−

+
∫

d5z̄ φ̄Q̄+Q̄− + O
(
v3). (3.17)

The action Sint is responsible for the interaction vertices while S2 gives propagators for
the quantum superfields. As compared with the N = 2 electrodynamics, there is a new vertex
φQ+Q− (and its conjugate) and the propagators 〈φφ〉, 〈φ̄φ̄〉,

〈
φ(z)φ

(
z′)〉 = −2π

k
δ+

(
z, z′), 〈

φ̄(z)φ̄
(
z′)〉 = −2π

k
δ−

(
z, z′). (3.18)

Hence, apart from the graphs in Fig. 1, there are two extra Feynman graphs in the N = 3 SQED
with these propagators which are represented in Fig. 2. Correspondingly, two-loop effective ac-
tion is given by the following formal expression:
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Γ
(2)

N=3 = ΓA + ΓB + ΓC, (3.19)

ΓA = −2
∫

d7z d7z′ G+−
(
z, z′)G−+

(
z, z′)G(

z, z′), (3.20)

ΓB = −2
∫

d7z d7z′ ΦΦ̄G+
(
z, z′)G−

(
z, z′)G(

z, z′), (3.21)

ΓC = πi

k

∫
d5zG+

(
z, z′)G+

(
z′, z

)
δ+

(
z, z′) + c.c. (3.22)

The chiral delta-function in the expression (3.22) originates from the propagators (3.18).
Recall that the background gauge superfield V is constrained by (2.19) and (2.20). Analogous

constraints for Φ ,

DαΦ = 0, D̄αΦ̄ = 0, (3.23)

just mean that this superfield is simply a constant. For such a background the heat kernels for
the propagators G+− and G+ are given in Appendix B. In particular, Eq. (B.26) shows that at
coincident superspace points the heat kernel K+ is proportional to W 2,

K+(z, z|s) ∝ W 2. (3.24)

The quantity (3.22) contains two chiral propagators G+ at coincident superspace points after
integration over dz′ with the help of chiral delta-function. Hence, ΓC vanishes as it contains too
many W ’s,

ΓC = 0. (3.25)

It is clear that for the constant chiral superfield background (3.23) computations of the con-
tributions ΓA and ΓB to the two-loop effective action are absolutely identical to the ones given
in Sections 2.4 and 2.5. Hence, we can borrow the result (2.78) just by promoting the mass
parameter to the chiral superfield,

Γ
(2)

N=3 = − 15

256πk

∫
d7z

GW 2W̄ 2

(G2 + ΦΦ̄)3
. (3.26)

The effective action (3.26) is scale invariant, but is not superconformal similarly as the effec-
tive action (3.6) obtained in the previous section. To construct a superconformal generalization
of (3.26) we use a version of the quasi-primary superfield (2.85) which involves the chiral super-
field Φ [10],

Ψ = i

G
DαD̄α ln

(
G +

√
G2 + ΦΦ̄

)
. (3.27)

Up to a term proportional to the super Maxwell equations (2.19), this superfield reads

Ψ = −i
WαW̄α

(G2 + ΦΦ̄)3/2
. (3.28)

Hence, the superconformal generalization of (3.26) is given by

Γ
(2)

N=3 = − 15

128πk

∫
d7zGΨ 2

= 15
∫

d7z
1 [

DαD̄α ln
(
G +

√
G2 + ΦΦ̄

)]2
. (3.29)
128πk G
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The representation of the effective actions (3.29) in superconformal form allows us to relax the
constraint (2.19) which was used for deriving this result.

For completeness, we present here the four-derivative part of one-loop effective action in the
model (3.10) which was found in [10]:

Γ
(1)

N=3 = 1

64π

∫
d7zΨ 2

√
G2 + ΦΦ̄

= − 1

64π

∫
d7z

√
G2 + ΦΦ̄

G2

[
DαD̄α ln

(
G +

√
G2 + ΦΦ̄

)]2
. (3.30)

It is interesting to note that the expressions (3.29) and (3.30) have slightly different functional
structure. This is explained by the fact that the two-loop effective action (3.26) was obtained in
the gauge (2.4) which is only N = 2 supersymmetric. As a consequence, the two-loop result
(3.26) does not respect full N = 3 superconformal group and requires N = 3 supersymmetriza-
tion. The issue of finding N = 3 supersymmeteric versions of the actions (3.29) and (3.30)
deserves a separate study.

