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Introduction

The theory of “‘invariant matrices’” was the subject of Schur’s dissertation in 1901
[8a] and his first major mathematical achievement. The problem which Schur posed
and solved completely was to find all functions F from m X m matrices to rXxr
matrices such that

(i) the r’ entries of F(A) are polynomial functions of the m?entriesof A -i.e., Fis
a polynomial mapping from the space of m Xm matrices to the space of rxr
matrices;

(ii) F(AB)=F(A)F(B) for all m xm matrices A, B. Schur called F(A) an
“invariant form” or “‘invariant matrix” of A; he showed that each such F could be
split up into homogeneous components, and that the homogeneous F of degree n are
in a natural one-one correspondence with the representations of the symmetric
group 8, provided that n <m.

In 1927 [8b] Schur returned to this question, and showed that all the irreducible
invariant matrices of degree n could be obtained by decomposing the nth tensor (or
Kronecker) power T"(A)=A ® -+ - ® A. To state this result in modern language,
let V be a finite-dimensional vector space over a field k of characteristic 0, and let
T V)=V ®:-:-® V be its nth tensor power over k. The symmetric group S, acts
on T"(V) by permuting the factors, so that we have a finite-dimensional represen-
tation of §,, which we decompose into its isotypic components:

T"(V)=@ Homys, (Ex, T (V) @x E- =D Fr(V) Ok Erry

say, functorially in V': here the E,, are the distinct irreducible £S,-modules. If now
A: V-V is a linear transformation, then F,(A): F.(V)~> F,(V) is an irreducible
invariant matrix of A, homogeneous of degree », and all the irreducible invariant
matrices of degree n, up to equivalence, arise in this way. Thus an invariant matrix in
Schur’s sense defines a functor F on the category V, of finite-dimensional k-vector
spaces, which is polynomial in the sense that for each pair of vector spaces U, V, the
mapping F:Hom(U, V)->Hom(F(U), F(V)) is a polynomial mapping between
these vector spaces.
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We shall take this observation as our starting point. The purpose of this paper is to
investigate polynomial functors between more general categories than the category
Vi :
For the adjective “‘polynomial” to make sense, we need from the beginning an
underlying field of scalars. If £ is any field, an additive category A in Grothendieck’s
sense {5] (i.e., admitting finite direct sums) will be called k-linear if each object of A
admits scalar multiplication by the elements of k, satisfying the obvious conditions
(see §1 for the precise definition), which imply that Hom (X, Y) is a k-vector space
for any two objects X, Y in A.

Now let A, B be k-linear categories, where k is an infinite field. A (covariant)
functor F: A~ B will be said to be polynomial if for all X, Y in A the mapping
F:Homa(X, Y)-Homa(F({X), F(Y)) is a polynomial mapping. We shall also need
to assume that the category B is pseudo-abelian (or Karoubian) [3]: this means that
idempotent morphisms have images and hence determine direct sum decompositions
— briefly, “idempotents split™.

The basic idea (following Schur) is that polynomial functors F:A- B can be
treated in the same way as polynomials. First we show that F is the direct sum of its
homogeneous parts (Section 2}, and hence we may assume from now on that F is
homogeneous of degree n >0 (the case n =0 being trivial). Next, just as a homo-
geneous polynomial can be linearized, so can our functor F': the linearization Lg of F
(see Section 3 for definition) is a multilinear functor of # variables, i.e. a functor from
A" =AX-:-XA to B which is k-linear in each variable.

In Section 4 we define an action of the symmetric group S, on LX) =
Le(X, ..., X),where X is any object of A, and (because we shall want to divide by
n!) we assume from now on that the field k has characteristic 0. Then the subobject
(LX) of S,-invariants is defined, and our first main result (4.10) is that the
functor F can be reconstructed from its linearization Lg:

Theorem 1. F is isomorphic to the functor X — (LE(XO)

This result reduces the study of homogeneous polynomial functors to that of
multilinear functors, and the next step would therefore be to classify the latter. We do
not attempt this task in any great generality; from now on we take A to be the
category V 4 of finitely-generated projective left A-modules, where A is a k-algebra.

