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Introduction 
The theory of “invariant matrices” was the subject of Schur’s dissertation in 1901 

[8a] and his first major mathematical achievement. The problem which Schur posed 
and solved completely was to find all functions F from m x m matrices to rxr 
matrices such that 

(i) the r* entries of F(A) are polynomial functions of the m* entries of A - i.e., F is 

a polynomial mapping from the space of m x m matrices to the space of r x r 
matrices; 

(ii) F(AB) = F(A)F(B) for all m x m matrices A, B. Schur called F(A) an 

“invariant form” or “invariant matrix” of A; he showed that each such F could be 
split up into homogeneous components, and that the homogeneous F of degree n are 
in a natural one-one correspondence with the representations of the symmetric 
group S,, provided that n 6 m. 

In 1927 [8b] Schur returned to this question, and showed that all the irreducible 
invariant matrices of degree n could be obtained by decomposing the nth tensor (or 
Kronecker) power T”(A) = A 0 q . * 0 A. To state this result in modern language, 
let V be a finite-dimensional vector space over a field k of characteristic 0, and let 
T”(V)= V@... 0 V be its nth tensor power over k. The symmetric group S,, acts 
on T”(V) by permuting the factors, so that we have a finite-dimensional represen- 
tation of S,, which we decompose into its isotypic components: 

T”(V)=@Homks,(E, T”(V))OI,E,=@F,(V)O~E~ 
II 7? 

say, functorially in V: here the E, are the distinct irreducible k&-modules. If now 
A: V-, V is a linear transformation, then F,(A): F,( V)-* Fr( V) is an irreducible 
invariant matrix of A, homogeneous of degree n, and all the irreducible invariant 

matrices of degree n, up to equivalence, arise in this way. Thus an invariant matrix in 

Schur’s sense defines a functor F on the category V,, of finite-dimensional k-vector 
spaces, which is polynomial in the sense that for each pair of vector spaces U, V, the 

mapping F: Hom( U, V) + Hom(F( U), F(V)) is a polynomial mapping between 

these vector spaces. 
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We shall take this observation as our starting point. The purpose of this paper is to 
investigate polynomial functors between more general categories than the category 

vk. 

For the adjective “polynomial” to make sense, we need from the beginning an 
underlying field of scalars. If k is any field, an additive category A in Grothendieck’s 
sense [5] (i.e., admitting finite direct sums) will be called k-linear if each object of A 

admits scalar multiplication by the elements of k, satisfying the obvious conditions 
(see §l for the precise definition), which imply that Horn&(X, Y) is a k-vector space 
for any two objects X, Y in A. 

Now let A, B be k-linear categories, where k is an infinite field. A (covariant) 
functor F: A --, B will be said to be polynomial if for all X, Y in A the mapping 
F: Hom*(X, Y) + Hom#(X), F(Y)) is a polynomial mapping. We shall also need 
to assume that the category B is pseudo-abelian (or Karoubian) [3]: this means that 
idempotent morphisms have images and hence determine direct sum decompositions 
- briefly, “idempotents split”. 

The basic idea (following Schur) is that polynomial functors F:A-+B can be 
treated in the same way as polynomials. First we show that F is the direct sum of its 
homogeneous parts (Section Z), and hence we may assume from now on that F is 
homogeneous of degree n > 0 (the case n = 0 being trivial). Next, just as a homo- 
geneous polynomial can be linearized, so can our functor F: the linearization LF of F 
(see Section 3 for definition) is a multilinear functor of n variables, i.e. a functor from 
A” =Ax- - * x A to B which is k-linear in each variable. 

In Section 4 we define an action of the symmetric group S, on L:“‘(X) = 
LF(X, . . . , X), where X is any object of A, and (because we shall want to divide by 
n!) we assume from now on that the field k has characteristic 0. Then the subobject 
(JE.:“‘(X))‘~ of S,-invariants is defined, and our first main result (4.10) is that the 
functor F can be reconstructed from its linearization LF: 

Theorem 1. F is isomorphic to the funcror X-(Lg’(X))sm. 

This result reduces the study of homogeneous polynomial functors to that of 
multilinear functors, and the next step would therefore be to classify the latter. We do 
not attempt this task in any great generality; from now on we take A to be the 
category VA of finitely-generated projective left A-modules, where A is a k-algebra. 

At this stage tensor products enter naturally. Suppose L: Vi + B is k-linear in each 
variable, and let T”(A) = A 0 - * - 0 A be the nth tensor power of A over k. Then 
T”(A) acts on L’“‘(A) = L(A, . . . , A) on the right, and thus L’“‘(A) is a right 
T”(A)-module object in the category B. With an appropriate definition of tensor 
product in this context, we show (5.6) that 

Theorem 2. L is isomorphic to the funcfor 

(PI,. . . , P,)++L(“)(A) @TM (PI 01, . ’ * @k pn). 
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From Theorems 1 and 2 we have immediately 

Theorem 3. Let F: VA + B be a homogeneous polynomial functor of degree n > 0. 
Then F is isomorphic to the functor 

P-t (Lg’(A) &~(,z,) T”(P))Sn. 

In this situation the symmetric group S, acts on all three ingredients: the k-algebra 
T”(A), the right T”(A)-module L:“‘(A), and the left T”(A)-module T”(P), and in 
the two last cases the action of S,, is compatible with the module structure. This leads 
us in Section 6 to the second main theme of this paper, namely wreath products. The 
vector space T”(A) Ok kS,, is a k-algebra for the multiplication (a 0 s)(b 0 t) = 
a*s(b)Ost, where a,bET”(A) and s,t~S,; this k-algebra we call the wreath 
product of A with S,,, and denote it by A - S,,. (If A = kf is the algebra of a group f, 
then A - S,, is the group algebra of the wreath product r - S,.) In this way we may 
regard the nth tensor power (over k) as a functor from VA to VA+,, and Theorem 3 

then takes the form ((6.4), (6.5)): 

Theorem 4. Let F: VA + B be a homogeneous polynomial functorof degree n > 0, and 
let M = Lg’(A). Then F 2 UM 0 T”, where T”: VA + VA--S, is the nth tensor power, 

and UM: VA+, + B is the k-linear functor Q + M OA__S, Q. 

Moreoverthefunctorsa:FHL$‘)(A),p:MHLJ,~r 0 T” constitute an equivalence of 
the category of homogeneous polynomial functors F: VA + B of degree n with the 
category of right A-&-module objects in B. 

Suppose now that B is the category Vk of finite-dimensional k-vector spaces. Then 
it follows from Theorem 4 that the classification of irreducible polynomial functors 
F:VA-+Vk of degree n is tantamount to the classification of simple A - S,- 
modules, finite-dimensional over k; and this is a particular case of the classification of 
simple modules over twisted group rings, which we discuss in the Appendix. In this 
way we obtain (7.2), on the assumption that k is algebraically closed (and of 
characteristic 0): 

Theorem 5. Every irreducible polynomial functorF: VA + Vk is isomorphic to a tensor 
product of functors of the form 

PwVOks, T”(E O/, P) 

where E (resp. V) is a finite-dimensional simple right A-module (resp. k&module), 

and no two of the E’s are isomorphic. Moreover, this factorization of F as a tensor 
product is unique (up to the order of the factors). 

Next, in Section 8, we turn our attention to the Grothendieck group K(P,) of the 
category PA of polynomial functors F:VA +Vk of bounded degree. K(PJ is a 
commutative graded ring, the multiplication being tensor product of functors; 
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moreover, it is a A-ring, A’(F) being the composition of F with the ith exterior power 
Ai:Vlr + Vk. The structure of K(PA) is given (8.1) by 

Theorem 6. K(Pa) is the free A-ring generated by the classes of the functors PM 
E OA P, where E runs through a complete set of non-isomorphic finite-dimensional 

simple right A-modules. 

Finally, in Section 9 we specialize to the case where A = kG is the group algebra of 
a finite group G, and k is the field of complex numbers. Then the ring K(Pa) may be 
canonically identified with the direct sum R (G) = QnzO R (G,), where G,, = G - S, 
is the wreath product of G with S,, and R(G,) is the Grothendieck group of 
kG,-modules. By Theorem 6, R(G) is the free A-ring generated by G*, the set of 
isomorphism classes of simpIe kG-modules. 

We next introduce C(G) = ensO C(G,), where C(G,) is the space of k-valued 
class functions on G,, and we proceed to make C(G) into a A-ring. The multiplication 
is defined by means of induction of class functions, and the A-structure by means of 
the Adams operations +/“: the details are in Section 9. It then appears that C(G) is 
the free k-A-algebra generated by G*, the set of conjugacy classes of G. 

Now let x : R(G) -, C(G) be the linear mapping which takes each representation to 
its character. The basic fact (9.8) is 

Theorem 7. x: R(G) + C(G) is a homomorphism of A-rings. 

It is this fact which underlies the computation of the character tables of the wreath 
products G, = G - S,, (Specht [9]). We shall not attempt to reproduce the details in 
this introduction; the reader will find them at the end of Section 9. 