The most natural way to obtain the effective action in the model (3.10) in explicitly N = 3 su-
persymmetric form is by using the N = 3, d = 3 harmonic superspace [28,29]. Quantum aspects
of supersymmetric gauge theories in this superspace were studied in [30]. It would be interesting
to explore the low-energy effective action in N = 3 gauge theories using this approach.

4. Conclusions

Recently, we computed two-loop low-energy effective actions in the N = 2 and N = 4 SQED
theories [9] with vanishing topological mass. In the present paper we considered similar models
in which the gauge superfield is described by the Chern–Simons rather than the supersymmet-
ric Maxwell action. In these models we computed two-loop low-energy effective actions up to
four-derivative order in the gauge superfield sector and compared them with similar results in
the SQED theories considered in [9]. In the massless case these Chern–Simons matter models
are superconformal. We demonstrated that the superconformal invariance imposes strong restric-
tions on the structure of two-loop effective actions forbidding a number of superfield structures
(described by the functions f1 and f2 in (2.22)) which are non-trivial in similar SQED theories
with vanishing topological mass. Note that any superconformal effective action for the N = 2
gauge superfield can be expressed in terms of superconformal invariants classified in [10]. So,
the quantum loop computations performed in the present paper only fix numerical coefficients in
the decomposition of the effective action over these invariants.

The low-energy effective action in the N = 3 Chern–Simons electrodynamics is also ex-
pressed in terms of N = 2 superconformal invariants. However, the full N = 3 supersymmetry
is not explicit as the two-loop effective action is computed in the N = 2 supersymmetric gauge.
The most natural way of recasting this effective action in the N = 3 supersymmetric form is
based on the N = 3, d = 3 harmonic superspace [28,29]. Some quantum aspects of supersym-
metric gauge theories in this superspace were studied in [30]. It would be interesting to explore
the low-energy effective action in N = 3 gauge theories using this approach.

The results of the present paper, together with similar results of [9], give the structure of low-
energy effective actions in Abelian three-dimensional N = 2 and N = 3 supersymmetric gauge
theories in two particular cases, when the gauge superfield is described either by Chern–Simons
or by pure super Maxwell action. The latter corresponds to vanishing topological mass while the
former describes gauge superfield with infinitely large topological mass. It would be interesting
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to consider more general case of the supersymmetric gauge theories with a finite value of the
topological mass. The effective actions in such models should interpolate between the results
of the present paper and those of [9]. Another natural generalization could be a computation of
two-loop quantum corrections to low-energy effective actions in non-Abelian gauge theories in
the N = 2, d = 3 superspace considered, e.g., in [11].

In the present paper we studied the effective action in the gauge superfield sector. It is interest-
ing to consider also the part of the effective action for (anti)chiral superfields and, in particular,
to study two-loop effective Kähler potential. In components, such an effective action is respon-
sible, in particular, for the effective scalar potential. This problem was studied for N = 1, d = 3
superfield models in [31–34] and for pure N = 2, d = 3 Wess–Zumino model in [35]. It is nat-
ural to extend the results of the latter work to models of N = 2 and N = 3 SQED considered
in the present paper and compare them with analogous results for the N = 1 models. In non-
supersymmetric three-dimensional scalar electrodynamics the two-loop effective potential was
studied in [36,37].

Finally, it is very tempting to study the structure of low-energy effective actions in the BLG
and ABJM models. This problem becomes very hot in the light of recent discussion in [8] where
the relations of such an effective action to the dynamics of M2 branes was proposed. We ex-
pect that the techniques of quantum computations in the N = 2, d = 3 superspace developed
in [10–12,9] and in the present paper might be useful for studying this issue. Alternatively, the
N = 3 harmonic superspace formulation [38] of the ABJM and BLG models can be employed.
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Appendix A. Parallel displacement propagator in N = 2, d = 3 superspace

The technique of gauge-covariant multiloop quantum computations in N = 1, d = 4 super-
space was developed in [39]. Its power was demonstrated in studying two-loop effective actions
in the N = 1 and N = 2, four-dimensional SQEDs in [40,41] and other gauge theories with
extended supersymmetry in N = 1 superspace, [42–45].