At this stage tensor products enter naturally. Suppose L: V4 - Bis k-linear in each
variable, and let T"(A)=A ® - - - ® A be the nth tensor power of A over k. Then
T"(A) acts on L'*”(A)=L(A,...,A) on the right, and thus L'"'(A) is a right
T"(A)-module object in the category B. With an appropriate definition of tensor
product in this context, we show (5.6) that

Theorem 2. L is isomorphic to the functor

(Py, ... ,Pn)'—*Lw(A) 1A (P& - B Po).
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From Theorems 1 and 2 we have immediately

Theorem 3. Let F: V5> B be a homogeneous polynomial functor of degree n> 0.
Then F is isomorphic to the functor

P (LE(A) ®rnia) T"(P))*

In this situation the symmetric group S, acts on all three ingredients: the k-algebra
T"(A), the right T"(A)-module L¥'(A), and the left T"(A)-module T"(P), and in
the two last cases the action of S, is compatible with the module structure. This leads
us in Section 6 to the second main theme of this paper, namely wreath products. The
vector space T"(A)®« kS, is a k-algebra for the multiplication (@ ® s)(6 ® )=
a - s(b)® st, where a,bc T"(A) and s, € S,; this k-algebra we call the wreath
product of A with S,, and denote itby A ~ S,.. (If A = kI is the algebra of a group [,
then A ~ §, is the group algebra of the wreath product I" ~ S,..) In this way we may
regard the nth tensor power (over k) as a functor from V4 to V4., and Theorem 3
then takes the form ((6.4), (6.5)):

Theoremd. Let F:V 5> B bea homogeneous polynomial functor of degree n >0, and
let M =L (A). Then F=Up o T", where T": V4~V a_s, is the nth tensor power,
and Ung:Va~s, > B is the k-linear functior Q > M ® a~s, Q.

Moreover the functors a: Fr>LE(A), B: M ~> Uny © T" constitute an equivalence of
the category of homogeneous polynomial functors F:V o~ B of degree n with the
category of right A~S,-module objects in B. ’

Suppose now that B is the category V, of finite-dimensional k-vector spaces. Then
it follows from Theorem 4 that the classification of irreducible polynomial functors
F:V4->V, of degree n is tantamount to the classification of simple A ~ §,-
modules, finite-dimensional over k ; and this is a particular case of the classification of
simple modules over twisted group rings, which we discuss in the Appendix. In this
way we obtain (7.2), on the assumption that k is algebraically closed (and of
characteristic 0):

Theorem 5. Every irreducible polynomial functor F:V 4 = V. is isomorphic to a tensor
product of functors of the form

P—V @us,, T"(E ®4 P)

where E (resp. V) is a finite-dimensional simple right A-module (resp. kS,.-module),
and no two of the E’s are isomorphic. Moreover, this factorization of F as a tensor
product is unique (up to the order of the factors).

Next, in Section 8, we turn our attention to the Grothendieck group K (P.,) of the
category P, of polynomial functors F:V 4, -V, of bounded degree. K(P,) is a
commutative graded ring, the multiplication being tensor product of functors;
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moreover, itis a A-ring, A ‘(F) being the composition of F with the ith exterior power
A': Vi > V.. The structure of K(P,) is given (8.1) by

Theorem 6. K(P,) is the free A-ring generated by the classes of the functors P—
E ®a P, where E runs through a complete set of non-isomorphic finite-dimensional
simple right A-modules.

Finally, in Section 9 we specialize to the case where A = kG is the group algebra of
a finite group G, and k is the field of complex numbers. Then the ring K (P 4) may be
canonically identified with the direct sum R(G) = @,.;0 R(G,),where G,=G ~ §,,
is the wreath product of G with S,, and R(G,) is the Grothendieck group of
kG,-modules. By Theorem 6, R(G) is the free A-ring generated by G*, the set of
isomorphism classes of simple kG-modules.

We next introduce C(G) =@ ,=0 C(G.), where C(G,) is the space of k-valued
class functions on G,, and we proceed to make C(G) into a A-ring. The multiplication
is defined by means of induction of class functions, and the A-structure by means of
the Adams operations ¢": the details are in Section 9. It then appears that C(G) is
the free k-A-algebra generated by Gy, the set of conjugacy classes of G.