The paper ends with an appendix on twisted group rings, which include the wreath 
products A - S, as particular cases. Here we have restricted ourselves to the results 
we need in the body of the paper, and have not attempted a complete account. 

Finally, it should perhaps be said that the methods of this paper are elementary 
throughout, and demand from the reader no more than a general familiarity with 
functorial linear algebra, as expounded (for example) in Bourbaki’s Algtbre. 

1. Polynomial functors 

Let A be an additive category in the sense of Grothendieck [j]. A field of scalars 
for A is any subfield of the ring of endomorphisms of the identity functor lA of A, or 
more precisely is an embedding of a field k in this ring. Thus each element A E k 
determines a morphism l,+ 1A; that is to say, for each object X in A we have a 
morphism Ax: X + X such that 1~ is the identity morphism, Ax + gx = (A + k)x and 
Axpx = (AF)~ for all A, /1 E k, and fAx = AYf for all morphisms f:X+ Y in A. We 
shall often write A in place of A x, whenever the context permits. 
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Since composition of morphisms in an additive category is bilinear, we have 
(A+~)f=Af+CLfandA(f+g)=Af+AgforallA,CcEkandf,g:X-,YinA.Hence 
Hom..,(X, Y) is a k-vector space. 

A category A as above will be called a k-linear category. 
Let A, B be k-linear categories. A (covariant) functor F: A+B is said to be 

polynomial if, for each pair of objects X, Y in A, the mapping F:Hom*(X, Y)+ 
HomB(FX, FY) is a polynomial mapping between these k-vector spaces. We may 
express this condition as follows: 

(1.1) Given any finite sequence of morphisms fj: X+ Y in A and elements hi E k 
(1 c i sr), the morphism F(A,~~ +. * * +A,f,) is a polynomial in Al, . . , , A, with 
coefficients in Homu(FX, FY) (depending on fi, . . . , fr and F). 

We shall assume throughout that the field k is infinite (and from Section 4 onwards 
that it has characteristic 0). The coefficient morphisms in (1.1) are then uniquely 
determined. We shall also assume that the category B is pseudo-abelian (see the 
introduction). 

2. Homogeneity 

Let F: A + B be a polynomial functor. For each object X in A, the morphism 
F(A~) will be a polynomial in A with coefficients in Endn(FX) independent of A, say 

(2.1) F&Y) = 1 u,(X)A ” 
!I30 

where u,(X) E Endn(FX). Since F((Ap))x) = F(Axpx) = F(Ax)F(px), we have 

for all A, p E k. Because k is infinite, it follows that u,(X)’ = u,(X) for all n 2 0, and 
that u,(X)u,(X) = 0 for m f n. Also, by taking A = 1 in (2.1), we have 1 u,(X) = 
F( lx) = lFx. Since the category B is pseudo-abelian, it follows that the morphisms 
u,(X) determine a finite direct sum decomposition of F(X), say 

F(X) = $ F,(X) 
n30 

where F,(X) is the image of u,(X). 
Moreover, if f: X + Y is any morphism in A, we have F(f)F(Ax) = F(A y)F(f) for 

all A E k, from which and (2.1) it follows (again because k is infinite) that F(f)un(X) = 
u,, ( Y)F( f) for each n 2 0, in other words that each U, is an endomorphism of the 
functor F. Hence F(f) induces by restriction morphisms Ff(f):F,,(X)+ F,,( Y), and 
each F, is a functor, which is clearly polynomial. Consequently we have a direct 
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decomposition of the functor F: 

(2.2) F=$F, 
nz=o 

in which each F,, is a homogeneous polynomial functor of degree n. For F,,(A) = A ’ 

and hence, in the situation of (l.l), 

F, (AA Ji + . . *+hA,f,)=F,(A)F,,(A,fi+. * *+A$,) 

= A “F,(A J1 +. - - + A,f,) 

which shows that F,,(A JI + * * . +A$,) is a homogeneous polynomial Of degree n in 

Al,...,A,. 
The F,, are called the homogeneous parts of F. 

(2.3) Remarks. (1) When n = 0, we have Fe(A) = 1 for all A E k, so that in particular 
F,,(O) = FO(l). It follows that, for all morphismsf:X --, Y, Fe(f) = Fc,(O,W) and hence 
is independent off, and is an isomorphism of F,,(X) onto Fo( I’). Hence all the objects 
F,(X) are canonically isomorphic. 

(2) Next, when n = 1, we have FI(A J1 + A2f2) = A lgl + AZ& say; taking (A 1, AZ) to 
be (1, 0), (0,l) successively, we see that gi = Fl(fi) and hence that FI(AJI +Azf2) = 
A1Fl(fl)+A2F2(fJ: in other words, F, is k-linear and in particular ad&rive. 

(3) The direct sum (2.2) may well have infinitely many non-zero components, 
although for any given object X we shall have F,(X) = 0 for all sufficiently large n, 
because the sum (2.1) is finite. An example is the exterior algebra functor on the 
category of finite-dimensional vector spaces over k. 

If F,, = 0 for all sufficiently large n, we shall say that F has bounded degree. 

More generally, let Al, . . . , A, be k-linear categories, and let P = A1 x + - * x A, be 
the product category, whose objects are all sequences X = (Xi, . . . , X,), where Xi is 
an object of Ai for 1 - < i s r, and Homp(X, Y) = @i= 1 HomAi(Xi, Yi). The category P 
is k-linear. Now let F be a polynomial functor from P to a pseudo-abelian category B. 
If Ai,. . . , A,E k, then F((Adx,, . . . , (A,)x,) will be a polynomial in Ai, . . . , A, with 
coefficients in End*(FX), say 

(2.4) F(h ,..., A,)= C urn ,,.... ,,(X, ,..., X,)A? *.*A,“: 
m L..... m, 

Exactly as before, we see that the u ,,, ,,.... ,,,, are endomorphisms of the functor F, and 

that if we denote the image of u,,,~ ,,._. ,,,,(Xi, . . . , X,) by F,, ._._, ,,,,(XI, . . . , X,1, then 

the Fm,,...,m, are subfunctors of F giving a direct decomposition 

(2.5) F= @ F, ,..... m,, 
m I...., m, 

summed over all (ml, . . . , m,) E N’. Each F,, ,._., ,,,, is homogeneous of multidegree 

(ml,. . . , m,), i.e. 

F ml .._., ,,,,(A I, . . . , A,) = A? * * * A ?. 
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3. Linearization 

Again let F: A + B be a polynomial functor. In view of the decomposition (2.2), we 
shall assume from now on that F is homogeneous of degree n > 0. The considerations 
at the end of Section 2 apply to the functor F’: A” + B defined by F’(Xr, . . . , X,) = 
F(XIO- . *OX,,), and show that there exists a direct decomposition, functorial in 
each variable, 

F(X10. ..OXn)=@3FF:, ,,..., ,,,W,,...,X) 

summedoverall(mI,...,m,)~N”suchthatm,+~~~+m,=n. 
Our main interest will be in the fun&or F;,,..,,, the image of the functorial 

morphism u ,.....r (see (2.4)). For brevity, we shall write LF in place of F1,....l, and u in 
place of ul.....r. We call LF the linearization of F. (Another name for it is the nrh 

deviation of F, see (3.2) below.) The functor &: A” + B is homogeneous and k-linear 
in each variable (and therefore additive in each variable (2.3)). 

To recapitulate the definitions of LF and U, let Y = XI 0. . * $X,,. Then there exist 
monomorphisms i, : X, + Y and epimorphisms pa : Y + X, for 1 G (Y c n, such that 

(3.1) pni = IX,, p& = 0 if (Y Zp, ag,Lp,=ly. 

For each A = (A r, . . . , A,) E k”, let (A) denote the morphism 1 A&p,: Y + Y, so that 
(A) acts as scalar multiplication by A, on the component X,. Then c(Xr, . . . , X,) is 
the coefficient of A, . . . A,, in F((A)), and &(X1, . . . , X,) is the image of 
t’(Xr,... , X,), and is a direct summand of F(X, 0. . .0X,). 

(3.2) Remark. For each subset E of {l, 2,. , . , n}, let 

so that, in the notation introduced above, $E = (,u) where j.~~ = 1 or 0 according as LY 
does or does not belong to E. As in (2.4), let u,,,~.....,_ be the coefficient of A 71 . . . A 7 

in F((A )), and let C$E = 1 u,,, ,...., ,,,, summed over those (ml, . . , , m,) E N” with 
support equal to E (i.e. such that m, > 0 if and only if (Y E E). Then it is clear that 

F(&E) = DEE ~JD 
c 

for each subset E of {1,2, . . . , n}. Solving these equations for the d’s, we obtain 

~D=~~~(-~)'~-~'F(~E)- 
C 

In particular, when D = (1, 2, . . . , n}, we have C&D = u , . .._. , = c, and therefore 

c =X(-l) n -iE’F(tiE), 

E 
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summed over all subsets E of {1,2,. . . , n}. This formula shows that LF is the ‘nth 
deviation’ of F (see Epstein [4]). 