The key ingredient of this technique is the parallel displacement propagator I (z, z′) which
relates gauge-covariant objects in different superspace points. In the N = 2, d = 3 superspace
the parallel displacement propagator was considered in [9]. Here we review basic properties of
this object which are necessary for two-loop quantum computations in the N = 2 Chern–Simons
matter model studied in this paper.

The parallel displacement propagator I (z, z′) is a two-point superspace function taking its
values in the gauge group and depending on the gauge superfields with the following proper-
ties:
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(i) Under gauge transformations it changes as

I
(
z, z′) → eiτ(z)I

(
z, z′)e−iτ (z′), (A.1)

with τ(z) being a real gauge superfield parameter;
(ii) It obeys the equation

ζA∇AI
(
z, z′) = ζA

(
DA + VA(z)

)
I
(
z, z′) = 0, (A.2)

where V A are gauge connections for DA and ζA = (ξm, ζ α, ζ̄α) is the N = 2 supersym-
metric interval,

ζ α = (
θ − θ ′)α

, ζ̄ α = (
θ̄ − θ̄ ′)α

,

ξm = (
x − x′)m − iγ m

αβζαθ̄ ′ β + iγ m
αβθ ′ αζ̄ β; (A.3)

(iii) For coincident superspace points z = z′ it reduces to the identity operator in the gauge
group,

I (z, z) = 1. (A.4)

The properties (A.1)–(A.4) allow one to express the derivatives of the parallel transport propa-
gator in terms of the parallel transport propagator itself and gauge-covariant superfield strengths.
In particular, the following equations hold [9]:

∇βI
(
z, z′) =

[
−iζ̄βG + 1

2
ξαβW̄α − i

12
ζ̄ 2Wβ + i

6
ζ̄βζ αW̄α − i

3
ζ̄ αζαW̄β

+ 1

12
ζ̄ αξβγ ∇̄αW̄ γ − 1

12
ζ̄ αξαγ ∇̄γ W̄β − i

12
ζ̄ 2ζβ∇̄αW̄α

]
I
(
z, z′), (A.5)

∇̄βI
(
z, z′) =

[
−iζ βG − 1

2
ξβ
α Wα + i

12
ζ 2W̄β − i

6
ζ β ζ̄ αWα + i

3
ζ αζ̄αWβ

+ 1

12
ζαξβγ ∇αWγ − 1

12
ζαξαγ ∇γ Wβ − i

12
ζ 2ζ̄ β∇αWα

]
I
(
z, z′). (A.6)

Appendix B. Green’s functions in N = 2, d = 3 superspace

Consider a covariantly chiral superfield Φ , ∇̄αΦ = 0, where ∇α and ∇̄α are gauge-covariant
spinor derivatives. There are two types of Green’s functions for this superfield: G+(z, z′) which
is chiral with respect to both arguments and G+−(z, z′) which is chiral with respect to z and is
antichiral with respect to z′,

i
〈
Φ(z)Φ

(
z′)〉 ≡ mG+

(
z, z′), i

〈
Φ(z)Φ̄

(
z′)〉 ≡ G+−

(
z, z′). (B.1)

By definition, they obey the following equations:(
�+ + m2)G+

(
z, z′) = −δ+

(
z, z′), (B.2)(

�− + m2)G−
(
z, z′) = −δ−

(
z, z′), (B.3)

1

4
∇̄2G−+

(
z, z′) + m2G+

(
z, z′) = −δ+

(
z, z′), (B.4)

1∇2G+−
(
z, z′) + m2G−

(
z, z′) = −δ−

(
z, z′), (B.5)
4
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where δ±(z, z′) are (anti)chiral delta-functions and the operators �± are given by

