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Infinite-Alphabet Channels and the Method of Codes
of a Fixed Composition

Ubpo Avcustin®

Mathematisches Institut, Universitit Erlangen, W. Germany

A proof of the strong converse of the coding theorem for stationary infinite-
alphabet channels without memory fulfilling a certain supposition on finite
coverings is presented. The proof indicates to which point the method of fixed
composition codes can be used for infinite-alphabet channels. The special
supposition for the proof of the strong converse (though not the most general
one; compare for this: Augustin [1]) is of technical relevance and is satisfied
in all cases of practical interest.

1. Tue CHANNEL

Let [ Xy, (Yy, Fp), Py} be given, where X, , Y, are nonempty sets (input
and output alphabet, respectively), F, 2 o field in Yy and Py, = Py( , ) a
real function on X, X F, s.t. Py(x,, ) is a probability on (¥, F,) for each
%y € X, . Furthermore, let [X,, (Y, Fy), P?,] (v =1,2,...) be copies of
[Xo, (Yo, Fo)s Pol, Xpy,e1 := H'u—l Xy Yig: y Hi=1 Y, Cartesian prod-
ucts of the X, and Y, , respectively, Fp; g := ]'],_1 F, the product o field on
Y[l,t] and let P[l,t] = P[l,t]( , ) be the real function on X[l,t] X F[l,‘t]
determined by: Pp (%, ) is a probability on (¥p,gq,Fn,q) for each
x = (% ..., 8;) € X[y 5 and satisfies Py g(x, E) = Py(%, , Ey) -~ Pfx,, E,)
for each E of the form F = E; X - X E,eFp g (E,eF,, 1 <v 1)
We call [1, ¢] the time (time interval of ¢ discrete time points, v = 1, 2,..., 2).

{IXm.a, (Yia > Fru,a) Pr,al}e=.s.... is called a stationary channel without
memory for discrete time.

An € code (0 < e < 1) of length N Sor [1, t] for thzs channel is .a sequence
{(5, B 1 <i<K N} (WeXyg, EeFyy. ), where the E (1 <7< N)
are pairwise disjoint sets of Y, 5 and Ppy g(x%, EY) > 1 — . Set

Ny(e) := sup{N natural: there exists an e-code of length N for [1, £]}.

* This paper was supported by the Deutsche Forschungsgemeinschaft.
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Let
Mv:z{Pv(xv)):vaX@} (Ogvgt)
and

Mg =My X =+ X My:={p; X =+ X pyonFp g py€ My}

We may assume without loss of generality that there is a 1:1 corre-
spondence between x, and P,(x, , ) (as far as one is interested in the length
of codes alone) because the receiver can separate different input words only
if their transition probabilities are different. Hence, we may identify X,
and M, (0 < v < #), X[y i and My ;3 , respectively.

For any probability 4, with finite support on X, define

0l ) = | daPfsas )

Ia,, By) = fX daOUY dPy(x, , )1n£°~—51°;‘;,’—)},
0 [1]

1= C(M,) := sup{l(a, , P,) : a, has finite support C Xy = M},
C(My") := sup{l{ay , Py) : a, has tinite support C M,'(C M,)}.

C = C(M,) is called the capacity of the channel.
Obviously, the following holds:

i lim sup(1/2) In N(e) = lim lim inf(1/2) In Ni(e) = C.

lim_, lim inf,,,(1/¢) In N(¢) = C follows from the coding theorem
for finite alphabet channels by exhausting X, by finite alphabets;
lim,, lim sup,,.(1/¢) In N} << C follows from the estimates used for the
weak converses of the coding theorem (Wolfowitz [2], p. 17, 100).