(3.3) Example. Suppose that A = B = Vk, the category of finite-dimensional vector 
spaces over k, and that F is the nth exterior power A\“, which is a homogeneous 
polynomial functor of degree n. In this case we have 

F(X10. . *OX,) = @ /j-(X,) 0 - - .@I A’“-(X,) 
m,....,m, 

JwXl, . . .,x”)=A\L(xl)o~~~o~l(xn)=xlo~~~~x”. 

4. The action of the symmetric group 

Assume from now on that k has characteristic 0. 
With F: A+ B as before, consider in particular 

L$‘(X) = LF(X, . . . , X) 

for any object X in A. For each permutation s in the symmetric group S, there exists 
a morphism s = sx: X” +X” (where X” =X 0 * . * 0 X) which permutes the 
summands according to s, namely 

(4.1) sx = f L,aPa 
a=1 

in the notation of (3.1). If as before we write A = (A i, . . . , A,) E k” and (A) = c A,i,p,, 
then a simple calculation shows that s(A) = (sh) * s, where sh = (A,-l,i,, * * * , As-lcn~), 

and hence that F(s)F((A)) = F((sA))F(s). By picking out the coefficient of A I * - * A,, 
on either side, we see that 

(4.2) F(s)0 = vF(s) 

from which it follows that F(s) induces by restriction an endomorphism g(s) of L:“‘. 
Explicitly, if 

(4.3) j=jx:L:‘(X)+F(X”), q =q,:F(X”)-&‘(X) 

are the injection and projection associated with the direct summand L:“‘(X) of 
F(X”), so that qj = 1 and jq = v, then 

(4.4) P(s) = qF(s)j. 

It follows that E(st) = E(s)F(t) for s, t e S,, so that we have a representation of S, on 
L[;‘(X), functorial in X. 
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Our aim now will be to show that this representation of S, determines the functor F 
up to isomorphism; more precisely, that there exists a functorial isomorphism of 
F(X) onto the subobject of S,, -invariants of Lg’(X). 

(4.5) Example. In the Example (3.3) we have L$‘(X) = T”(X), the nth tensor 
power of X over k, and the action of S,, on Ljc”‘(X) in this case is given by 

P(S)(Xi 0. * * 0 x,) = &(S)X,-QI) 0. * * 0 Xr-‘(n), 

where E(S) is the sign (*l) of the permutation s, and xl,. . . , xn are elements of X. 
Hence LF’(X)‘n is the space of skew-symmetric tensors in T”(X), which is iso- 
morphic to A”(X) since k has characteristic 0. 

We consider morphisms f: X” --,X” of the form f = Ca.p &&pp, where the & are 
elements of k. Since F is homogeneous of degree n, F(f) will be a homogeneous 
polynomial of degree n in the n* variables &, with coefficients in End F(X”). For 

each s ES,, let w, denote the coefficient of [son . * * (scnjn in F(f), and let 

(4.6) i=Ci,:X-,X”, p=Cpm:X”+X. 

Then we have 

(4.7) uF(ip)u = C F(s)u. 
SGS, 

Proof. By (4.2), u commutes with F(s); also u2 = L’, so that F(s)o = uF(s)u, which by 
definition is the coefficient of Ai - * * A,pl - * - p,, in 

F((A))F(~)F((P)) = F(0)+)) = F( C &~+.b,,,p.). 
a 

This coefficient is clearly w,, so that we have w, = F(s)u. 
Again, uF(ip)u is the coefficient of Ai * * * Anpi * . * c(,, in 

F((A ))F(ie)F((cL)) = F((A )iG)) = F( :P LqLp~) 

and this coefficient is clearly Cses_ w, = 1, F(s)u. 0 

We now define two morphisms of functors: 

[=qF(i):F-,L!G’, 77 =F(p)j:L:“‘+F 

(j and q were defined in (4.3)). Then 

(4.8) v(=n! (i.e., scalar multiplication by n !) 

C.$n = c E(s). 
sss, 
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Proof. We have ~775 = F(p)jqF(i) = F(p)uF(i), which is the coefficient of A I . * - An in 
F(p)F((A))F(i) = F(p(A)i). Now p(A)i: X + X is scalar multiplication by A I + * * * + 
A,,, so that F(p(A)i) is scalar multiplication by (A 1 + * * * + A,)“, and the coefficient of 
Al.. * A,, is therefore n!, as asserted. 

Next, 5‘77 = qF(i)F(p)j, so that by (4.3) and (4.7) 

j&q = uF(ip)o = 1 F(s)u 
5 

and hence by (4.4) 

577 = C qQ)j = C fib). 
s 5 

If a finite group G acts on an 
multiplication by the order IG\ of 

YG = ,cG KerU -g) 

0 

object Y in an abelian category, and if scalar 
G is an automorphism of Y, then the subobject 

is a direct summand of Y and is equal to the image of the projection 

For since (1 - g)cr = 0 for each g E G, we have Im(cT) c Ker( 1 -g) and hence Im(cr) c 
YG; and on the other hand 

YG=?GKer(l-g)cKerx(l-g) 
g 

which is equal to Ker( 1 -a) because (G( is invertible in Y, and hence is equal to Im(c+) 
because cr’ = u; consequently YG c Im(cT). 

If the category is only pseudo-abelian, we define YG to be the image of the 
projection IT. In our situation, G is the symmetric group, acting on L:“‘(X) via F:; 
since the characteristic of k is zero (this is the first point at which we have made use of 
this assumption) scalar multiplication by n! is an automorphism, and therefore 
J~F’(X)~- is defined and is a direct summand of LF’(X). Let 

& : L$yxp --, p(x); 77: L:“‘(X) --* Lp(xpn 

be the associated injection and projection, so that TTE = 1 and 

by (4.8). 

(4.10) Theorem. F(X) is functorially isomorphic to L’;‘(X)‘“. More precisely, the 
morphisms 

5’ = 7rt: F(X) -+ L’F”‘(x)s”, 77’ = qe : L’;‘(xp + F(X 1 

are functorial isomorphisms such that .$‘q’ = n ! and ~‘5’ = n !. 
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Proof. This is a direct consequence of (4.8) and (4.9), since we have 

~‘7)‘=~&&=n!?r&7r&=n! 

and 

It follows from (4.10) that every homogeneous polynomial functor of degree n > 0 
from A to B is of the form 

X+L(X,. , . ,xp, 

where L: A” + B is k-linear in each variable, and is acted on by S,. The next step, 
therefore, would be to classify such functors. We shall not attempt to do this in any 
great generality; from now onwards we shall take A to be the category VA of finitely 
generated projective left A-modules, where A is a k-algebra. 

5. Tensor products and linear functors 

Let A be a ring, B an additive category. A left A-module object in B is an object M 
of B together with a ring homomorphism of A into Endn(M). Equivalently, 
N-,HomB(M, N) is a functor from B to the category of right A-modules and 
homomorphisms. Likewise we define a right A-module object in B. If B is a category 
of left modules over a ring B, a right A-module object in B is the same thing as a 
(B, A)-bimodule. 

Let M be a right A-module object in B. Then for each object N in B the abelian 
group Homn(M, N) is a left A-module, and therefore if P is any left A-module the 
abelian group HomA(P, Homn(M, N)) is defined. If there exists an object E in B and 
for each N an isomorphism 

Horn&, N); HomA(P, Homu(M, N)) 

functorial in N, we shall say that E is a tensorproduct of M and P over A, and write 
E = M aA P. The tensor product, when it exists, is therefore defined by 

(5.1) Homn(M OA P, N) = HomA(P, Horn&V, N)) 

and (since it represents a functor) is unique up to isomorphism. Note also that M and 
P lie in general in different categories. 

Now let A, B be k-algebras, let C = A %I,, B and let M be a right C-module object 
in the category B. The canonical homomorphisms a + n 0 1 and b -, 10 b of A and 
B into C determine by restriction of scalars A-module and B-module structures on 
M. Let P be a left A-module and Q a left B-module, so that P Gk Q is a left 
C-module. The isomorphism (5.1) shows that the abelian group HomB(M OA P, N) 
has a left B-module structure for each object N in B, so that M OA P, when it exists, 
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is a right B-module object in B. In this situation we have 

(5.2) h’f @A&B (P%I~Q)~(MOAP)OBQ 

in the sense that if one side exists, so does the other and they are isomorphic. For by 

(5.1) 

Horn&4 @C (P @k Q), N) = Horn&P @k Q, Horn&f, h’)) 

and 

Homu((M @A I’) OB C?, N) 3 Homs(Q, HomA(P, Horn&V N))) 

and each of the Z-modules on the right is isomorphic to the Z-module of functions 
from P x Q to Horn&M, N) which are A-linear in the first factor and B-linear in the 
second. 

We shall now take up the problem raised at the end of Section 4, namely that of 
finding all functors L: Vi+ B which are k-linear in each variable, where A is any 
k-algebra and B is as before a pseudo-abelian k-linear category. 