�+ = ∇m∇m + G2 + i

2

(∇αWα

) + iWα∇α,

�− = ∇m∇m + G2 − i

2

(∇̄αW̄α

) − iW̄ α∇̄α. (B.6)

It is convenient to express the Green’s functions in terms of corresponding heat kernels,

G±
(
z, z′) = i

∞∫
0

ds K±
(
z, z′∣∣s)eism2

, (B.7)

G+−
(
z, z′) = i

∞∫
0

ds K+−
(
z, z′∣∣s)eism2

, (B.8)

G−+
(
z, z′) = i

∞∫
0

ds K−+
(
z, z′∣∣s)eism2

. (B.9)

Explicit expressions for these heat kernels were found in [9]:

K+
(
z, z′∣∣s) = 1

8(iπs)3/2

sB

sinh(sB)
eisG2O(s)e

i
4 (F coth(sF ))mnξmξn− 1

2 ζ̄ β ξβγ Wγ

ζ 2I
(
z, z′),

(B.10)

K−
(
z, z′∣∣s) = 1

8(iπs)3/2

sB

sinh(sB)
eisG2O(s)e

i
4 (F coth(sF ))mnξmξn− 1

2 ζβξβγ W̄ γ

ζ̄ 2I
(
z, z′),

(B.11)

K+−
(
z, z′∣∣s) = − 1

8(iπs)3/2

sB

sinh(sB)
eisG2O(s)e

i
4 (F coth(sF ))mnρmρn+R(z,z′)I

(
z, z′),

(B.12)

K−+
(
z, z′∣∣s) = − 1

8(iπs)3/2

sB

sinh(sB)
eisG2O(s)e

i
4 (F coth(sF ))mnρ̃mρ̃n+R̃(z,z′)I

(
z, z′).

(B.13)

Here B2 = 1
2Nα

β N
β
α and O(s) is the operator of the form

O(s) = es(W̄α∇̄α−Wα∇α). (B.14)

The functions R(z, z′) and R̃(z, z′) read

R
(
z, z′) = −iζ ζ̄G + 7i

12
ζ̄ 2ζW + i

12
ζ 2ζ̄ W̄ − 1

2
ζ̄ αραβWβ − 1

2
ζ αραβW̄β

+ 1

12
ζ αζ̄ β

[
ρ

γ
β DαWγ − 7ργ

α Dγ Wβ

]
, (B.15)

R̃
(
z, z′) = iζ ζ̄G + i

12
ζ̄ 2ζW + 7i

12
ζ 2ζ̄ W̄ − 1

2
ζ̄ αρ̃αβWβ − 1

2
ζ αρ̃αβW̄β

+ 1

12
ζ αζ̄ β

[
7ρ̃βγ D̄γ W̄α − ρ̃αγ D̄βW̄ γ

]
. (B.16)

The objects ρm and ρ̃m are versions of bosonic interval ξm with specific chirality properties:
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ρm = ξm + iζ αγ m
αβ ζ̄ β, D′

αρm = D̄αρm = 0,

ρ̃m = ξm − iζ αγ m
αβ ζ̄ β, D̄′

αρ̃m = Dαρ̃m = 0. (B.17)

To make the heat kernels (B.10) and (B.12) more useful for loop quantum computations one
has to push the operator O(s) on the right and act with it on the parallel transport propagator.
The result of this procedure is [9]

K+
(
z, z′∣∣s) = 1

8(iπs)3/2

sB

sinh(sB)
eisG2

e
i
4 (F coth(sF ))mnξm(s)ξn(s)− 1

2 ζ̄ β (s)ξβγ (s)Wγ (s)

× e
∫ s

0 dt Σ(z,z′|t)ζ 2(s)I
(
z, z′), (B.18)

K−
(
z, z′∣∣s) = 1

8(iπs)3/2

sB

sinh(sB)
eisG2

e
i
4 (F coth(sF ))mnξm(s)ξn(s)− 1

2 ζβ(s)ξβγ (s)W̄ γ (s)

× e
∫ s

0 dt Σ(z,z′|t)ζ̄ 2(s)I
(
z, z′), (B.19)

