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Infinite-Alphabet Channels and the Method of Codes 
of a Fixed Composition 

UDO AUGUSTIN* 

Mathematisches Institut, Universitiit Erlangen, W. Germany 

A proof of the strong converse of the coding theorem for stationary infinite- 
alphabet channels without memory fulfilling a certain supposition on finite 
coverings is presented. The proof indicates to which point the method of fixed 
composition codes can be used for infinite-alphabet channels. The special 
supposition for the proof of the strong converse (though not the most general 
one; compare for this: Augustin [1]) is of technical relevance and is satisfied 
in all cases of practical interest. 

1. THE CHANNEL 

Let [X0, (Yo ,Fo), P0] be given, where Xo,  Yo are nonempty sets (input 
and output alphabet, respectively), F 0 a a f i e l d  in Y0 and P0 = Po( , ) a 
real function on X 0 × F 0 s.t. Po(xo, ) is a probability on (Iio ,Fo) for each 
x o e X  o. Furthermore, let [ X v , ( Y ~ , F , ) , P ~ ]  (v = 1,2,...) be copies of 

t t . 
[Xo, (Yo ,Fo), Po], Xh,tl : =  I'I~=l Xv,  Yh,tl : ~  I-[~=1 Y~ Cartesian prod- 
ucts of the Xv and Y , ,  respectively, F[1,tl : =  1-I~=IF, the product a field on 
Y[a,tl and let Ph,tl ~ -P l l , t l ( ,  ) be the real function on X[1,t ] ×Fh,~t] 
determined by: Ph,d(x, ) is a probability on (Yh,tl,F[1,t]) for  each 
X = ( X  1 . . . .  , Xt) e Xh.tl and satisfies Ph,tl(X, E) -~ Pl(Xl , El) . - -  Pt(xt ,  Et) 
for each E of the fo rm E = E 1 X .. . .  X Et~Fh . t  I ( E ~ F v ,  1 <~v <~ t). 
We call [1, t] the time (time interval of t discrete time points, v ~ !, 2 ..... t). 

{[Xh.t], (Yh,t],  F[1,t]), Ph,tl]},=l,~ .... is called a stationary channel without 
memory for discrete time. 

An ~ code (0 < e < 1) of length N for [1, t] for this channel is a sequence 
{(x ~,E i ) : l  ~ i ~ N }  (x ~ e X h , t l , E  ~eFh,t]), where the E ~ (1 ~ i ~ N )  
are pairwise disjoint sets of Y[a,tl and P[1,tl(X I, E i) > 1 --  e. Set 

Nt(e) : =  sup{N natural: there exists an c-code of length N for [1, t]}. 

* This paper was supported by the Deutsche Forschungsgemeinschaft. 
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Let 

and 

M~ : =  {P,(x~, ) : x ~ e X , }  (0 ~ v <~ t) 

M[1.o : =  341 × " .  x M, : =  {Pl × "'" × P~ onF[1.t ] :pv ~ M~}. 

We may assume without loss of generality that there is a 1 : 1 corre- 
spondence between x~ and P~(xv, ) (as far as one is interested in the length 
of codes alone) because the receiver can separate different input words only 
if their transition probabilities are different. Hence, we may identify X~ 
and My (0 <~ v <~ t), Xh,,] and M[~.t], respectively. 

For any probability a o with finite support on X o define 

%( ) : - -  

I(ao , Po) :----- 

C := C(Mo) : =  

C(Mo') : =  

f xo da°P°(x°' )' 

deo(xo, ) ], 
[ dao[ f dPo(,o, ) ln  dq ° 
~ X o I'o 

sup{I(ao, Po) : ao has finite support ~ X o : Mo}, 

_ ' C  sup{I(ao, Po) : ao has finite support C M o (_ Mo) }. 

C = C(Mo) is called the capacity of the channel, 
Obviously, the following holds: 

lim lira sup(l/t)  in Ne(O = lira lira inf(1 It)In N,(e) = C. 
e-~O ¢-~0 t~¢o 

lim,+oliminft_~(1/t) l nN , ( , )  > / C  follows from the coding theorem 
for finite alphabet channels by exhausting X 0 by finite alphabets; 
lim~_,o lim supt_,~o(1/t) In Nt (0  <~ C follows from the estimates used for the 
weak converses of the coding theorem (Wolfowitz [2], p. 17, t00). 