Now let x : R(G) -» C(G) be the linear mapping which takes each representation to
its character. The basic fact (9.8) is

Theorem 7. x: R(G)- C(G) is a homomorphism of A-rings.

It is this fact which underlies the computation of the character tables of the wreath
products G, = G ~ S, (Specht [9]). We shall not attempt to reproduce the details in
this introduction; the reader will find them at the end of Section 9.

The paper ends with an appendix on twisted group rings, which include the wreath
products A ~ S, as particular cases. Here we have restricted ourselves to the results
we need in the body of the paper, and have not attempted a complete account.

Finally, it should perhaps be said that the methods of this paper are elementary
throughout, and demand from the reader no more than a general familiarity with
functorial linear algebra, as expounded (for example) in Bourbaki’'s Algébre.

1. Polynomial functors

Let A be an additive category in the sense of Grothendieck [3). A field of scalars
for A is any subfield of the ring of endomorphisms of the identity functor 1, of A, or
more precisely is an embedding of a field k in this ring. Thus each element A €k
determines a morphism 1, - 14; that is to say, for each object X in A we have a
morphism Ax: X - X such that 1 x is the identity morphism, Ax + ux = (A + u)x and
Axux =(Ap)x for all A, w €k, and fAx = Ayf for all morphisms f: X > Y in A. We
shall often write A in place of Ax, whenever the context permits.
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Since composition of morphisms in an additive category is bilinear, we have
A+w)f=Af+ufandA(f+g)=Af+ArgforallA,uckandf, g: X » Y in A. Hence
Homa (X, Y)is a k-vector space.

A category A as above will be called a k-linear category.

Let A, B be k-linear categories. A (covariant) functor F: A - B is said to be
polynomial if, for each pair of objects X, Y in A, the mapping F:Hom.(X, Y) -
Homg(FX, FY) is a polynomial mapping between these k-vector spaces. We may
express this condition as follows:

(1.1) Given any finite sequence of morphisms f;: X > Y in A and elements \;ek
(1ssi=<vr), the morphism F(Afi+- - -+Af,) is a polynomial in Ay, ..., A, with
coefficients in Homg(FX, FY') (dependingon f, ..., f, and F).

We shall assume throughout that the field & is infinite (and from Section 4 onwards
that it has characteristic 0). The coefficient morphisms in (1.1) are then uniquely
determined. We shall also assume that the category B is pseudo-abelian (see the
introduction).

2. Homogeneity

Let F: A-> B be a polynomial functor. For each object X in A, the morphism
F(Ax) will be a polynomial in A with coefficients in Endg(FX) independent of A, say

2.1 Flx)= X u.(X0OA"

n=0

where u,(X) e Endg(FX). Since F((Au)x)=F(Axux)=F(Ax)F(ux), we have

L w00 =( 5 unOV)( E unl0n”)
n=0 n= n=
for all A, u € k. Because k is infinite, it follows that u, (X)* = u,(X) for all n =0, and
that u, (X)u,(X) =0 for m # n. Also, by taking A =1 in (2.1), we have ¥ u,(X) =
F(1x)=1gx Since the category B is pseudo-abelian, it follows that the morphisms
u,(X) determine a finite direct sum decomposition of F(X), say

F(X)= ®0Fn(X)
where F,(X) is the image of u,(X).

Moreover, if f: X - Y is any morphism in A, we have F(f)F(Ax) =F(Ay)F(f) for
all A € k, from which and (2.1) it follows (again because k is infinite) that F(f)u,(X) =
u,(Y)F(f) for each n =0, in other words that each u, is an endomorphism of the
functor F. Hence F(f) induces by restriction morphisms Fr(f): F,(X)-> F,(Y), and
each F, is a funcror, which is clearly polynomial. Consequently we have a direct
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decomposition of the functor F:

(2.2) F=@ F,

n=0

n

in which each F, is a homogeneous polynomial functor of degree n. For F,,(A)=A
and hence, in the situation of (1.1),

Fn(A/\lf1+' * '+A/\rfr)=Fn(/\)Fn(/\1fl+' " '+Arfr)
=A"Fn(A1fl+' * '+/\rfr)

which shows that F,(A,f;++ - - +A,f,) is a homogeneous polynomial of degree n in
Ay ooy An
The F, are called the homogeneous parts of F.