K+−
(
z, z′∣∣s) = − 1

8(iπs)3/2

sB

sinh(sB)
eisG2

× e
i
4 (F coth(sF ))mnρm(s)ρn(s)+R(z,z′)+∫ s

0 dt (R′(t)+Σ(t))I
(
z, z′), (B.20)

K−+
(
z, z′∣∣s) = − 1

8(iπs)3/2

sB

sinh(sB)
eisG2

× e
i
4 (F coth(sF ))mnρ̃m(s)ρ̃n(s)+R̃(z,z′)+∫ s

0 dt (R̃′(t)+Σ(t))I
(
z, z′). (B.21)

All s-dependent objects in these expressions are defined by the rule X(s) =O(s)XO(−s), e.g.

Wα(s) ≡O(s)WαO(−s) = Wβ
(
e−sN

)
β

α,

ζ α(s) ≡O(s)ζ αO(−s) = ζ α + Wβ
((

e−sN − 1
)
N−1)

β
α,

ζ̄ α(s) ≡O(s)ζ̄ αO(−s) = ζ̄ α + W̄β
((

e−sN − 1
)
N−1)

β
α,

ξm(s) ≡O(s)ξmO(−s) = ξm − i
(
γ m

)αβ

s∫
0

dt
(
Wα(t)ζ̄β(t) + W̄α(t)ζβ(t)

)
. (B.22)

The quantities Σ(z, z′) and R′(z, z′) + Σ(z, z′) in (B.18)–(B.21) are given by

Σ
(
z, z′) = −i

(
W̄βζβ − Wβζ̄β

)
G − i

3
ζ αζ̄ βWβW̄α + 2i

3
ζ αζ̄αWβW̄β

+ i

12
ζ 2[W̄ 2 − ζ̄ αW̄αDβWβ

] + i

12
ζ̄ 2[W 2 + ζ αWαD̄βW̄β

]
+ 1

12

(
ζ αW̄β − ζ̄ βWα

)[
ξαγ Dγ Wβ + ξβγ D̄γ W̄α

]
, (B.23)

R′ + Σ = 2iζ̄WG + 2i(ζ ζ̄ WW̄ − ζW ζ̄ W̄ ) + iζ̄ 2[W 2 − ζ αWβDαWβ

]
− 1

2
ζ̄ βWα

[
ρβγ D̄γ W̄β − ραγ Dγ Wβ

]
, (B.24)

R̃′ + Σ = −2iζ W̄G + 2i(ζ ζ̄WW̄ − ζWζ̄W̄ ) + iζ 2[W̄ 2 + ζ̄ αW̄ βD̄αW̄β

]
− 1

ζ βW̄α
[
ρ̃αγ D̄γ W̄β + ρ̃βγ D̄αW̄ γ

]
. (B.25)
2
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The heat kernels (B.10) and (B.12) at coincident Grassmann superspace points reduce to the
following expressions [9]:

K+
(
z, z′∣∣s)∣∣ = 1

4(iπs)3/2

sW 2

B
tanh

sB

2
eisG2

e
i
4 (F coth(sF ))mnξmξn

, (B.26)

K+−
(
z, z′∣∣s)∣∣ = − 1

8(iπs)3/2

sB

sinh(sB)
eisG2

exp

{
i

4

(
F coth(sF )

)
mn

ρmρn

− iGWαfα
β(s)W̄β + Wαρmf m

αβ(s)W̄β + i

2
W 2W̄ 2f (s)

}
, (B.27)

where

fα
β(s) = 2B−2(1 − sN − e−sN

)
α

β,

f (s) = 1

sB4

[
(sB)2 − 4 sinh2(sB/2)

(
1 + sB tanh(sB/2)

)]
,

f m
αβ(s) = 1

2
B−2(cosh(sB) − 1

)[(
e−sN

)
β

γ Nα
δ
(
γ m

)
γ δ

+ (
N

(
e−sN

))
β

δ
(
γ m

)
αδ

]
− 1

2

(
F coth(sF )

)m
nγ

n
γ δ

[(
e−sN − 1

N

)
α

γ

(
e−sN − 1

N

)
β

δ

+ εαβNγδ

B3

(
sB − sinh(sB)