As functionals on the set of transition functions, N~(e) and C(Mo) have 
the following geometrical properties: Let co(M) denote the convex hull 
for a set M of probabilities, If  p ~ co(M[1,t]) and p(E) > 1 --  ~, then there 
existsp '  ~ Mh.,] withp ' (E)  > 1 - - e .  Hence; 

N,(O = X,(~, Ma.,~) = X # ,  co(M1) x ... x co(Md).  

This, together with the above behavior of ( l / t ) In  N,(E), yields 

C(Mo) = C(co(M0)). 
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2. THE STRONG CONVERSE 

We are now going to prove the so-called strong converse of the coding 
theorem, i.e., 

, lira sup(l/t) In Nt(e) ~< C (0 < e < 1), 
t~ov 

under the following general supposition on M 0 to be analyzed in Section 3: 

(C1) .  For each ~7 > 0 there is a natural number K(~) s.t. M o is union of 
K(,~ subsets MoJ [1 ~ j ~ K(,)] satisfying C(MoJ ) < 7. 

This supposkion admits a generalization of the method of fixed composition 
codes (method of ~r sequences) that Li. is used by J. H. B. Kemperman 
for a proof of the strong converse of the coding theorem for finite alphabet 
channels (compare f.i., Wolfowitz [2], p. 121). We will stick to the ideas 
of Kemperman's proof as much as possible. 

It is known from the theory of semicontinuous channels that the integrals 
below are well-defined and finite. Therefore, we will not make any additional 
remarks on that within the proofs. 

LEMMA. C(Mo) < oo i f  (C1) holds. 

Proof. Let M o be union of the Mot with C(Mo ~) < ~/ (1 ~< j ~ K(~)) 
and ao be any probability on M 0 with finite support. There exists a representa- 
tion, 

a o = ~ dbot J>/O, ~ d = 1 ," 
t=l i=l 

O f a o where b0t is a probability with finite support _C Mot (1 ~ j ~  K(~)). Set 

qo( ) = f daoPo(xo, ) 
Xo 

as in Section 1 and 

qoJ( ) : =  f dboJPo(xo' ). 
xo 
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We have 

with 

Set 

Then 

and 

271 

K~.q) 

= f i~I  Xo 

j~l Xo 

Ic(.) f dqO~dqo + ~ d dqoJ in 
J=l Yo 

K~,~) K(-o) 

= E cq(bo,, Po) + E c' f 
j=l  j=l  Yo 

) In dP°(x°' ) ] 
' @o 

aPo(xo, ) ] 
) i n  

, dqo~ 
] 

dqo j In dq°j 
@o 

I(bo~, Po) ~ C(MoJ) < ~ (1 ~ j ~ K(O ). 

I K(~) 

j=l  

dqo ~ In dq°~" 

fro dqo in ~ ~ 0 

(the latter follows by means of Jensen's inequality). Hence, 

~=1 ~" cJ ro dqo j In dqo = ~ d dqo j In ~q° _ dqo In < In K(,).  
j=l  Yo Yo 

This yields 

sup I(ao , Po) = C(Mo) < ~ + In KC, ) . 

In the case that C(Mo)< oo holds liminft~(1/t) lnNt (e )~  C(Mo) 
(0 < • < 1) is equivalent to the following: For each a (0 < • < 1) and 
8 > 0  there is to(• ,8) s.t. l n g , ( E ) > t [ C ( M o ) - - 8 ]  for all t > t o . [If 

643/x613-5" 
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C(Mo) = oo then Nt(E) grows faster than exponentially with t. (see, 
Augustin [I], p. 32)]. 

Tn~.om~ (Strong Converse of the Coding Theorem). Suppose M o 
fulfills (C1). Then for  each e (0 < e < 1) and 3 > 0 there exists to(e, 3), s.t. 

i in N~(E) < t[C(Mo) + 3] f o r  all t > t o . 