(2.3) Remarks. (1) When n =0, we have Fy(A) =1 for all A € k, so that in particular
Fo(0) = Fo(1). It follows that, for all morphisms f: X - Y, Fo(f) = Fo(Oxv) and hence
is independent of £, and is an isomorphism of Fo(X) onto Fo( Y'). Hence all the objects
Fy(X) are canonically isomorphic.

(2) Next,when n =1, we have Fi(Af1 +Asf5) = A1g1+ Az, say; taking (A, A2) to
be (1, 0), (0, 1) successively, we see that g; = F1(f;) and hence that Fy(Afi +Azfy) =
ALFi(f1) + A2F5(f5): in other words, F, is k-linear and in particular additive.

(3) The direct sum (2.2) may well have infinitely many non-zero components,
although for any given object X we shall have F,(X) = 0 for all sufficiently large n,
because the sum (2.1) is finite. An example is the exterior algebra functor on the
category of finite-dimensional vector spaces over k.

If F, =0 for all sufficiently large n, we shall say that F has bounded degree.

More generally, let Ay, ..., A, be k-linear categories, andlet P=A; X - - X A, be
the product category, whose objects are all sequences X = (X, ..., X}), where X; is
anobjectof A; for 1 <i=<r,and Homp(X, Y) = @,’-=1 Hom, (X, Y:). The category P
is k-linear. Now let F be a polynomial functor from P to a pseudo-abelian category B.
If Ai,...,A €k, then F((Ay)x,,...,(A,)x,) will be a polynomial in Ay, ..., A, with
coefficients in Endg(FX), say

(2.4) FAr, oo s A)= Y tmpom (X1 XA -2 AT

.....

‘‘‘‘‘ =, are endomorphisms of the functor F, and
..... m (X1, s X)) DY Frnyom, (X, ..., X7, then
m, are subfunctors of F giving a direct decomposition

Exactly as before, we see that the u,,,
that if we denote the image of u,,,
the F,.,,...,

(2.5) F= @ Fn,

summed over all (my,...,m,)eN". Each F,, . is homogeneous of multidegree
(my, ..., m),ie.

m,(/\l,-..,,\,):A'l”l .. /\:"r

.....
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3. Linearization

Again let F: A - B be a polynomial functor. In view of the decomposition (2.2), we
shall assume from now on that F is homogeneous of degree n > 0. The considerations
at the end of Section 2 apply to the functor F': A" > B defined by F'(X1, ..., X,) =
F(X,@---@X,), and show that there exists a direct decomposition, functorial in
each variable,

F(XIG')"'@XH):@F:nl m,.(Xl’-'-’Xn)

summed over all (m,, ..., m,)e N" suchthat m,+---+m, =n.

Our main interest will be in the functor F)
morphism u,
place of u,,_,
deviation of F,see (3.2) below.) The functor Lr: A" - B is homogeneous and k-linear
in each variable (and therefore additive in each variable (2.3)).

To recapitulate the definitionsof Lr and v,let Y = X, @ - - @ X,,. Then there exist
monomorphisms i,: X, - Y and epimorphisms p,: Y - X, for 1 <a < n, such that

(3.1)  pain=1lx, paig=0 ifa =g,

I 1=

iapa = ly.
1

<3

ForeachA =(Ay,...,A,)€k", let (A) denote the morphism ¥, Aalape: Y = Y, s0 that
(A) acts as scalar multiplication by A, on the component X,. Then ¢ (X}, ..., X,) is
the coefficient of A;...A, in F((A)), and Lg(Xy,...,X,) is the image of
v(X1, ..., X,), and is a direct summand of F(X,®- - ®X,,).