)]
. (B.28)

Appendix C. Two-loop effective action in N = 2 SQED up to four-derivative order

Classical action of N = 2 SQED has the form similar to (2.1), but the gauge superfield is
described by supersymmetric Maxwell rather than the Chern–Simons term. The two-loop Euler–
Heisenberg effective action in this model was studied in [9]. In components, such an action
contains all powers of the Maxwell field strength. Here we wish to consider only the superfield
terms up to four-derivative order, F 4, to compare them with the similar ones in the model (2.1)
studied in Section 2. In principle, these terms can be extracted from the results obtained in [9]
which include all powers of Fmn in components. However, we give here some details of deriving
these terms “from scratch”, following the same procedure as in Section 2 for similar Chern–
Simons matter model (2.1).

Two-loop effective action in the N = 2 SQED has the structure analogous to (2.32), but with
ΓA and ΓB given by

ΓA = −2g2
∫

d7z d7z′G+−
(
z, z′)G−+

(
z, z′)G0

(
z, z′), (C.1)

ΓB = −2g2m2
∫

d7z d7z′G+
(
z, z′)G−

(
z, z′)G0

(
z, z′), (C.2)

where g2 is the gauge coupling constant and G0(z, z
′) is the gauge superfield propagator,

G0
(
z, z′) = 1

�δ7(z − z′) = i

∞∫
0

ds

(4πis)3/2
e

iξ2

4s ζ 2ζ̄ 2. (C.3)

Using this propagator and the heat kernels (B.10)–(B.13), the two-loop contributions (C.1) and
(C.2) to the effective action can be recast as



I.L. Buchbinder et al. / Nuclear Physics B 881 (2014) 42–70 67
ΓA = 2ig2
∫

d7z d3ξ

∞∫
0

ds dt du

(4iπu)3/2
ei(s+t)m2

e
iξ2

4u K+−
(
z, z′∣∣s)K+−

(
z′, z

∣∣t)∣∣, (C.4)

ΓB = 2ig2m2
∫

d7z d3ξ

∞∫
0

ds dt du

(4iπu)3/2
ei(s+t)m2

e
iξ2

4u K+
(
z, z′∣∣s)K−

(
z′, z

∣∣t)∣∣. (C.5)

Consider first the details of computations of (C.4).
For studying the low-energy effective action up to the four-derivative order, it is sufficient to

consider the heat kernel K+− in the approximation (2.57),

ΓA ≈ 2ig2

(4iπ)9/2

∫
d7z d3ξ

∞∫
0

ds dt du

(stu)3/2
ei(s+t)(m2+G2)e

iξ2

4 ( 1
s
+ 1

t
+ 1

u
)eX(ξm,s)+X(−ξm,t). (C.6)

Using the explicit form of the function X(ξm, s) in (2.58), we expand eX(ξm,s)+X(−ξm,t) in a
series up to the first order in Nαβ ,

eX(ξm,s)+X(−ξm,t) = 1 + i
(
s2 + t2)GWαW̄α + i

3

(
s3 + t3)GWαNαβW̄β

− s − t

2
ξmγ m

αβWαW̄β + 1

2

(
s2 − t2)ξm

(
γ mN

)
WαW̄α

+ 3

2

(
s2 − t2)ξmγ m

γ (αN
γ

β)W
αW̄β − 7i

24

(
s3 + t3)W 2W̄ 2

+ 1

4
G2(s2 + t2)2

W 2W̄ 2 − (s − t)2

16
ξmξmW 2W̄ 2. (C.7)

Note that some of the terms in (C.7) give no contributions to (C.6). Indeed, the term with
GWαW̄α in the r.h.s. of (C.7) gives vanishing contribution for considered gauge superfield
background because of (2.23). The terms in (C.7) linear with respect to ξm also give vanish-
ing contribution after integration over d3ξ because of (2.61). For the remaining terms in (C.7)
we have