We begin with the case n = 1. Let then L: VA+ B be a k-linear functor (hence 
additive). For each left A-module P let e = ep : P + HOI’IIA(A, P) be the canonical 
isomorphism, so that e(p)a = ap for a EA and p E P. In particular, taking P= 
A, e(a) is right multiplication by a; applying the functor L, we obtain 
L(e(a)) : L(A) --, L(A) for each a E A, and hence L(A) is a right A-module object in 
B. 

Now let N be any object in B, and let 

(5.3) ti = G(P) : Homu(L(P), N)+ HomA(P, Homu(L(A). N)) 

be the homomorphism of Z-modules defined by $(f)(p) =fo L(e(p)). 

(5.4) For each P E VA, G(P) is an isomorphism. 

Proof. It is easily checked that $(A) is the isomorphism e. Since CL is a morphism 
between additive functors, it follows that t+b(A”) = +(A)” is an isomorphism. If now 
P E VA, there exists Q E VA such that P 0 Q = A” for some n 3 0; hence J/(P 0 Q) 
is an isomorphism. But $(P 0 Q)= $(P) 0 t+b(Q), hence IL(P) is an iso- 
morphism. Cl 

From (5.1) and (5.4) it follows that L(P) is a tensor product of L(A) and P over A: 

L(P) = L(A) @A P 

functorially in P. In other words, 

(5.5) L= UL(A, 

where uL,A] is the functor P-L(A) OA P. 
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We consider now the general case. Let L: VA n + B be k-linear in each variable, and 

let T”(A) be the nth tensor power of A over k. Then L”“(A) = L(A, . . . , A) is a right 
T”(A)-module object in B, the action of al 0. . * 0 a, E T”(A) being the morphism 

U&i), . . . , e(a,)). 

(5.6) There exists an isomorphism of functors 

L(P1, . . . , Pfi) = L’“‘A &+,, (PI Ok - * * Ok P,). 

Proof. We shall write out the proof for n = 2. Regarding PI as fixed and PZ as 
variable, we have from (5.5) 

L(Pi, Pz) =L(P,> A) @A p2 

= (L(A, A) Oa PI) @A Pz by (5.5) again 

z Lt2’(A) @ +(A) (PI @k P2) by (5.2). q 

From (4.10) and (5.6) we have immediately 

(5.7) Theorem. Let F:VA +B be a polynomial functor, homogeneous of degree 
n > 0. Then there exists an isomorphism of functors 

F(P) I= (L’F”‘(A) @T”(A) T” UV”, 

where L’;‘(A) = LF(A, . . . , A), and LF is the linearization (Section 3) of F, and 
T”(P) (resp. T”(A)) is the nth tensor power of P (resp. A) over k. 

Remarks. (1) We have assumed throughout, for convenience of exposition, that the 
functor F is covariant. There is no difficulty in dealing with contravariant functors: if 
F: VA + B is a contravariant polynomial functor, then F* : PH F(P*) is covariant, 
where P* = HomA(P, A) is the dual of P, and is a finitely generated projective right 
A-module; L:‘(A) is now a left T” (A)-module object in B, and in place of (5.7) we 
have 

F(P) = (T”(P*) Or*ca, L$“(A))‘“. 

(2) In (5.7) the symmetric group S,, acts on the k-algebra T”(A) and the 
T”(A)-module T”(P), by permuting the factors in these tensor products; also S, acts 
on the right T”(A)-module object L:“‘(A); and in each case the action of S, is 
compatible with the module structure, so that for example s(ap) = s(a)s(p) for 
a E T”(A), p E T”(P) and s ES,. In the next section we shall consider this situation 
more generally. 

6. Wreath products 

Let G be a subgroup of S,. The group G acts on T”(A) by permuting the factors: 

s(a10. * * 0 a,) = a$-l(l, g * . . 0 us-‘,n,. 
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Let kG be the group algebra of G over k, and define a multiplication in the vector 
space T”(A) Ok kG by the rule 

(a 0 s)(b 0 f) = a - s(b) 0 sr 

for a, b E T”(A) and s, t E G. The resulting k-algebra we shall call the wreath producr 
of A with G, and denote by A - G. It is associative and has an identity element 
10.. * 0 10 e, where 1 (resp. e) is the identity element of A (resp. G). 

In particular, if A is the group algebra kr of a group r, then T”(A) may be 
identified with the group algebra of P = r x - - - x I’, and A - G with the group 
algebra of the wreath product r - G of r with G: 

(6.1) (kr) - G = k(T - G). 

(To be quite explicit, we define r - G to be the group whose elements are pairs 

(y, s), wh’ere Y = (YI.. . . , yn) E r” and s E G with multiplication defined by (y, s) 

(8, t) = (y - sS, sr), where sS = (Ss-+iJ, . . . , Ss-qnJ. The isomorphism (6.1) then 
identifies (y, s) with y1 0 * . * 0 yn 0 s.) 

In view of (6.1), we may leave out the brackets and write kT - G unambiguously. 

If also H is a subgroup of a symmetric group S,, then G - H is a subgroup of 
S, x S,, hence (up to conjugacy) a subgroup of ?.&,, we have 

(6.2) (A-G) Ok (A-H)=A-(G x H) 

by identifying (a 0 s) 0 (6 0 t) with (a 0 6) 0 (s, t) where a E T”(A), b E TP(A), 

scG and tEH. 
Again, the wreath product G - H is a subgroup of S, - S,, which in turn may be 

identified (up to conjugacy) with a subgroup of SnP ([6, p. 31]), and then we have 

(6.3) (A-G)-H=A-(G-H). 

For 

(A - G) - H = TP(T”(A) Ok kG) Ok kH 

= TnP(A) Ok TP(kG) Ok kH 

= T”“(A) Ok (kG - H) = A - (G - H). 

We may therefore write A - G - H unambiguously. 
Now let M be a left A-module. Then T”(M) is a left T”(A)-module on which S, 

acts by permuting the factors, so that we have s(am) = s(a)s(m) for s E S,, a E T”(A) 
and m E T”(M). We may therefore regard T”(M) as a left A - %-module by 
defining (a 0 s)m = a . s(m). If A4 is finitely-generated and projective, it is a direct 
summand of say A’, and hence T”(M) is a direct summand of T”(A’), which is a free 
T”(A)-module: hence T”(M) is finitely-generated and projective as a T”(A)- 
module, and therefore by (A.3) also as an A - S,-module. In other words, T” is a 
functor from VA to VA-~,. 
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If now V is a left kS,-module, then A - S,, acts on T”(M) Ok V by the rule 

(a 0 s)(m 0 t’) = a * s(m) 0 s(u), where a E T”(A), m E T”(M), s E S, and u E V. 
The resulting A - &-module we call the wreath project of M with V, and denote by 
M-V. 

Let F: VA + B be a homogeneous polynomial functor of degree II ; then L:“‘(A) is a 
right T”(A)-module object in B, on which S, acts via $ (Section 4), hence is a right 
A - &-module object in B, if we define the right action of s ES,, to be E(s-‘). 
(Explicitly, if B is a category of modules, the right action of A - S,, on LF’(A) is 
given by x(a 0 s) = s-‘(xa) = s-‘(x)s-‘(a) for a E T”(A), s ES, and x ELF’(A).) 
From (A.2) we have 

(J%‘(A) %-VU ?-“(P))sn = L$‘(A) O,.+_S, T”(P), 

and therefore we can restate (5.7) as follows: 

(6.4) Theorem. Let F: VA + B be a homogeneous polynomial functor of degree n > 0, 
and let M = L:“‘(A). Then 

where T”: VA + VA-s, is the nth tensor power functor, and U,W:V.A__S,+ B is the 
k-linear functor (Section 5) defined by 

G.,(Q) = M @a-s, Q. 

In other words, every homogeneous polynomial functor of degree n is obtained by 
composing T” with a linear functor. 

Now let P, denote the category of homogeneous polynomial functors F: VA + B of 
degree n, and let M, denote the category of right A - &-module objects M in the 
category B for which the tensor product M @.+s,T”(P) exists for all P in VA (this 
condition will be automatically satisfied if B is a category of modules), the morphisms 
in M, being the morphisms in B which commute with the action of A - S,. 

(6.5) Theorem. The functors (Y : P, + M, and p: M, + P, defined by 

cu(F) = L!‘(A), P(M)=U.WOT” 

constitute an equivalence of categories. 

Proof. We have p 0 (Y z lPn by (6.4), and we have to verify that CY 0 p = 1,~“. If 
P(M) = F, we have 

F(PI 0 . . - 0 P,)=MO/+_S, T”(P, 0. *. 0 P,) 

and therefore, from the definition of Lf in Section 3, 

LF((Pl, . . . ,P,)=MOz+s, @ P,u,@. 
( SCS” 

* . @Psw) 
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so that 

L:‘(A) = MA,. . . ,A)=M@A_-S~(A-Sn)=M. a 

It follows from (6.5) that the functors (Y and p establish a one-one correspondence 
between the isomorphism classes of homogeneous polynomial functors of degree n 
from VA to B, and the isomorphism classes of right A - &-module objects in the 
category B. We shall now examine some of the properties of this correspondence, 
taking the category B now to be Vs, where B is a k-algebra. 