Proof. Let {(x i, E 0 : 1 ~ i ~ / V }  be an e-code of length N for [1, t]; let 

M 0 = M0J, with C(MoO < ~ [1 ~ j  ~ K(,)]; 
• j = l  

let M j  denote the copy of MoJ in M , ,  and M ~  × ..- × M~* the set 

{Pl × "'" × Pt on (Y[1,t], F[1.t]) : Pv e M*}.  

Furthermore, let W ( j l , . . . , j t ) : =  {P[1,,](x, ): for some permutation ~rx of 
the letters of x holds Ph.t](zrx, )~  M~I × ... × M~t}. There are at most 
(t + 1)K(,) different classes W(j 1 .... , j , ) C  M[1,, l given by the above covering 
of M o . Therefore, some W = W ( j l , . . .  , jr) contains at least N ~> ~V(t + 1)-/qn) 
of the P[1,~](x ~, ) (1 ~< i ~< JY). Renumerating the, x i we have P[1,tl(x ~, ) e  W 
(1 ~ i ~ N ) .  

Let  ~ be a permutation for the letters of x ~ s.t. 

P[1,tl(Trix i, ) e M~ 1 × ... × M~* (1 ~< i ~< N).  

Ph,,l(~rixi, rdE i) = P[1,t](x i, E i) > 1 - -  e 

Set 

pi :_~ p[1,t](zrixi  ' ). 

pl is a product probability 

(1 ~ i ~ N ) .  

p l  i X "'" × pt  ~ : =  pi. 

Furthermore, let P~v be the canonical image ofp~ ~ in M0, 

t N 
1 1 i 

q° : =  t v~__l N i=~lPo~ ' 
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q~ the image of qo in M~ and 

q : = q l × " "  ×q~.  

Finally, set 

~ :=  {k ~ [1, t]: i ~  = i ~ ) ,  

1 ~ 1 ~ ipOk h o b . -  I, c o ( M o ) ]  ~ 
• v i=1 

h : = h l  × "'" × h~, 

where h~ e co(Mr) is the image of h0~. 
We have for any real R i, S i 

1 -- e - -p~i  dpi dh exp Si t t dh ~>expR ' l - -P ' ldqq  >/ 

~.~ pi(TriE i) -- p' t dp' dh 

pi(wiEi('5 i dpi dh I dh < e x p R ' l ~ l - ~ q < e x p S i l )  <~ 

~< exp[R ~ q- S ~] "q(rr~E ~) = exp[R ~ + S ~] "q(E ~) 
(1 ~ i ~ N ) .  

Moreover, 

for 

and 

for 

pi l l n dP i 1 -- 
~ -  >~ ~I <~ 4 

4f ~i := ~ dpi ln + 

dh 1 - - ~  
4 

~i : =  f dpiln dh ~ 4 ~1/2[f dpi(indh dh~.]x/z dq + ~-v=;- ,1  ~ - f alP'In.q1 J " 

273 
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Therefore, 

1 1 N 
~> q(EO -~ ~ .~ 

1 .v 

• ( 1 - - e - - p i l l n ~ / > d P  i [~il_pitlndh, ~q>/~qil) 

1 N 1 - - ~  
>~ _-= S' exp[ - -S  i - -  R i] 

N22__ I 2 

(]ensen's inequality). 
We now estimate ( l /N) .  ~=1/~i :  

1 - - e l  ~ 2~ i 1 N ( ~ p h  / ) i 2 Ni= 1 =Ni~,f dpiln+ 41~fdpiln~+e-li=l 

because 

fdp, lln (@)]  = fdh[~ ~P'a,~dh ¢ ~<e~, 

where z(u) := u In u (and --u In u ~> e -1 for u > 0). 

i ' 1 dp~. 1 ~ fdpilnda~ ~ f@Lln 

- -  v = l  ] A v I N dp~ k hi ~ ~ ( 
v "~  ' v = l  

Therefore, 

g i = 1  
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N S,: Next, we estimate (I/N) • ~i=1 