(3.2) Remark. For each subset E of {1, 2, ..., n}, let
wE = Z iapa

acE

so that, in the notation introduced above, ¥ = (1) where u, =1 or 0 according as «
doesordoes not belongto E. Asin (2.4),let t, .. be the coefficientof AT - - - AT
in F((A)), and let ¢ =Y um,,  m, summed over those (my,...,m,)eN" with
support equal to E (i.e. such that m, >0 if and only if a € E). Then it is clear that

Fyg)= ¥ ¢p

DcE
for each subset E of {1, 2,. .., n}. Solving these equations for the ¢'s, we obtain

dp= Y (=1)PEF(yg).
E<D

In particular, when D ={1, 2, ..., n}, we have ép =u,__, = v, and therefore

=Y (~1)""FF(yg),
E
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summed over all subsets E of {1, 2, ..., n}. This formula shows that Lg is the ‘nth
deviation’ of F (see Epstein [4]).

(3.3) Example. Suppose that A = B = V,, the category of finite-dimensional vector
spaces over k, and that F is the nth exterior power A", which is a homogeneous
polynomial functor of degree n. In this case we have

FX,@ - -@X,)= @ A"X)® - @A™(X.)

my,...,
summed over all (m,, ..., m,)e N” such that m,++ -+ -+ m, =n, and hence

Le(X1,. ., X)=A(X)® - OA(X)=X1®" - ® X,

4. The action of the symmetric group

Assume from now on that k has characteristic 0.
With F: A - B as before, consider in particular

LY (X)=Lp(X, ..., X)

for any object X in A. For each permutation s in the symmetric group S, there exists
a morphism s=sx:X">X" (where X"=X @ -+ @ X) which permutes the
summands according to s, namely

4D 5= L ek

in the notation of (3.1). If as before we write A =(A1,...,A.)€ k" and (A) =¥ AaiaPas
then a simple calculation shows that s(A) = (sA) - 5, where sA ={A ;-1 1), , A=)y
and hence that F(s)F((A)) = F((sA))F(s). By picking out the coefficient of A+ - A,
on either side, we see that

4.2) F(s)v=vF(s)

from which it follows that F(s) induces by restriction an endomorphism F(s)of L'?.

Explicitly, if

@.3)  j=jx:LEX)>F(X"),  q=qx:F(X")>LF'(X)

are the injection and projection associated with the direct summand L¥'(X) of
F(X"),sothat gj =1 and jq = v, then

(4.4)  F(s)=qF(s)j.

It follows that F(st) = F(s)E(¢t) for s, t € S,,, so that we have a representation of S, on
LX), functorial in X.
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Our aim now will be to show that this representation of S, determines the functor F
up to isomorphism; more precisely, that there exists a functorial isomorphism of
F(X) onto the subobject of S,-invariants of L’ (X).

(4.5) Example. In the Example (3.3) we have L& (X)=T"(X), the nth tensor

power of X over k, and the action of S, on L¥(X) in this case is given by

F)x,®  ®x)=£()xs-10) ® +* ® X1,

where £(s) is the sign (1) of the permutation s, and xi, .. ., x, are elements of X.
Hence L&' (X)% is the space of skew-symmetric tensors in T"(X), which is iso-
morphic to A"(X) since k has characteristic .

We consider morphisms f: X" - X" of the form f = Y, g &,piaDs, Where the £, are
elements of k. Since F is homogeneous of degree n, F(f) will be a homogeneous
polynomial of degree # in the n’ variables &5, with coefficients in End F(X™"). For
each s € S, let w, denote the coefficient of £,1)1 - * €s(ain In F(f), and let

(4.6) i=Y i X->X", p=Ypa:X">X.

Then we have
4.7 vF(ipyv= Y F(s)v.

seS,

Proof. By (4.2), v commutes with F(s); also v2 = v, so that F(s)v = vF(s)v, which by
definition is the coefficient of Ay -+ * Aty * * * up In

FOFEF ()= F(W)s @) = F(Z Ao it

This coefficient is clearly w,, so that we have w,; = F(s)v.
Again, vF(ip)v is the coefficientof Ay« A ;- -+, in

F((A)F(ip)F((u)) = F((A)ip(u)) = F( ZB /\a#zzfapa)
and this coefficient is clearly . ¢ w, =Y F(s)v. [

We now define two morphisms of functors:
E=qF(i):F~L%, n=F(p)j:L¥>F
(7 and g were defined in (4.3)). Then
(4.8) né=n! (i.e., scalar multiplication by n!)