(6.6) Tensor product. Let F, G: VA + Vg be homogeneous polynomial functors, of 
degrees m and n respectively. Let F 0 G be the functor defined by 

(F 0 G)(P) = F(P) Ok G(P); 

it is homogeneous polynomia1 of degree m + n, with values in the category VB.akB. If 
Lp’(A) = M and ,!$‘(A) = N, we have 

(F @ G)(P) = (M @A+,, T”(P)) @k (iv @A-S, T”(P)) 

= (M 01, N) @A--(S,xS,) Tmcn(p) 

by use of the isomorphism (6.2). Hence F 0 G corresponds to the 

(B @k B, A - S,+,)-bimodule 

M * N = (M @k N) @A-(S,xS,) (A - sm+n) 

Which we call the induction product of M and N. Since tensor products are 
commutative and associative (up to isomorphism), so also are induction products. 

(6.7) Composition. Let C be another k-algebra and let F: VA + VB, G: Vg + Vc be 
homogeneous polynomial functors of degrees m, n respectively. Then G 0 F: VA + 

Vc is a homogeneous polynomial functor of degree mn. If Lp”‘(A) =M and 
L$!‘(B) = N, so that A4 is a (B, A - S,)-bimodule and N is a (C, B - S,)-bimodule, 
then we have 

(G 0 F)(P) = N @B--s, T”(M @A--S, T’“(P)) 

=(NOB-~~T”(M))OA-~,,,- s, T”“(P) 

so that G 0 F corresponds to the (C, A - S,,,,)-bimodule 

which we call the composition product (or pfethysm) of A4 with N. Since composition 
of functors is associative, so is this composition product (up to isomorphism). 

The two products just defined satisfy the “distributive law” 

(6.8) (N, 0M) * (Nz 0 M) = (N, . Nz) 0 A4. 
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For the corresponding relation for the functors is 

(6.8’) (G1oF)O(Gz”F)=(G1OGz)aF, 

which is obvious from the definitions. 

(6.9) Remark. In the situation of (6.7), if F is linear (so that m = 1 and F = UM in 
the notation of (5.5)), and if B = C = k, then A4 is a right A-module, tinite- 
dimensional over k; N is a finite-dimensional kS,-module; and we have 

(G oF)(P)=N @ts, T”(MOAP) 

z (N @k (T"(M) &"(A) T” UWs- 

= (N Ok T”(M)) @A-S, T”(P), 

the last two isomorphisms by virtue of (A.2). Hence in this case G 0 F corresponds to 
the right A - S,, -module T”(M) Ok N = M - N, i.e. to the wreath producr of M by 
N. 

7. Irreducible polynomial functors 

A functor F: VA + VB is said to be irreducible if F f 0 and F has no subfunctors 
other than 0 and F. If F is an irreducible polynomial functor, the decomposition of 
Section 2 shows that F must be homogeneous, of degree say n; discarding the 
uninteresting case II = 0, it then follows that F corresponds, in the correspondence 
established in Section 6, to a (B, A - S,)-bimodule which is finitely-generated and 
projective as a left B-module and is simple as a right A - S, -module. In particular, 
when A = B = k, the irreducible polynomial functors V,, + Vk of degree n cor- 
respond to the simple k&-modules, i.e. to the irreducible k-representations of S,. 

We shall assume from now on that B = k and that k is algebraically closed (and 
of course of characteristic 0). The irreducible linear functors from VA to Vk 

correspond, up to isomorphism, to the simple right A-modules which are 
finite-dimensional over k. Let A* denote the set of isomorphism classes of finite- 
dimensional simple right A-modules, and for each a E A* choose a representative E, 
of the class a. Let L,: VA + Vk denote the corresponding linear functor, so that 

(7.1) L, (P) = E, @A P. 

In particular, we shall use this notation when A = kS,,,: to each class ;r E Sz 
(= (kS,,,)*) there corresponds a linear functor L,: V~S, + Vk, defined by L,(P) = 

E, @ kS,,, f’. 

It follows from (AS) that the finite-dimensional simple right A - &-modules are 
induction products of wreath products of the form 

(E,, - E,,) * * . . . 65x, - E,,) 
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where al,. . . , CZ,EA* are distinct classes, and PiES*,, (l~icr) with ml+***+ 

m, = n. Since the induction product is commutative, the order of the factors is 
immaterial. From (6.9), the wreath product E, - E, (01 E A*, p E S*,) corresponds to 
the functor 

P-* E, Oks, T”(E, @a P) 

i.e. to the functor L, 0 T” 0 L,. Hence: 

(7.2) Theorem. Every irreducible polynomial functor F: VA + VI, is isomorphic to a 
tensor product 

where the ai E A* are all distinct, the mi are positive integers andpi E $. Moreover, this 
factorization of Fis unique (up to the order of the factors). 

(7.3) Remark. The irreducible representations of S,, are customarily indexed by the 
partitions of n, and it is convenient to identify IIns Sz with the set of all partitions 
(including the empty partition). It then follows from (7.2) that the irreducible 
polynomial functors F: VA + Vk are indexed by the partition-valued functions p on 
A* such that 

In particular, when A = k, the irreducible polynomial functors VI, --, Vk are indexed 
by partitions rr. We shall denote by F, the functor corresponding to r, so that 

(7.4) F,(V)=E, C&s. T”(V) 

where n = 1~) and E, is the simple kS, -module indexed by rr. 

8. The Grothendieck ring 

Let PA (resp. Pa”‘) denote the category of polynomial functors F:VA+Vk of 
bounded degree (2.3) (resp. homogeneous of degree n). Since the category VI, is 
abelian, so are the categories PA and Pk”‘. Let K(P,& K(P’,“‘) denote their respective 
Grothendieck groups. We shall denote by [F] the class of F in K(PJ. 

K(PA) has plenty of structure. First of all, it is graded: indeed, it is clear from 
Section 2 that 

K(P,4)= @ K(Pa”‘). 
n3O 

Next, it is a commutative ring, the ring structure being defined by the tensor product 
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(6.6), namely 
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and the ring structure respects the grading. Moreover, K(P,) is a A-ring, the 
A-operations being defined by 

A ‘[FJ = [A’ 0 F], 

where A’: Vk + VI, is the ith exterior power functor. 
K(P,) also carries a scalar product. If F, G are polynomial functors, it is clear that 

the set Hom(F, G) of functorial morphisms from F to G has the structure of a 
k-vector space. If F and G are homogeneous of degrees m and n respectively, and 
c,+ E Hom(F, G), then we have Am * 4 = ~,5 * A” for all A E k, so that 4 = 0 unless 
m = n; and if m = n, then Hom(F, G) is finite-dimensional over k, because it is 
isomorphic to HomAWs, (M, N), where M and N are the A - &-modules which 
correspond to F and G respectively. So we may define a Z-valued scalar product in 

K(PA) by 

(F, G) = dime Hom(F, G) = 1 dimk Hom(F,,, G,) 
tlC=O 

where F,,, G, are the homogeneous parts (Section 2) of F, G respectively. 

(8.1) Theorem. K(P,) is freely generated as a A-ring (over Z) by the classes [L,], 
(UEA*, in the notation of Section 7. 

Proof. For any k-algebra B, let R(B) denote the Grothendieck group of the 
category of finite-dimensional right B-modules. It follows from the Jordan-Holder 
theorem that R(B) may be canonically identified with the free Z-module generated 
by B”. 

Now from (6.5) it follows that K(P$“) =R(A - S,), the irreducible functors 
corresponding to the simple modules. Hence K(Pz’) is freely generated as Z-module 
by the classes of the irreducible functors, and the same is therefore true of K(PJ. 

For each a EA*, let K, be the Z-submodule of K(P,) generated by the classes 
[L, 0 T”’ 0 L,], where m is any integer 20 and p E Sz. From (7.2) it follows that 

(8.2) K(P,)= @ K,. 
CXEA' 

Moreover, each K, is a subring of K(P,_,), by virtue of the distributive law (6.8’), 
which also shows that the linear mapping from K(Pk) + K, defined by [F] + [F 0 L,] 
is a ring homomorphism; it is in fact an isomorphism, because K, (resp. K(Pk)) is 
freely generated as a Z-module by the classes [L, 0 T” 0 L,] (resp. [L, 0 T” 1). Hence 
we have 

(8.3) K(Pk) SK, for each (Y E A*. 

From (8.2) and (8.3), it follows that the proof of (8.1) reduces to the special case 
A = k: that is to say, we are reduced to showing that K(Pk) is the free A -ring 
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generated by the class [lv,] of the identity functor. This is a known result ([l, 7]), but 
for completeness we include the proof. 