= E t A  o --~o~- ~=~ f @g~ ln an°~ dq ° 

m-t( -~ i f dh°vln - - ~ q o  J" 

furthermore (using Jensen's inequality twice), 

1 N  dpi,(ln ~q dh~2] 112 

1,,2 1 [ .~ [dhov~ '~l(fdp~o, ln dhov~] 112 
i = 1  = 

<~1,~1-1 ,h 1 ~ f dp~o~lne( dho, ~ ~1~  1 ~  f dp~ovln dho~,.~2] 1/2 

= {dho~ 1 * [dhov ln - -  . 
,112 i fdho~lrl2 dqo]. dqo} j 

v ~ l  1 * 

Together these estimates yield 

~ ~> exp -- ~ t=1 - -  1 ~  (t~/+ e -1) -I- In 

and 

In dh°~ 

+ (~-%~ ;'~ [~ ~ f~o~,o~, ~ o ,  (~ ~ f~o~ ~o, j 
g=l  v=l  

4 2 
+ ~ (t~/+ e -~) + In 1 -- e -t- K(,) ln(t + 1). 
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h FinallY, observe qo = (l / t)  • E ~ J  0~ and 

-i ~ dqo ] ~< 4e-2 + ln~ t 
v=]. 

(the latter with a similar discussion as in Wolfowitz [2], p. 123) then it 
follows 

l n . / V ~ t ( j . _ i  fdhovl n dhov .~ 4 (tl/~int+t~1) 
\ t  ~1 7 

4 
+ K(,) ln(t + 1) + 1 - -  ¢" 

Now let ~/ ~/(t) * '~ = ~ 0 in such a way that  K(,) = K[,(0 ] ~ 0(ll/2), Then  
with 

! ~. f dhov In dho, < C[co(Mo)] = C(Mo), 

' (+ 0 ~=1 d ~ h o 

we obtain 

4 o(t), In N,(~) < tC(Mo) + ~ _  ~ 

where o(t) does not depend on e. 

3. T~IE CONDITION (C1) 

We analyze how the condition (C1) is related to compactness conditions 
and to moment  conditions. Furthermore,  we show that (C1) is of interest 
for a computational cutdown for decoding procedures. This  cutdown is 
related to approximations of the channel by finite input alphabet subchannels. 

Let  G be the class of convex functions 9 on R + which have a representation 
q~(u)----fo re(u)du with a nonnegative continuous and strictly increasing 
function re(u) satisfying m(0) = 0, re(u) ~ oo (u --~ oo). I t  has been shown 
(in Augustin [1], Section 9) in another context that (C1) is equivalent to 
the following condition: 



CHANNELS AND THE METHOD OF CODES OF A FIXED COMPOSITION 277 

(C2). (a) 

(b) 

K ~ ( M o ) : = s u p ( f  dao(xo) f 
a° "go Yo 

where qo = f dao(Xo) Po(xo, ). 

M o is conditionally variational norm compact and 

there is ~ ~ G such that 

dPo(xo , )go lln+[ 
dPo(xo , ) 

Observe that part (b) of condition (C2) alone is of the same type as the 
requirement that C(Mo) < oo holds. 

We are now going to use (C2) to describe the behavior of the channel 
with respect to approximations by; finite input alphabet subchannels. The 
index 0 of M 0 is dropped for brevity. 

LEMMA. Let pl,..., p~ and fl,.. . ,  fin, respectively, be probabilities in M and 
let a ~ >~ 0 be real numbers with ~,J=l aJ = 1. Set q : =  ~ a~p~, q : =  ~ a~f s, 
q : =  ½q + ½q. I f  

]]pJ -- fJ ][ -..< ~/~.< 2 (1 ~ < j ~ n )  

holds, then 

--~ in - ~  - -  ~ a j --~- , -~ - ln  } ~ B~(~ ,, M), 

where 

B~(~,, M) : =  yl/3[C(M) + 27] -~ 
2 

m(y-1/3) K°(M), 

for any go ~ G with m being the derivative of go. (0 ~ B~(~,, M)  ~ ~ for 
every go ~ G.) 