én= ¥ F(s).

ses,
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Proof. We have n¢ = F(p)jqF{i) = F(p)vF (i), which is the coefficientof A; - - - A, in
F(p)F((A)F(iy= F(p{A)i). Now p(A)i: X - X is scalar multiplicationby A, +- - -+
An, 50 that F(p(A)i) is scalar multiplication by (A, + -+ - +A,)", and the coefficient of
Ay - A, is therefore n!, as asserted.

Next, én = qF (i)F(p)j, so that by (4.3) and (4.7)

jénq = vF(ip)v =Y F(s)v
and hence by (4.4)
=T qF(s)i=L F(s). O

If a finite group G acts on an object Y in an abelian category, and if scalar
multiplication by the order |G| of G is an automorphism of Y, then the subobject
YS = Ker(1—g)

geG
is a direct summand of Y and is equal to the image of the projection

1
0=ré—lg§6g‘

Forsince (1 — g)o = 0 for each g € G, we have Im(o) = Ker(1 — g) and hence Im(o) <
Y°, and on the other hand
Y= Ker(1-g)=Ker¥ (1-g)
geG g
which is equal to Ker(1 - o) because |G| is invertible in Y, and hence is equal to Im(o)
because o> = consequently Y% clIm(o).

If the category is only pseudo-abelian, we define Y° to be the image of the
projection ¢. In our situation, G is the symmetric group, acting on L¥'(X) via F;
since the characteristic of k is zero (this is the first point at which we have made use of
this assumption) scalar multiplication by n! is an automorphism, and therefore
L¥(X)% is defined and is a direct summand of L{(X). Let

e LP(X)*>LP(X);  mLE(X)>LE (X)™

be the associated injection and projection, so that 7e =1 and

(4.9) m=a=i' ¥ I:"(s)=-1—'§n
n nt

+ €S,

by (4.8).

(4.10) Theorem. F(X) is funciorially isomorphic to L (X)*. More precisely, the
morphisms

g=n&: F(X)» LX)  n'=ne:LP(X)* >F(X)

are functorial isomorphisms such that £ n'=n! and n'¢' = n'.
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Proof. This is a direct consequence of (4.8) and (4.9), since we have
&n'=méne =n!lmeme = n!
and

1 14 1
uX3 =17£7r§=;;n§n§=n!. O

It follows from (4.10) that every homogeneous polynomial functor of degree n >0
from A to B is of the form

X->L(X,...,X)%,

where L: A" > B is k-linear in each variable, and is acted on by S,. The next step,
therefore, would be to classify such functors. We shall not attempt to do this in any
great generality; from now onwards we shall take A to be the category V 4 of finitely
generated projective left A-modules, where A is a k-algebra.

5. Tensor products and linear functors

Let A be aring, B an additive category. A lefr A-module object in B is an object M
of B together with a ring homomorphism of A into Endg(M). Equivalently,
N > Homg(M, N) is a functor from B to the category of right A-modules and
homomorphisms. Likewise we define a right A-module object in B. If B is a category
of left modules over a ring B, a right A-module object in B is the same thing as a
(B, A)-bimodule.

Let M be a right A-module object in B. Then for each object NV in B the abelian
group Homg(M, N) is a left A-module, and therefore if P is any left A-module the
abelian group Hom 4 (P, Homg(M, N)) is defined. If there exists an object E in B and
for each N an isomorphism

Homg(E, N) > Hom4 (P, Homg(M, N))

functorial in N, we shall say that E is a tensor product of M and P over A, and write
E =M ®4 P. The tensor product, when it exists, is therefore defined by

(5.1) Homg(M ®4 P, N)=Homu{P, Homg(M, N))

and (since it represents a functor) is unique up to isomorphism. Note also that M and
P lie in general in different categories.