Let tl, rz, . . . be an infinite sequence of independent variables and for each r 2 1 let 

A, = Z[r,, . . . ) rrp 
be the Z-algebra of symmetric polynomials in fl, . . . , 1,. This is a graded ring, say 

A, = Q$l Al”’ 
n30 

where A!“’ consists of the homogeneous symmetric polynomials (including 0) of 
degree n. The homomorphism Z[tr, . . . , r,+J+ Z[t,, . . . , r,) which sends rlcl to 0 and 
the other ti to themselves defines on restriction to A ,+r a surjective homomorphism 

qr: A,+1 + A, of graded rings. We set 

A = lim A,, - 

the inverse limit being taken in the category of graded rings, so that A =Qn30 A’“‘, 

where A’“’ = lim A’“’ I 

have A = Z[ezr, . . 
. Then by the fundamental theorem on symmetric functions we 
.], where the e’s are the elementary symmetric functions in the 

variables ti ([7, Chapter I]). We make A into a A -ring by defining A” (et) = e, for all 
n 2 1, and then A is the free A -ring over Z generated by er. 

Now let F: Vk --, VI, be a polynomial functor. For each A = (A r, . . . , A,) E k’ let (A) 
denote the diagonal endomorphism of k’ with eigenvalues Al, . . . , A,. Then trace 
F((A)) will be a polynomial in AI,. . . , A,, which is symmetric because trace 
F(s(~)s-‘) = trace F((A)) for all permutations s E S,. Since the trace is an additive 
function, it determines a mapping 

ch,:K(Pk) + A, 

namely ch,[F] (At,. . . , A,) = trace F((A)). Since the trace of a tensor product is the 
product of the traces, ch, is a homomorphism of graded rings. Moreover, it is clear 
from our definitions that ch, = qr 0 ch,+r; hence, letting r +a, we obtain a 
homomorphism of graded rings 

ch:K(Pk)+A 

called the characteristic homomorphism. In particular, ch[ Iv,] = el, and more 
generally ch[A” J = e,. Likewise, the images under ch of the symmetric powers S” are 
the complete symmetric functions h,. 

To complete the proof of (8.1) it is enough to show that 

(8.4) ch: K(Pk) --, A is an isomorphism of A-rings 

Proof. [l] We have already remarked that ch[A”] = e,, and that A = Z[et, e2, . . .], 
from which it follows that ch is surjective. Now the rank of il(“’ as Z-module is equal 
to the number of monomials in the ei of total degree n, hence is the number p(n) of 
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partitions of n. On the other hand, the rank of K(Pp’), the component of degree n in 
K(Pk), is by (6.5) equal to the rank of R(S,), i.e. to the number of irreducible 
representations of Sn, hence is also equal to p(n). Consequently ch :K(Pp’) + A’“’ is 
a surjective homomorphism between free Z-modules of the same rank, hence is an 
isomorphism. Finally, the fact that [A”] corresponds to e, = A “(et) shows that ch is an 
isomorphism of A -rings. Cl 

There is another description [l] of the characteristic homomorphism which we 
shall now explain. Each element s of the symmetric group S,, acts on T”(k’) by 
permuting the factors in this tensor product, hence s * T”((A)) is a linear trans- 
formation of T”(k’), where as before (A) denotes the diagonal endomorphism of k’ 
with eigenvalues AI, . . . , A,. Define A,,(s) E Al”’ by 

A,,,(s)(A) = trace(sr”((A))). 

Since s commutes with T”((A)) it follows that d,,, is a class function on S, with values 
in A’“’ r . Also it is easily seen that d,.,(s) = qr 0 d “,ril (s), so that the A,.,(s) for fixed IE 

and s and varying r define an element d,(s) E A’“‘, and that .4, is a class function on S,, 
with values in A’“‘. 

Now let F:V,, -, Vk be a homogeneous polynomial functor of degree II, let 
E = L.g’(k) be the corresponding k&-module, and let xE be the character of E. Then 
we have 

(8.5) chEFI = AXE, A, > 

where ( , > is the usual scalar product of class functions on S,, : 

(u, d=& uw~)=~ c u(s)ub). 
n . ses, 

To prove (8.5), let M = EC& T”(k’), so that MSn = F(k’), and let cr. d be the 
endomorphisms of the vector space M defined by 

4 = 1~ 0 T"((A )). 

Then u is a projection of M onto MSn; also u commutes with 4 because, as we have 
already remarked, the action of s ES,, on T”(k’) commutes with Y((A)). Hence 

trace(g4) = trace(4 jMsn). 

But trace(4 IMsn) = trace F((A)) = ch,[F](Al, . . . , A,), and on the other hand 

trace(&) = $1 trace(s 0 sT”((A)) 
. J 

= (XE. &,,(A I, . . . , A,)). 

Letting r + CO, we obtain (8.5). 0 
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As in (7.4) let E, (r a partition of n) be the simple k&-module indexed by rr, and 
let F,: Vk + V, be the corresponding functor. Let A* be the character of E,. Since 
the xv form an orthonormal basis for the class functions on S,, it follows from (8.5) 
that 

(8.6) 4, = C ch(F,] . A*. 
rr 

Now ch[F,] is an isobaric polynomial in the elementary symmetric functions en, say 

chCF,l =fAel, ez, . . .I. 

As a symmetric function in the variables r,, this is the S-function [7] corresponding to 
the partition TT. If now R is any A-ring and x is any element of R, we define the Schur 
operation s, on R by 

s,(x) = f,,(x, P(x), A3(x), . . .). 

It remains for us to compute the symmetric functions 4,(s) for each permutation 
s E S,. For this purpose we shall use the following lemma, whose proof we leave to the 
reader: 

(8.7) Ler fl,. . . , fn: V + V be linear transformations of a finite-dimensional vector 
space V, and let t$ : T”(V) + T”( V) be the linear transformation defined by 

&v* 0. * . 0 u/I) =f*(vn) Of2(Cl) 0. * * Ofn(vn-1). 

Then trace(4) = trace(f,f,-I . * . fl). 0 

Suppose first that s is the n-cycle (1 T . . * n), and apply (8.7) with fl = * . * = f,, = 
(A) and V = k’. We obtain 

trace(sT”((A)) = trace((A)“) = c A I 

so that 

(8.8) 4,(s) = C rl = pn, say, 

when s is an n-cycle. 
If now s is a product of disjoint cycles si of orders nl, n2, . . . , where v = 

(nl, n2,. . .I is a partition of n, then sT”((A)) is the tensor product of the siT”l((A)), 
and therefore its trace is the product of the traces of the factors: consequently 

(8.9) Ifs ES, has cycle-type v = (nl, n2, . . .), then 

~,(s)=P,,P,;~~=P, say, 

a product of power sums. Cl 

Now in the A-ring 4, p,, is 4”(ei), where the CL’s are the Adams operations. Hence 
it follows from (8.6) and (8.8) that the 4” are expressed in terms of the Schur 
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operations s, by 
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(8.10) *” = z x;n,s, 
= 

where the sum is over the partitions r of n, and x (“n, is the value of the characterx- at 

an n-cycle. More generally, if we define operations JI” for each partition v = 

(n*, nzr. . .) by (JI”(x) = ~“‘(X)+“‘(X). . . , then from (8.6) and (8.9) we have 

(8.11) IL” =.Xx:& 
77 

where xz is the value of xrr at elements of cycle-type Y. Of course (8.10) and (8.11) 
are not new: they are originally due to Frobenius. 

Remark. The graded ring K(Pa) also carries the structure of an (associative, 
commutative) graded Hopf algebra. The comultiplication may be defined as follows: 
if F: VA + Vk is a polynomial functor, define AF by AF(PI, Pz) = F(PI 0 PJ; then 
AF is a polynomial functor on the category VAxA = VA x VA, hence [F] --, [AF] is a 
mapping 

which is easily verified to have the required properties. 

9. Characters of wreath products 

In this final section we shall apply the results of Section 8 to the situation in which k 
is the field of complex numbers and A is the group algebra kG of a finite group G. (In 
fact, everything will work provided that k is a splitting field for G contained in C.) 
The category VA is then the category of all finite-dimensional kG-modules. We 
denote by G’ the set of isomorphism classes of simple kG-modules, and for each 
YE G* we choose a representative E, of the class y. 

Let G, denote the wreath product G - S,,. (In particular, Go is the group with one 
element, and Gi = G.) Let R(G,,) denote the Grothendieck group of the category 
VkGn ; we shall identify R (G,) with the free Z-module generated by Gz. The direct 
sum 

R(G)= 6 R(G,) 
"a0 

is a commutative graded ring with respect to the induction product defined in Section 
6: if LY E G%, p E Gz, then a@ is the class of the kG,,,+,-module obtained by inducing 
E, @I,+ Ep from G, x G, to G,,,. The ring R(G) carries a Z-valued scalar product - 
the intertwining number-relative to which the union of the G,* forms an orthonor- 
ma1 basis of R(G). 
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As we have seen in Section 8, R(G) may also be regarded as the Grothendieck 
group of the category of polynomial functors of bounded degree from VtG to Vlr. As 
such it has the structure of a A-ring and by (8.1) we may canonically identify R(G) 
with the free A-ring generated by G*. In other words, R(G) is freely generated as 
Z-algebra by the elements A”(y) (n 2 1, YE G’), and hence is freely generated 
as Z-module by the products 

(9.1) sm = $* S&)(Y) 

where (1 runs through all partition-valued functions on G*, and the s,(,) are the 
Schur operations described in Section 8. The generators (9.1) correspond to the 
irreducible polynomial functors F, : Vko + Vk, or equivalently to the simple /cc,- 
modules E,, where n = 1, (o(y)]: namely s, = [Em]. 