ΓA ≈ 2ig2

(4iπ)9/2

∫
d7z d3ξ

∞∫
0

ds dt du

(stu)3/2
ei(s+t)(m2+G2)e

iξ2

4 ( 1
s
+ 1

t
+ 1

u
)

×
{

1 + i

3

(
s3 + t3)GWαNαβW̄β

+ W 2W̄ 2

4

[
G2(s2 + t2)2 − 7i

6

(
s3 + t3) − (s − t)2

4
ξ2

]}
. (C.8)

The integration over d3ξ is done using (2.62) and

∫
d3ξ ξ2e

i
4 aξ2 = − 3

2π

(
4iπ

a

)5/2

. (C.9)

Then the expression (C.8) reads
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ΓA ≈ g2

32π3

∫
d7z

∞∫
0

ds dt du

(st + su + tu)3/2
ei(s+t)(m2+G2)

{
1 + i

3

(
s3 + t3)GWαNαβW̄β

+ W 2W̄ 2

4

[
G2(s2 + t2)2 − 7i

6

(
s3 + t3) − 3i

2

(s − t)2stu

st + su + tu

]}
. (C.10)

After integration over du we find

ΓA ≈ g2

16π3

∫
d7z

∞∫
0

ds dt√
st(s + t)

ei(s+t)(m2+G2)

{
1 + i

3

(
s3 + t3)GWαNαβW̄β

+ W 2W̄ 2

4

[
G2(s2 + t2)2 − 7i

6

(
s3 + t3) − i

(s − t)2st

s + t

]}
. (C.11)

The remaining integrations over s and t can be done with the use of the following formulas:

∞∫
0

ds dt√
st(s + t)

ei(s+t)(G2+m2) = −π ln
(
G2 + m2), (C.12)

∞∫
0

ds dt√
st(s + t)

(
s3 + t3)ei(s+t)(G2+m2) = − 5iπ

4(G2 + m2)3
, (C.13)

∞∫
0

ds dt√
st(s + t)

(
s2 + t2)2

ei(s+t)(G2+m2) = 57π

16(G2 + m2)4
, (C.14)

∞∫
0

ds dt

(s + t)2

√
st(s − t)2ei(s+t)(G2+m2) = − iπ

16(G2 + m2)3
. (C.15)

As a result, we get

ΓA ≈ g2

16π2

∫
d7z

[
− ln

(
G2 + m2) + 5

12

NαβWαW̄β

(G2 + m2)3

+ W 2W̄ 2

96

(
49G2

(G2 + m2)4
− 73

2

m2

(G2 + m2)4

)]
. (C.16)

For computing the part of the effective action ΓB up to the four-derivative order it is sufficient
to approximate the heat kernel K+ in (B.26) as

K+
(
z, z′∣∣s)∣∣ ≈ 1

(4iπs)3/2
s2W 2eisG2

e
iξ2

4s . (C.17)

Substituting (C.17) into (C.2) and computing the integrals over d3ξ and du with the help of
(2.62) one finds

ΓB ≈ g2m2

16π3

∫
d7zW 2W̄ 2

∞∫
0

ds dt

s + t
(st)3/2ei(s+t)(G2+m2). (C.18)

The integral over the remaining parameters reads



I.L. Buchbinder et al. / Nuclear Physics B 881 (2014) 42–70 69
∞∫
0

ds dt

s + t
(st)3/2ei(s+t)(G2+m2) = 9π

64

1

(G2 + m2)4
. (C.19)

As a result,

ΓB ≈ 9g2m2

1024π2

∫
d7z

W 2W̄ 2

(G2 + m2)4
. (C.20)

The four-derivative two-loop effective action is given by the sum of (C.16) and (C.20). It can
be represented in the form (2.22) with the functions f

(2)
i given by

f
(2)
1 = − g2

16π2
ln

(
G2 + m2), (C.21)

f
(2)
2 = 5g2

192π2

G

(G2 + m2)3
, (C.22)

f
(2)
3 = g2

π2

98G2 − 73m2

3072(G2 + m2)4
. (C.23)

In Section 2.6 we denote these functions as f̃
(2)
i to distinguish them form the similar functions

in the N = 2 Chern–Simons electrodynamics.
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