As functionals on the set of transition functions, N{¢) and C(M,) have
the following geometrical properties: Let co(M) denote the convex hull
for a set M of probabilities. If p € co(My ;) and p(E) > 1 — ¢, then there
exists p’ € My, ;) with p'(E) > 1 — . Hence,

Nye) = Ne, M g) = Ni(e, co(My) X == X co(My)).
This, together with the above behavior of (1/t) ln N(e), yields
C(M,) = C(co(M,)).
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2. Tre STRONG CONVERSE

We are now going to prove the so-called strong converse of the coding
theorem, i.e.,

‘linll_)goup(l/t) InN(e) <C (0<e<<l),

under the following general supposition on M, to be analyzed in Section 3:

(C1). For each v > 0O there is a natural number K, s.t. M, is union of
Ky subsets My [1 < j < K] satisfying C(My7) < .

This supposition admits a generalization of the method of fixed composition
codes (method of 7 sequences) that f.i. is used by J. H. B. Kemperman
for a proof of the strong converse of the coding theorem for finite alphabet
channels (compare f.i., Wolfowitz [2], p. 121). We will stick to the ideas
of Kemperman’s proof as much as possible.

It is known from the theory of semicontinuous channels that the integrals
below are well-defined and finite. Therefore, we will not make any additional
remarks on that within the proofs.

Lemma. C(M,) < oo if (C1) holds.

Proof. Let M, be union of the My with C(My) <y (1 <j < K()
and g, be any probability on M, with finite support. There exists a representa-
tion,

Ky ) Ky .
ay =Y ciby 20,y =1,
=1 =1

of a, where by’ is a probability with finite support C My (1 < j< K‘(n)). Set

)= [ daPolx, )
Xo
as in Section 1 and

W ()= [ dPiso, ).
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We have

Taos P = 3, [ [ amd, ym o)

=1

Ky ) dPy(x, , )
=Y o | db dPy(x,, )In 00> 7
Yo [ [fYO i, ) In 02
K('n) . i
+ Z ¢ dgy
j=1 Y
K.y K dq.’l
= dI(by, Py) + o dgyf In 22
PRECHORDY fYO g In it
with
I(by), Py) < C(My') <n (1 <j < Kg)
Set
] K('n)
J— J
K('n) El o
Then
f dgy’ 1n~— In K,
and

dqq
fyo dq{) In 'EX— 2 0

(the latter follows by means of Jensen’s inequality). Hence,

Km)

c’f dqfln‘i,qq = c’f dgy

0 je=1

j dgy ln <InKg.
This yields
sup Iay,Py) =CM,)) <n-+IK,.
0

In the case that C(My) << oo holds liminf,,(1/f) In Nye) = C(M,)
(0 < e <) is equivalent to the following: For each € (0 < ¢ < 1) and
8 > 0 there is #e, 8) s.t. InN,(e) > {{C(M,) — 8] for all ¢ > ¢ . [If

643/16/3-5*
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C(M,) = o then Nye) grows faster than exponentially with t (see,
Augustin [1], p. 32)].

THEOREM (Stroﬁg Converse of the Coding Theorem). Suppose M,
Sulfills (C1). Then for each e (0 < e << 1) and § > O there exists te, 8), s.t.

In Nye) < C(My) + 8]~ forall t>t,.
Proof. Let {(x, E%) : 1 <7 < N} be an e-code of length N for [, ¢]; let
K(‘n) . » o .
My =) My, with C(My)<n [1<j<Kq);
'}
let M, denote the copy of My in M, , and M;% X =+ X Mt the set

{py X = X pron (Yra,Fr.a) 1P, EM«;”}'

Furthermore, let W(j;,..., j;) := {Pp (%, ): for some permutation =x of
the letters of x holds Py g(mx, )€ Mi X «- X Mj%}. There are at most
(¢ + D)¥@ different classes W(jy ..., j;) C My 4 given by the above covering
of M, . Therefore, some W = W(j, ,..., j;) contains at least N > N(t + 1)K
of the Pp; ;(x%, ) (1 < ¢ < N). Renumerating the x% we have Py, g(xf, e W
(1 <i<N)

Let #* be a permutation for the letters of «¢ s.t.

Py a(n’s’, Ye M x - x M~ (1 <i<N).