Next we consider class-functions on the groups G,. Let C(G,) denote the k-vector 
space of functions f: G, --, k which are constant on each conjugacy class, and let 

C(G) = $)0 C(G,). 

We define a product in C(G) as follows. If f~ C(G,) and gEC(G,), then 
f 0 g: (x, y) Hf(x)g(y) is a class function on G,,, x G,, and we definefg to be the class 
function on G,,, obtained by inducing f @ g from G, x G, to G,,,. In this way 
C(G) acquires the structure of a commutative, associative, graded k-algebra, whose 
identity element 1 is the characteristic function of GO. The algebra C(G) also carries 
a hermitian scalar product (f, g): if f, g are homogeneous, (f, g) is defined to be zero 
unless their degrees are equal, and if f, g E G, we define 

(f, g) = (f, g)G, =A x~G_f(x)go. 

We recall the classification ([6,9]) of the conjugacy classes of the wreath product 
G, = G - S,. An element of G, is of the form (x, s) where x = (x1, . . . , x,) E G” and 
s E S,,. Express s as a product of disjoint cycles: if z = (ii * * - i,) is one of these cycles, 
the element xi, . * * Xi2xil of G is determined up to conjugacy in G by x and 2, and we 
denote its conjugacy class in G’by c(x, z). Now let G, denote the set of conjugacy 
classes in G. The element (x, s) E G, determines a partition-valued function p on G, 
by the following rule: for each c E G*, the parts of the partition p(c) are the lengths 
of the cycles z in s such that c(x, z) = c. Clearly \]cL][ = Cc [P(C)\ = n. Call P the type of 
(x, s) in G,. It is well-known, and not hard to verify, that two elements of G, have the 
same type if and only if they are conjugate in G,, and that all partition-valued 
functions p on G* such that ]]P]] = n occur as types. 

For each such p, let Ij/” E C(G,) be the unique function such that 

(9.2) For each f c C(G,), (f, 9”) is the value off at elements of type cc. 

In other words, $“(x, s) is equal to the order of the centralizer of (x, s) in G,, if 
(x, s) has type cc. ; and is zero otherwise. 
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If cc, Y are partition-valued functions on G,, define I* u v by (,u u V)(C) = 
@(c)u V(C), the union of the partitions p(c), V(C), for each c E G,. With this 
definition we have 

(9.3) $‘$‘,z *““‘. 

Proof. Let /[J.~(I = m, IJvIJ = n, so that 11~~ u Y/I= m + n. By Frobenius reciprocity, 

(h ~~~")G,,,+, = (fl Gm X Gn, 4“ @ (LY)G,,,xGn 

which by (9.2) is equal to the value offat an element (x, s) x (y, r) of G, x G,, where 
(x, s) has type p and (y, t) type V. The embedding of G, x G, in G,,, replaces 
(x, s) x (y, t) by (x x y, s x I) (up to conjugacy in G,,,), and it is clear from the 
description of conjugacy types that the type of this element is CL u Y. Hence (f, ti”+“) 
is the value offat elements of type p u Y in G,,,, and so (9.3) follows from (9.2) 0 

We shall now define a A-ring structure on the k-algebra C(G). For this purpose it is 
enough to define the Adams operations $“. For each class c E G, and each integer 
n 5 1, let c,, be the class of elements (x, s) E G, such that s is an n-cycle and 
c(x, s) = c; this class is described by the partition-valued function v = v,., on G, such 
that V(C) = n and Y(c’) = 0 for c’ # c. Define 

$“(c) = p.c 

so that by (9.2) we have 

(9.4) (f, 4”(c)> is the value off E C(G,) at the class c,,. 

Now let p be any partition-valued function on G,. By expressing each partition 

/1(c) = (PI(C), P2(C), * . .) as the union of the one-part partitions (pi(c)), it follows 
from (9.3) that 

(9.5) I),’ = 5 Ip)(c) = n $““‘(C) 
c 

in the notation of (S.ll), the product being over all c E G,. Since the &” form a 
k-basis of C(G), it is clear that 

(9.6) C(G) is the free h-ring over k generated by G,. 

(Of course we define $“(x) = x for all x E k and all n z 1.) 

(9.7) Let f E C(G,,J, g E C(G,), where m > 0 and n > 0. Then 

(fg, I”+” = 0 for all c E G,. 
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Proof. By Frobenius reciprocity this scalar product is equal to 

(f@ g, cL”+“(c)(G, x Gn)c,xG, 

which is zero because the class cm+” in G,+, does not meet G, X G,. 0 

Now let 

x:R(G)+C(G) 

be the Z-linear mapping which assigns to each representation its character. From the 
definitions it is clear that x is an isometry and an injective homomorphism of graded 
rings, and that it induces an isometric isomorphism of graded k-algebras: 
k 0 R(G): C(G). The basic fact, which will allow us to compute the irreducible 
characters of the wreath products G,, is that x also respects the A-structures: 

(9.8) Theorem. ,y is a homomorphism of A-rings. 

Proof. Since the functions x(y) for y E G* form an orthonormal basis of C(G), we 
have 

$‘(c) = c (Q’(c), X(Y))X(Y) 
YCG* 

and therefore, since the $” are additive, 

V(c) = r, (~‘W, X(Y)M"(X(Y)). 
7 

To prove the theorem it is enough to show that +b”(x(y)) =x($“(y)) for all y E G* 
and II b 1, or equivalently that 

(9.9) V(c) =c WC), X(Y))X(V(Y)). 
Y 

Now the functions ,&) such that IlaII = n (9.1) form an orthonormal basis of 

C( G,,), and therefore 

V(c) = l,af” Wk), x(&2))x(~LT). 

But xba) = l-h ( s,(,)(y)), and by (9.7) the scalar product (rli”(c),x(s,)) therefore 
vanishes unless sG is of the form s,(y) for some y E G* and some partition r of n. 
Hence 

(1) V(c) = J~(JI”W, X(&(Y)))XMY))* 

Now (x(sJy)), Q”(c)) is by our definitions the value of the character of the 
G,-module E, Ok T”(E,) at an element (x, s) E G,, where s = (1 2 * * - n) and x = 

(Xl, * * * 9 x,) E G” is such that xnxnel - - . x1 E c. The action of (x, s) on this module is 
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given by 

and therefore by (8.7) we have 

(tib,(rN, J/“(c)) = trace(b, s), ET Ok T”E,)) 

= trace(s, E,) - trace(x,x,_r - - - xl, Ey) 

=xc”n,(x(yL hd). 

Hence from (1) we have 

J/“(c) = c (4’(c), X(Y)) c X;n,XbAY)) 
Y r 

in which the second sum is 

x c Xhw(Y) 'X(4"(Y)) 
27 > 

by (8.10). Hence finally we obtain 

V(c) =; (4’(c), X(Y))XW(Y)) 

which proves (9.9) and hence also (9.8). 0 

The computation of the irreducible characters of G, is an immediate consequence 
of (9.8), or rather of the equivalent statement (9.9). Let (,Y:) be the character table of 
G, so that 

x: =(x(y), cl/‘(c)> = ww, X(Y)) 

is the value of the character x(y) at elements of the class c E G*. For each c E G, and 
n 2 1, define 

~“(c)=~~~*x:~“(Y)E~OR(G,) 

so that x(4”(c)) = r(/“(c). Then define, for each partition v = (nt, nz, . . .> 

q%“(c) = c#J”‘(c)~“*(c) * * * 

and for each partition-valued function ,u on G, define 

so that we have x(4“) = 7~ C(G,) (where n = l/p/). 
As before, for each partition-valued function a on G* such that /IQ.(~= n, let 

S, E G? be the irreducible representation (9.1) parametrized by LY, and let (Xz) be 
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the character-table of 

x; =(x(&4, 

LG. Macdonald 

G,, so that 

II”> 

is the value of ,&.) at elements of type CL. 

(9.10) Theorem. The irreducible characters of the wreath product G, = G - S, are 
determined by the set of equations 

in other words, the character table (Xz) of G, is the transition matrix between the two 
k-bases (4”) and (se) of k 0 R(G,). 