Proof. We set gJ : =  ½pJ + ½fJ (1 <~ j <~ n), z(u) : =  u In u and r~(u) for 
the inverse function of m(~(m(u)) = u). For any Ux, u 2 > /0  holds 

and 
u~ .u~ ~ u#(ul) ÷ ~(u~) 

• 1 
Ul " u2 ~ u l~(K " ul) + ~ " ~o(u2) ( K  > 0). 

This can easily be Seen by a simple geometric argument and it is also 
a familiar step for the derivation of generalized H61der inequalities. The 
inequality of the lemma may be considered as a generalized H61der inequality. 
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We estimate A: 

where 

and 

AUGUSTIN 

A ~ A 1 +A~.,  

: =  2. a -d~-m-~-  -- ~ a  - - ~ - m - ~  [ 

A 2 : = f d ~ l d q  dq dq, dq d~ z dq ~ l n ~ - -  ~ m  ~-~t = f (--~-) -- z ( d-~-- )1 

Observe 0 ~ d q / d q ~ 2 ,  O~dq/d~<2 and I z(u)] ~ [ u - - l l ' z ( 2 )  
(0 ~< u ~ 2). Hence, A 2 ~< 2 .  z(2)(ll q - ~II + II q - ~lt). But 1[ q -- ~[1 = 
1I q -- q II = ½" I[ q - q I] ~ } E aJ II P~ -- ffJ I[ ~ ½Y. Therefore, 

where 

and 

A i ~ < y ' 4 1 n 2 .  

A 1 ~< A 3 + A , ,  

A a : :  f d~ [ ~ , d f  , d f  d~ db ~ 

A" := f dq ~ aJ ~ In dgJ -- ~ a~ ~ ln --d-~- " 

dp j , dp ~ d~J In dfi~ 
A3 <~ Z a~ f d~ --d~m dg i d~ -~gJ ] 

= Za~ f dgJlz[ dP' ] - - z [  dfiJ ] \dgJ] k dgJ 1] ~ < y ' 4 " l n 2 '  

where the last inequality sign is obtained similarly as for A 2 . 

~ ~aJ f dgj [ dPi ln dg~ 

dg~ 

ap, W I a¢ 'n-d-f 

d p  In dgJ 
dgJ -~  l 

aP ] l ln agJ dgJ -~q [ = A 5 + Ae, 
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where 

ag~ d~ I ln- ( dgJ ~1 
de I \ dq /l '  

& : = ~ a J  fdgJ[ d f  
de ~ dgJ \ d# ]1" 

To estimate A~ set B~ : =  {dgJld~ < 8}, where 0 < 3 ~ 11 e. We obtain 

and 

<<- E a~¢(B¢) 2 z(8)l ~< 2 [ z(3)[ 

@J dP I [in_ { dg~ ~ 

1 <~ ~aOllp j --frill I ln8 I <~ 71n~ .  

Setting 3 = (1/207 (then 3 ~< l/e, because 7 ~< 2) we have 

1 1 3 

= 37 + 371/2 ] z(71/2)] <~- 3(7 + 71/°'). 

To estimate As, set De : =  (I dpqdgJ -- @qdg~ I < ~'), where 8' > O. 
We obtain 

<~ "Ea~ fo, ag~l'n '{ dgJ ]1 8'[ C(M) + 1] 

because of C(M) = C[co(M)] and 

~" ¢ f ,oomplD,, dgj dg, dg' \--~-") 
1 <~ E a~g~(compl DJ) ~(2K) + -~ E aj f dg~o [In + { agJ ~1 ~ dq tJ 
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by means of the inequality given at the beginning of the proof. Together 
with g~(compl D 0 ~ 1/~' lip j - - /~  tt (by Chebyshev's inequality) and 

z a, f dgJ  [In+ dg' f dg~ ~ ] 
ka~n 

4 

a q - ~  k d~ ]J 

(Jensen's inequality for the convex function u" ~0(ln + u) on R +) and the 
latter being 4 K¢(M), we obtain for A. : 

2. K,(M) (a', K > 0). 

We set 3 ' =  71/~ and give 24}, 1/~ as a crude upper estimate for 
A 2 + A  3 + A ~ . T h e n  

2 .  Ko(M). A < yl,8 [C(M) + le + 24] + 27"3~(K) + 

Finally, we set r~(K) = y-1/3; hence, K : m(7-1J~). This yields 

2 A ~ ~,~/ffC(M) + 27] + m(r_~/~----- ~ K~'(M). Q.E.D. 

Set diam(M') : :  sup{If p -- p' ]I : P, P' ~ M'}. 