Py y(nial, w'Ef) = Py g(x*, E) >1—¢ (1 <i<N).

Set
P = Py g(aiat, ).

p? is a product probability
pli X oeee X Pti ::Pi'

Furthermore, let pf, be the canonical image of p,f in M, ,

o :=

| -
M~

z 1N;‘§1P0v,
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g, the image of ¢, in M, and

q::qlx ese th‘
Finally, set

={ke(l,t]: M» = M},

hm; : 1

1= A, Z 2 Do [e co(M0)1,

kEA, 7,_1

hi=hy X o X by,

where %, € co(M,) is the image of A, .
We have for any real Rf, S?

P'L

1“6"Pl; epri$——pi 3%>CXPS7Z$
< PUAEY) — pt ;% = exp Ri; -—‘pi 3% > exp Si%

<Pi(7riEi 3 @ < exp R

dh .
3dq<expS 2)

dh
< exp[R! + §7] - g(n'E?) = exp[Rf + §7] - g(E)
(1<i<N).
Moreover,
i b 5 1—e
? 31ndh /Rg\ i
for ‘
i 4 i 74
R “1—Jdp 1“+( ar )
and
i dh &i 1 — €
for

Si:=fdpilnzdi_;l.+(lie)l [fdpi(lngg“ dp' In ég) ]1/2'
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Therefore,
1 1 ¥
~ = 7 & dE)
N /Nzgl
1 Z"’: [—Si —
== ) exp i — R
“Ng
e e B pz il . pi @ qi
(1—e pgl dh>1e¢$ pglndq>S$)
1 X 1—c¢
> — ) exp[—S5* — R¢
/N§1 P[ ]
1—c¢ 1 & & 1 g 5
>t 25) - (w2 )

(Jensen’s inequality).
We now estimate (1/N)- Z¢—1 R

because
jdpi]ln dpi l~fdh’ dpl \ =

where 2(u) := #lnu (and —uInu = ¢ for u > 0).

1 & ; dp’ . dpov
Ny [ ¥ =Y f P In
1 d ¢
=X Z [ apip10 2E 1”°’° <Y cy) <
P=] v p=1
Therefore,

LY o 4 ,
NZ R1<>1_€(t7]+€_).
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. N ~
Next, we estimate (1/N) -3, ; &

%gfdp” dh ;N S [dosin dh

dh[,,c

Z ) Y., | dpisn

( Zfdkwl d”"”)

furthermore (using Jensen’s inequality twice),

t
v=1

vy [ (g~ Jarng)]"

<o S ) 1 e ]
oL 5 1S Tt (o) - (£ 55 aim G ]
= o[ 2 Jamean () = (5 J e ) |

Together these estimates yield

L_(t—l—l)K(m>_1->exp -—Ligi— 4 {t —|—e"1)~{—lnl_—E
N =N~ N & T—e'! 2
and

- 1 hyy
1nN<t(7:élfdhm,1n dqo)

+( 1415 )1/2[ Z J-dhovlnz(dhw)_( Z fdhm,ln dhm,)] 72

“— -+ Ky In(t + 1).

+1_€(tn+e—1)+ln1
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Finally, observe g, = (1/¢) - 3+ _1 ky, and

gifdhoyl 2( dhy, ) <de? - In?t

(the latter with a 51m11ar discussion as in Wolfowitz [2], p. 123) then it
follows

e this Ty A
=1
0k

Now let y = 7(2) 2% 0 in such a way that Ky = K1 < O(/2). Then
with

dh

ain)

< Cleo(My)] = C(My),

|

il di

we obtain

In N¢) < (M) )

where o(t) does not depend on e.

3. THE CONDITION (C1H

We analyze how the condition (CI) is related to compactness conditions
and to moment conditions. Furthermore, we show that (Cl) is of interest
for a computational cutdown for decoding procedures. This cutdown is
related to approximations of the channel by finite input alphabet subchannels.