Now let A, B be k-algebras, let C = A ®, B and let M be aright C-module object
in the category B. The canonical homomorphismsa-»>a ® 1and b ->1® b of A and
B into C determine by restriction of scalars A-module and B-module structures on
M. Let P be a left A-module and Q a left B-module, so that P&, Q is a left
C-module. The isomorphism (5.1) shows that the abelian group Homg(M ®4 P, N)
has a left B-module structure for each object N in B, so that M ® 4 P, when it exists,
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is a right B-module object in B. In this situation we have
(32) MQ®aesPR%hQ)=(M®4P)®50Q

in the sense that if one side exists, so does the other and they are isomorphic. For by
(5.1

Homg(M ®c (P ®, Q), N) =Homc(P ®: Q, Homg(M, N))
and
Homg((M ®4 P) ®5 Q, N)=Homz(Q, Hom (P, Homg(M, N)))

and each of the Z-modules on the right is isomorphic to the Z-module of functions
from P x Q to Homg(M, N) which are A-linear in the first factor and B-linear in the
second.

We shall now take up the problem raised at the end of Section 4, namely that of
finding all functors L: V> B which are k-linear in each variable, where A is any
k-algebra and B is as before a pseudo-abelian k-linear category.

We begin with the case n = 1. Let then L: V,—> B be a &-linear functor (hence
additive). For each left A-module P let e =ep: P> Homa(A, P) be the canonical
isomorphism, so that e(p)a =ap for ae A and pe P. In particular, taking P =
A,e(a) is right multiplication by a; applying the functor L, we obtain
L(e(a)):L(A)—> L(A) for each a € A, and hence L(A) is a right A-module object in
B.

Now let N be any object in B, and let

(5.3) ¢ = ¢(P):Homg(L(P), N)-> Homa(P, Homg(L(A), N))

be the homomorphism of Z-modules defined by ¢(f)(p)=fo L(e(p)).
(5.4) Foreach PeV 4, y(P) is an isomorphism.

Proof. It is easily checked that ¢/(A) is the isomorphism e. Since ¢ is a morphism
between additive functors, it follows that ¢y(A") = (A)" is an isomorphism. If now
PeV,, thereexists Qe Vysuchthat P @ Q=A" forsome n =0; hence (P @ Q)
is an isomorphism. But ¢(P @ Q)=¢(P) ® ¢{Q), hence ¢(P) is an iso-
morphism. O

From (5.1) and (5.4) it follows that L(P) is a tensor product of L(A) and P over A:

L(P)=L(A)®@, P

functorially in P. In other words,
(5.5) L=Upa
where Uy a) is the functor P—~>L(A)®4 P.
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We consider now the general case. Let L: V3 — B be k-linear in each variable, and
let T"(A) be the nth tensor power of A over k. Then L'"’(A) = L(A, ..., A)isaright
T"(A)-module object in B, the actionof a; ® - - - ® a, € T"(A) being the morphism
Lie(ay),...,e(an)).

(5.6) There exists an isomorphism of functors

L(Py,..., Pn)SL(")A ®7ma) (P& + -+ O p,).

Proof. We shall write out the proof for n =2. Regarding P, as fixed and P, as
variable, we have from (5.3)

L(P,P))=L(P,,A)®a P,
=(L(A,A)®4 P)®@a4 P2 by (5.5) again
=L®(A) ®12a) (PL®cPy) by (5.2). O
From (4.10) and (5.6) we have immediately

(5.7) Theorem. Let F: V5B be a polynomial funcior, homogeneous of degree
n > 0. Then there exists an isomorphism of functors

F(P)=(LP(A)®1~a, T (P))*,

where LYW (A)=Lg(A,..., A), and Lg is the linearization (Section 3) of F, and
T"(P) (resp. T"(A)) is the nth tensor power of P (resp. A) over k.

Remarks. (1) We have assumed throughout, for convenience of exposition, that the
functor F is covariant. There is no difficulty in dealing with contravariant functors: if
F:V, - B is a contravariant polynomial functor, then F*: P F(P*) is covariant,
where P* =Hom(P, A) is the dual of P, and is a finitely generated projective right
A-module; L¥'(A) is now a left T"(A)-module object in B, and in place of (5.7) we
have

F(P)=(T"(P*) ®1~a) L' (A

(2) In (5.7) the symmetric group S, acts on the k-algebra T"(A) and the
T"(A)-module T"(P), by permuting the factors in these tensor products; also S, acts
on the right T"(A)-module object L¥(A); and in each case the action of S, is
compatible with the module structure, so that for exampile s(ap)=s(a)s(p) for
acT"(A), pe T"(P) and s € S,. In the next section we shall consider this situation

more generally.