COROLLARY. (a) Bffr, M) = B~[r, co(M)]. 

(b) Let diam(M') ~ y ~ 2 for M' C_ M. Then 

C(M') ~ B°'(y, M') ~ B~(y, M). 

Proof. (a) To obtain K~(y, M) = K~[y, co(M)] check the last part 
of the proof of the lemma. Together with C(M)= C[co(M)] follows 
B~(7, M) = B¢[7, co(M)]. 

(b) Take pl,..., pn a M'  and /~  -- -- _fi" a M'  in the lemma. Then 

ap~ , dp~ dp~ 
a~ I --@- In 0 

C(M') is supremum of expressions of the form E a~ f dP ~ ln(dp~/dq) (which 
are nonnegative). Q.E.D. 
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COROLLARY. Let M'  C_ M" C_C. M and suppose 

M "  C_ V,(M') : =  {p e M : inf IIP -- P' i] < 7} (7 ~< 2). 

Then 

C(M') ~ C(M") <~ C(M') + B (7, M ). 

Proof. Apply the lemma picking p S e M "  and f f J e M '  such that 
[I PJ --/SJ ]1 < 7. Q.E.D. 

Pinsker's inequality implies (compare, Augustin [1], Section 9) that 
diam(M') <~ r • C(M') ~/2 holds with an absolute constant r. For more details 
on such inequalities and on optimum constants compare a forthcoming 
paper of J. H. B. Kemperman, "On the Optimum Rate of Transmitting 
Information." 

It should be noticed, finally, that the following is wrong in almost all 
cases: Let M'  _C M. For each ~/ > 0 there is 7 > 0 such that M'  C M" _C_C M 
and C(M")<~ C(M')-}-'q implies M"C__ V,(M'). Detailed discussions of 
relations between topological convergence and information convergence 
have been given by Csiszar in [3]. 

The next theorem gives a prescription for the computational cutdown 
for coding. 

THEOREM. Suppose SUpo<.~<2 B~(V, M) < ~ for M.Let  for a given 3 > 0 
7o be sufficiently small s.t. B~(7o , M) < 3 holds. Furthermore, let M = 0 ~  o) be 
any finite covering of M by subsets M s with diam(MJ) < Yo [1 ~ j ~ K~vo) ]. 

(a) Then there are K~eo) numbers a j >/0 with Z.,S=I~KCY°~ as = 1 such that 

K%) J/'dP s In d/9 E as CCM) 3 j=x -~q > 

holds (where q = ~ aSpO for any choice of pl e M 1 ..... p~:%) e MK%>. 

x" (b) Choose any pJ e M~ [1 ~ j ~ K~0) ]. Then take constants a j s.t. 
x ~ ~o~ a s z-j=l f dp s ln(dpS/dq) is maximal. Then for arbitrary ff s e M j (1 ~ j ~ K~eo; ) 
holds 

K(.,/o) 
Z aj f dF In dffJ C(M) 23, 

where ~ = Z aJfi j. 
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Proof. (a) For given 3 ' >  0 there is a probability a on X = M 
with finite support s.t. 

dP(x, ) 3'. 
l(a, P) = f da(x)[f dP(x, )In d f da-a-~P(x, ) ]  > C(M) -- 

X~K(~o) aJb s where a j ~K(ro) a has a representation a = ~S=l , /~ O, z.,j=l a j = 1 and 
bJ is a probability with support M s. Then 

dP(x, ) dp~ 
If da(x) [f  dP(x, )ln d f da(x) P(x, )]  -- ~ aJ f dpJ In -~- { <  B~(7o, M) 

for any choice ofp ~" ~ Ms [1 ~ j ~< K(vo) ] according to the lemma. (a) follows 
from supa I(a, P) = C(M). 