Let G be the class of convex functions ¢ on R+ which have a representation
o(u) = _[ om(u) du with a nonnegative continuous and strictly increasing
function m(x) satisfying m(0) = 0, m(u) — oo (u — o). It has been shown
(in Augustin [1], Section 9) in another context that (C1) is equivalent to
the following condition: "
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(C2). (a) M, is conditionally variational norm compact and.
(b) there is o € G such that

Ke(e) :=sup ([ data) [ aPoloo, )

e[ il ) < o,

where g, = [ dag(xo) Po(%y, ).

Observe that part (b) of condition (C2) alone is of the same type as the
requirement that C(M,) < oo holds. '

We are now going to use (C2) to describe the behavior of the channel
with respect to approximations by:finite input alphabet subchannels. The
index 0 of M, is dropped for brevity.

Lemma. Let ph,..., p” and pL,..., p*, respectively, be probabilities in M and
let @' > 0 be real numbers with 3 ;. a = 1. Set q 1= 3 a’pl, q 1= a'p’,
§: =3¢+ 3q.1f

Il —pli<y<2 (1<j<n)
holds, then

4= gL LD -5 o L] < b, ),

where

Be(y, M) := y**[C(M) -+ 2T} + 75 K*(M),

2
m(y173)
Jor any ¢ € G with m being the derivative of ¢. (0 < B*(y, M) < o for
every o€ G.)

Proof. Wesetgl :=31p' +3p' (1 €7 < n), 2(u) := uln u and #(u) for

the inverse function of m(#(m(u)) = u). For any u, , u, > 0 holds

< wyfi(uy) + @(us)

and
1 Uy < uyi(K - ul) + = K - (1) (K 50).

This can easily be seen by a simple geometric argument and it is also
a familiar step for the derivation of generalized Holder inequalities. The
inequality of the lemma may be considered as a generalized Hélder inequality.
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We estimate A:

A< A+ 4y,
where
dpi . dpi dbi . dpt
Al—qu‘2a7d~lnp Z’p 1;!
and
o (go| ¥y, %4, 44 __jz!
Az'_fdldgl ag di dql_ ' ) z(dq)

< [aal= (Gg) |+ ] a|= ()}

Observe 0 <{dg/dj <2, 0<dgdj<2 and |2(u) <|u—1]-22)
(0 < <2). Hence, 4, < 2 2(2)(||€I~9H +1g—¢l)- Butflg—gl=
lg—dl=1%-lg—qIl <}3Xa|p — P < iy Therefore,

Ay <v-4n2.
Al < 3 + A4 3
where
dl’ dp’ dP’ dP]
Ay : —qulZa’ Indgy P dg’l
and

4—qulztﬂdp1 % ol nk|

dg |
medgldpl g:: I?Zlnz,'g:
=Zaa‘fdgi’z(,%_)_z Zg: ‘<‘y 4-1n2,

where the last inequality sign is obtained similarly as for A2 .
~ dP’ dg7 de dgj

3 L= RS, -2

E a fd q do n 7

. dp dg/ dp’, dg
<Za’fdg’[ dg]l dq dgﬂ ln—d?

@ ap |, dg
<Zd’fdgj @*@!llnﬁl2A5+As,
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where .
A5:=Za"fdg" %—%H -%‘%:—)
g |- ()]

To estimate A, set B! := {dg{d§ <C 8}, where 0 << & < 1/e. We obtain

Za’f g’%“%” dg}
=Zajf3jdql%—% lz*(%gé—)l
< Y @B 21 2(6) <2120)

and
Lo ¢~ (%)

(compw")
s 1
<Ydlp —pllind|<ylns.
Setting § = (1/2e)y (then 8 <C /e, because y < 2) we have

A <2 —zl—eyln (—Zle—y)l +J/|1n (ile—y)l <3y +%|2(7)|

= 3y + 3 () <3 + ).