Proof. We have 

(4er? s,) = (s,, 53 = (x(s,), x(3) 

= (x(su), CL”) =x; ; 

since the sa form an orthonormal basis of R(G,), (9.10) follows directly. 0 

Remarks. (1) The characters of wreath products G - S, were first worked out by 
Specht [9]. Curiously, (9.10), which is a direct generalization of Frobenius’s formula 
(8.11) for the characters of S,,, does not occur in Specht’s paper, although the reverse 
set of equations does, namely (in our notation) 

where z, is the order of the centralizer of an element of type CL in G,. In the particular 
case where G has order 2 (so that G,, is the hyperoctahedral group), (9.10) occurs in 
A. Young [lo]. 

(2) The degree of the representation s, of G,, is equal to 

n! n dkCY”/hpCyJ 
-fcG’ 

where d, is the degree of y, and h,cYj is the product of the hook-lengths of the 
partition (Y(Y) [7]. 

Appendix: Twisted group rings 

(1) Let R be a ring and let G be a finite group which acts on R as a group of 
automorphisms. Consider the free left R-module R G on G as basis, the elements of 
which are formal sums C gE G a, . g with coefficients a, E R. Define a multiplication in 
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RG by the rule 
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In this way RG becomes an associative ring with identity element 1 * e, where 1 and e 
are the identity elements of R and G respectively. We denote this ring by R ~1 G and 
call it the twisted group ring of G over R. The mapping a + a * e embeds R as a 
subring of R >a G. 

Examples. (1) Let N be a group on which G acts as a group of automorphisms, and 
let N >a G denote the semidirect product of N with G. If k is any commutative ring, 
the group algebra of N >Q G over k is (kN) >a G. 

(2) Let A be a k-algebra, R = T”(A) the nth tensor power of A over k. The 
symmetric group S,, acts on R by permuting the factors, and T”(A) >a S,, is what we 
have called the wreath product A - S, (Section 6). 

Let M be a left R-module in which G acts in such a way that g(x + y) = g(x) +g(y), 
g(ax) = g(a)g(x) for a E R, g E G and x, y EM. Then M becomes a left R x G- 
module if we define (a * g)x = a * g(x). Conversely, any left R x G-module may be 
regarded as a left R-module (by restriction of scalars) on which G acts as above, by 
defining g(x) to be (1 * g)x. Likewise for right modules. In particular, R itself is a left 
and right R >Q G-module. 

Let M, N be left R >a G-modules. Then G acts on HomR (M, N) in the usual way: 
(g * 4.)(x) = g(+(g-l(x))) for gc G, 4: M --, N and x E M, and it is immediately 
verified that 

(A.1) (HomR(M, N))G = HOmRxG(kf, N). 

(2) Suppose in this section that the order IGI of G is a unit in R. Let B be a 
pseudo-abelian category, let M be a right R >Q G-module object in B, and let N be a 
left R x G-module. Then, with tensor products defined as in Section 5, we have 

(A.2) (M@RN)a~MM~x~N 

in the sense that if one side exists, so does the other and they are canonically 

isomorphic. 

Proof. Let Y be an object of B on which G acts, and suppose that scalar multi- 
plication by ) cj v is an automorphism of Y. Then (Section 4) YG is defined to be the 
image of the idempotent morphism 

o- = tGl-’ ,FG g. 

Now let X be any object of B. Then (since Horn is additive) HomB( YG, X) is the 



202 I.G. Macdonald 

image of (+ acting on HomB( Y, X), and therefore 

Homn( YG, X) = (HomB( Y, X)jG. 

Taking Y = M OR N, we have 

Homn((M 0~ NJG, X) = (Horn&4 @RN), X>lG 

= HomR(N, Horn&V, X))JG 

= HOtIlRxG(N, Horn&W X) 

= Horn&V OR~G N, X) 

which proves (A.2). 0 

(A.3) Let P be a left R XI G-module which is projective as a left R-module. Then P is 
projective as a left R >a G-module. 

Proof. By choosing a set of generators of P we obtain an exact sequence 

(*) O+Q:F:P+O 

of R x G-modules and homomorphisms, where F is free. Since P is R-projective, 
there exists an R-homomorphism y: P --) F such that fly = lP. Let 

Y* = IGI-’ ,FG m-‘3 

then y* is an R >a G-homomorphism and Py* = 1~. Hence the exact sequence (*) 
splits over R >a G, and therefore P is R >Q G-projective. 0 

(3) Let E be an R-module. Since G acts on R, we can twist the action of R on E by 
an element g E G. To be precise, let ‘E denote the R-module whose underlying 
additive group is E, but with scalar multiplication defined by (a, v)Hg-‘(a)v for 
a E R and v E E. The submodules of “E are the same as the submodules of E, so that 
‘E is simple if E is simple. In this way G acts on the set R* of isomorphism classes of 
simple R-modules. The set of g E G such that *E is R-isomorphic to E is a subgroup 
H of G, called the inertia group of E. 

Suppose now that the ring R is an algebra over an algebraically closed field k, and 
that G fixes each element of k. All modules will be assumed to be left modules, 
finite-dimensional over k. Our aim here is to describe (up to isomorphism) all simple 
R x G-modules. 

Let A4 be a simple R XI G-module. Consider M as an R-module by restriction of 
scalars, and let E be a simple R-submodule of M. For each g E G, the subspace gE is a 
simple R-module of M, isomorphic to “E, and xgEo gE is a nonzero R >a G- 
submodule of M, hence is the whole of M. It follows that M is R-semisimple and that 
every simple R-submodule of M is isomorphic to ‘E for some g E G. 
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Let H be as above the inertia group of E, and put N = EJ,~H~E, which is an 

R XI H-module. If g,, . . . , g, are left coset representatives of H in G, then the giN 

are the isotypic components of M as an R-module, and we have 

M=hgiN-(RxG)&,HN 
r=l 

which we write as 

(1) M = ind%N). 

The R >a H-module N is a sum of R-submodules isomorphic to E, hence from [2, p. 

15, Theoreme l] and the fact that EndR(E) = k by Schur’s lemma (since k is 

algebraically closed) we have 

(2) N= V&E 

where 

V = HomR (E, N) = HomR (E, M) 

is a kH-module, with H acting via its action on N. From (1) and (2), it follows that 

M = inda V Ok E). 

Moreover, the kH-module V must be simple, for if V’ is a kH-submodule of V then 

M’ = ind$( V’ Ok E) will be an R XI G-submodule of it4. Hence 

(A.4) Every simple R >a G-submodule M is (up to isomorphism) of the form 
indg V Ok E), where E is a simple R-module, His the inertia group of E, anti Vis a 
simple kH-module. 

We remarked above that every simple R-submodule of M is isomorphic to ‘E for 

some g E G. Had we started off with E’ = ‘E in place of E, we should have obtained 

an isomorphism 

M = indg( V’ Ok E’) 

where H’ = gHg_’ and V’ = HomR(E’, gN) is the simple kH’-module obtained from 

C’by twisting the action of H by g. 

Conversely, every R >a G-module M as described in (A.4) is simple. For if .!I’ is an 

R x G-submodule of M, then M’ is R-semisimple, hence is the direct sum of its 

isotypic components M’n gi.v = giN’, where N’ = M’n N, and M’ = V’ @;,, E where 

V’ = HomR(E, N’) is a kH-submodule of V. Since V is simple, we have V’ = 0 or V 
and correspondingly M’ = 0 or iVf. 

Finally, suppose that Mi = indg$( Vi @k Ei) (i = 1,2) are isomorphic simpie R >Q G- 
modules. Then El, being a simple R-submodule of Ml, must be isomorphic to ‘E- for 

some g E G. Replacing Ez by ‘Es, we may assume that El = E- = E say, and 

therefore HI = Hz = H say. Since V, = HomR(E, I+&), it follows that VI and V’Z are 

isomorphic kH-modules. 
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To summarize: 

(AS) Theorem. Choose respresentatives E, of the orbits of G in R*, and let H, be the 
inertia group of E,. Let V,,, run through a complete set of simple kH,-modules. Then 
the R x G-modules 

ind&(V,.,OkE,) (LYER*~G,AEH~) 

form a complete set of nonisomorphic simple R >a G-modules. 

The particular case of this result which is used in Section 7 is that in which 
R = T”(A) and G = S, (Example 2). Since k is algebraically closed, we have 
R” = (A*)” ([2, p. 94]), the Cartesian product of n copies of A*, on which S,, acts by 
permuting the factors. For each (Y E (A*)” the inertia group H, is (up to conjugacy in 
S,) of the form S,=S,,x***xS,,, where nl+. * - + n, = n, and hence by (A.5) the 
simple A - &modules are of the form 

(3) indz;( V Ok T”‘(E,,) 0 * . * 0 Rnr(E,,)) 

for all choices of distinct (Y 1, . . . , a, E A*, integers n 1, . . . , n, such that 1 ni = n, and 
simple k&modules V. Each such Visa tensor product VI Ok . * * Ok V, where each 
Vi is a simple k&,-module, and therefore the module (3) can be written as 

(A - S,) @A--S, (l@ (vi 0 Tni(E,;))) 

which, in the terminology introduced in Section 6, is an induction product of wreath 
products 

(Ep, - V,) - * * * * (Em, - V,). 
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