Part (b) is an immediate consequence of Part (a) and of the lemma. Q.E.D. 
The last theorem can also be used to derive a device for the treatment 

of certain nonstationary channels by means of approximation by finitely 
many channels having finite input alphabets. Together with the strong 
converse of Section 2, the last theorem can be used to describe how good 
the nonstationary channel can be approximated by those finitely many 
channels. (For this kind of question the type of strong converse proved 
in Section 2 is just the right one.) Provided sender and receiver know the 
nonstationary behavior of the channel the prescriptions given by the last 
theorem can be used to determine simpler, almost optimal, input sources 
and to simplify coding. 

4. ON WEAKENING (C1) 

It has to be considered as very different problems to try to prove coding 
theorems and converses in relation to coding effort and to try to prove 
coding theorems and converses without paying respect to coding effort. 

In the first case manipulations of each of the transition probabilities from 
a certain set and manipulations of each of the transition probabilities of 
codes of maximal length are necessary. 

In the second case only manipulations of averages of transition probabilities 
are necessary. 

By sticking to the line of manipulating averages one can easily prove 
coding theorem and its strong converse for nonstationary infinite-alphabet 
channels without memory satisfying (C2)(b) alone, even together with speed 
estimates for the convergence in those theorems (compare, Augustin [1], 
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where also necessary and sufficient conditions are given for the coding 
theorem and its strong converse for infinite alphabet nonstationary channels 
wi thout  memory).  Furthermore,  it is possible with this idea to transfer the 
known estimates for In Nt(E) up to an order o(t 1/~) and the estimates for 
the error probability of codes to those channels. 1 

We finally give an example of a mathematical channel not satisfying 
(C2)(a) but  (C2)(b) that has a very nice coding theorem and strong converse. 

Let  I7o be the interval [0, 1] _C R, F o the natural a field, A the Lebesgue 
measure on ([0, 1], F0) and M o : =  {p~} (j  = 1, 2,...), where p~ is defined 
by means of the following density: For j = 2i define 

dp zi {2 on [ (2k - -1 )  2-i, 2k2 -i] for k = l , . . . , 2  '-1 
da : =  10 otherwise 

for j = 2i - -  1 define 

d•2i-1 dp2i 
: = 2  

dh d~ " 

M 0 is not norm-totally bounded because [] ph _ p h  1[ ~ 1 for Jl  : / : J~ .  
Hence, M 0 does not satisfy (C2)(a). However, it can easily be seen that M 0 
satisfies (C2)(b). 

Now consider the stationary channel without memory  generated by M o . 
(a) Surely N,(E) ~ 2* because psi and p~i-1 have disjoint support.  (b) Let  
p e M[1.~1, E ~Ftl .d andp(E)  > 1 - -  E. Then  (h × .-" × A)(E) > (1 - -  e) 2-*, 
hence N,(e) < 2 ~" 1/(1 - -  E). Together  we have t( ln2) ~< lnNt(e)  < 
ton 2) - -  ln(1 - -  e) with In 2 being the capacity of the channel. 

I t  is possible to treat these kind of channels automatically together with 
the well-known practical channels if one tries to manipulate only averages 
of the transition probabilities. By accepting these remarks, one sees that 
it is not very good heuristics to talk about information distances (as is 
frequently done) when proving strong converses. One also sees that one 
should avoid the use of such unstable methods as the method of fixed- 
composition codes because these methods are related to the coding effort 
and to manipulations of each of the transition probabilities and to conditions 
as condition ( e l ) .  

When interested in the coding effort, however, one has to use even stronger 
conditions than (C1). T o  work with weak coverings instead of coverings 

t Papers by the author on that matter have appeared the summer of 1969 in Z. 
Wahrscheinlichkeitstheorie und Verw. Gebiete and in the Hungarian journal Studia. 
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wkh norm balls in order to obtain prescriptions for coding would give 
very slow approximations only of the capacity by means of finite input 
alphabet subchannels. Therefore, the two problems of coding theorems 
and converses in relation to coding effort and without relation to the effort 
of coding should be treated separately. 

RECEIVED: August 20, 1969 
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