To estimate Ay, set D' :=={| dp’/dg! — dp’[dg’ | < &'}, where § > 0.
We obtain

Yo dg |||

SZan dga|1n -j;{ s'[C(M)+ <]

because of C(M) = Clco(M)] and

La |
(complD?) -
< Y agi(compl DY) #(2K) + % Y o f dgip [In+ (—g‘%—)]

# | g~ | [ (57
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by means of the inequality given at the beginning of the proof. Together
with gi(compl DY) < 1/8"|| p? — p7|| (by Chebyshev’s inequality) and

Lt [ dep it ()] =T g G [ ()]
<3Xe [agre [ (5]
+y5 [y [t ()]

(Jensen’s inequality for the convex function # :¢(Int#) on R*) and the
latter being < K*(M), we obtain for 4, :

<8 [C(M) T —i-] + 2 #(K) + % CKo(M) (%', K >0).

We set 8" = »'® and give 24y'/® as a crude upper estimate for
Ay + Az + Ay . Then

AL pB [.C(M) + ‘_12, + 24] + 2y B3 K) -+ _125 - Ko(M).

Finally, we set A(K) = y~1/3; hence, K = m(y~2/?). This yields

2
)

Set diam(M') :=sup{llp —p'|| : p,p e M'}.

A < RO + 2T] + ——— Ko(M). ~ QED.

COROLLARY. (a) By, M) = B[y, co(M)}.
(b) Let diam(M") <y < 2 for M'C M. Then
e ) By, M') < B*(y, M).

Proof. (2) To obtain K%y, M) = K°[y, co(M)] check the Jast part
of the proof of the lemma. Together with C(M) = C[co(M)] follows
By, M) = B[y, co(M)].

(b) Take pl,...,p"e M’ and p* = --» = p*e M’ in the lemma. Then

IZaifdpiln ?i Yo qu’ dp’ 0! Be(y, M)

C(M’) is supremum of expressions of the form Y o/ [ dp? In(dp’/dq) (which
Q.E.D.

are nonnegative).
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CoroLLARY. Let M'C M" C M and suppose

M CVM)i={peM: jnf lp—p | <v} (<2

Then .
CM) < C(M") < C(M') + By, M").

Proof. Apply the lemma picking p’eM” and p'eM’ such that
p? —p <y Q.E.D.

Pinsker’s inequality implies (compare, Augustin [1], Section 9) that
diam(M') < r - C(M')*/? holds with an absolute constant 7. For more details
on such inequalities and on optimum constants compare a forthcoming
paper of J. H. B. Kemperman, “On the Optimum Rate of Transm1tt1ng
Information.”

It should be noticed, finally, that the following is wrong in almost all
cases: Let M’ C M. For each > 0 there is y > 0 such that M'C M"C M
and C(M"y < C(M') + v implies M"C V,(M’). Detailed discussions of
relations between topological convergence and information convergence
have been given by Csiszar in [3].

The next theorem gives a prescription for the computational cutdown
for coding.

THEOREM. Suppose supyc,<o B(y; M) < oo for M. Let for a gwen 8§ >0
o be sufficiently small s.t. B¥(yq , M) << 8 holds. Furthermore, let M = { J;} Xt pe
any finite covering of M by subsets M7 with dlam(M’) <y 1 <5< K(vo)]

(a) Then there are K, , numbers @’ = 0 with Zi_f’f” @ =1 such that

K, 0)

@ fdp?ln——p—>C(M)~8

holds (where q =Y a’p’) for any choice of pre M., pXog) € MEGy),

(b) Choose any pe Mi [1 < K,»)- Then take constants @’ s.t.
T o0 g [ dp’ In(dpi|dg) is maximal. Then for arbztrary PeM(1<j<K,)
holds

(O]
Z @ fdpaln-di > C(M) — 2,

where § =Y. a'pl.
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Proof. (a) For given 6’ > 0 there is a probability ¢ on X =M
with finite support s.t.

I(a, P) = f da(x) [ [ @P@, )in Tz—f;c%c"i’%ﬂ] > C(M) — 8.

a has a representation a = Y, %’ a’b’, where o’ > 0, Zf_f’l"” @ =1 and
b is a probability with support M?, Then

Uda(x) UdP(x, )lnﬂ%] ——Za"fdp?‘ln%l < By, , M)

for any choice of p' e M7 [1 < j < K, ] according to the lemma. (2) follows
from sup, I(a, P) = C(M).

Part (b) is an immediate consequence of Part (a) and of the lemma. Q.E.D.

The last theorem can also be used to derive a device for the treatment
of certain nonstationary channels by means of approximation by finitely
many channels having finite input alphabets. Together with the strong
converse of Section 2, the last theorem can be used to describe how good
the nonstationary channel can be approximated by those finitely many
channels. (For this kind of question the type of strong converse proved
in Section 2 is just the right one.) Provided sender and receiver know the
nonstationary behavior of the channel the prescriptions given by the last
theorem can be used to determine simpler, almost optimal, input sources
and to simplify coding.

4. On WeakenING (C1)

It has to be considered as very different problems to try to prove coding
theorems and converses in relation to coding effort and to try to prove
coding theorems and converses without paying respect to coding effort.

In the first case manipulations of each of the transition probabilities from
a certain set and manipulations of each of the transition probabilities of
codes of maximal length are necessary.

In the second case only manipulations of averages of transition probabilities
are necessary.

By sticking to the line of manipulating averages one can easily prove
coding theorem and its strong converse for nonstationary infinite-alphabet
channels without memory satisfying (C2)(b) alone, even together with speed
estimates for the convergence in those theorems (compare, Augustin [1],



CHANNELS AND THE METHOD OF CODES OF A FIXED COMPOSITION 283

where also necessary and sufficient conditions are given for the coding
theorem and its strong converse for infinite alphabet nonstationary channels
without memory). Furthermore, it is possible with this idea to transfer the
known estimates for In NV,(¢) up to an order o(f'/%) and the estimates for
the error probability of codes to those channels.!

We finally give an example of a mathematical channel not satisfying
(C2)(a) but (C2)(b) that has a very nice coding theorem and strong converse.

Let Y, be the interval [0, 1] C R, F the natural ¢ field, A the Lebesgue
measure on ([0, 1], F,) and M, := {p’} (j = 1,2,...), where p is defined
by means of the following density: For j = 27 define

dp* (2 on [(2k —1)27,2k27] for k=1,.,21
dx |0 otherwise ’

for j = 2 — 1 define

it ”_ dp*

ax ax -
M, is not norm-totally bounded because ||pit — piz|| =1 for j; £ j,.
Hence, M, does not satisfy (C2)(a). However, it can easily be seen that M,
satisfies (C2)(b).

Now consider the stationary channel without memory generated by M, .
(2) Surely N(¢) = 2! because p* and p*~! have disjoint support. (b) Let
peEMpy g, EcFygandp(E) >1—e Then (X X - X A(E) > (1 — ¢} 27,
hence Nye) < 2¢-1/(1 —¢). Together we have #(In2) <lInNye) <
#(In 2) — In(l — €) with In 2 being the capacity of the channel.

It is possible to treat these kind of channels automatically together with
the well-known practical channels if one tries to manipulate only averages
of the transition probabilities. By accepting these remarks, one sees that
it is not very good heuristics to talk about information distances (as is
frequently done) when proving strong converses. One also sees that one
should avoid the use of such unstable methods as the method of fixed-
composition codes because these methods are related to the coding effort
and to manipulations of each of the transition probabilities and to conditions
as condition (C1).

When interested in the coding effort, however, one has to use even stronger
conditions than (C1). To work with weak coverings instead of coverings

1 Papers by the author on that matter have appeared the summer of 1969 in Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete and in the Hungarian journal Studia.
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with norm balls in order to obtain prescriptions: for coding would give
very slow approximations only of the capacity by means of finite input
alphabet subchannels. Therefore, the two problems of coding theorems
and converses in relation to coding effort and without relation to the effort
of coding should be treated separately.

Recervep: August 20, 1969
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