6. Wreath products

Let G be a subgroup of S,. The group G acts on T"(A) by permuting the factors:

sS(a1®- - ®a)=a;-y, B - Rasa.
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Let kG be the group algebra of G over k, and define a multiplication in the vector
space T"(A) ®, kG by the rule

(@®s)bP®t)=a- sB)®st

fora, b€ T"(A) and s, t € G. The resulting k-algebra we shall call the wreath product
of A with G, and denote by A ~ G. It is associative and has an identity element
1®---®1®e, where 1 (resp. e) is the identity element of A (resp. G).

In particular, if A is the group algebra kI" of a group [, then T"(A) may be
identified with the group algebra of I'" =Ix---xT, and A ~ G with the group
algebra of the wreath product I ~ G of I" with G:

(6.1) (kM) ~ G =kl ~ G).

(To be quite explicit, we define I' ~ G to be the group whose elements are pairs
(v, s), where y=(y1,...,¥.)€ " and s € G with multiplication defined by (v, s)
(8, 1)=(v - 58, st), where 6 =(8;-11),..., 05 1(n)). The isomorphism (6.1) then
identifies (y, s) with y, ® - - ® v, ® s.)
In view of (6.1), we may leave out the brackets and write kI” ~ G unambiguously.
If also H is a subgroup of a symmetric group S,, then G ~ H is a subgroup of
S. X S,, hence (up to conjugacy) a subgroup of §,.,, we have

(6.2) (A~G)®« (A~H)=A~(GxH)

by identifying (a ® 5) ® (b ® ) with (a ® b) ® (s, t) where ae T"(A), be T?(A),
seGandte H

Again, the wreath product G ~ H is a subgroup of S, ~ S,, which in turn may be
identified (up to conjugacy) with a subgroup of S,, ([6, p. 31]), and then we have

63) (A~G)~H=A~(G~H).
For
(A~G)~H=TT"(A)®«kG) B kH
=T"(A)® TP (kG) @ kH
=T"(A)® (kG~H)=A~ (G~ H).

We may therefore write A ~ G ~ H unambiguously.

Now let M be a left A-module. Then T" (M) is a left T"(A)-module on which S,
acts by permuting the factors, so that we have s(am) =s(a)s(m)forse S, ae T"(A)
and me T"(M). We may therefore regard T"(M) as a left A ~ §,-module by
defining (a ® s)m =a - s(m). If M is finitely-generated and projective, it is a direct
summand of say A", and hence T" (M) is a direct summand of T"(A"), which is a free
T"(A)-module: hence T"(M) is finitely-generated and projective as a T"(A)-
module, and therefore by (A.3) also as an A ~ §,-module. In other words, T" is a
functor from V4 to Vs,
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If now V is a left kS,-module, then A ~ S, acts on T"(M) ®, V by the rule
(a®@s)m@v)=a-s(m)®s(v), where ac T"(A), me T"(M), s€S, and ve V.
The resulting A ~ S,-module we call the wreath project of M with V, and denote by
M~V

Let F: V4 - Bbe a homogeneous polynomial functor of degree n ; then L¥(A)isa
right T"(A)-module object in B, on which S, acts via E (Section 4), hence is a right
A ~ §,-module object in B, if we define the right action of s€ S, to be F(s™h.
(Explicitly, if B is a category of modules, the right action of A ~ S, on L(A) is
given by x(a ®s) =5 xa)=s""x)s"'(a) for ac T"(A), s S, and x e L¥(A).)
From (A.2) we have

(LE'(A) ®1~a) T(P)* =L (A) ®a~s, T"(P),
and therefore we can restate (5.7) as follows:
(6.4) Theorem. LetF:V 4 — B be a homogeneous polynomial functor of degree n >0,
and let M = LE’(A). Then

F= Up e T"

where T": V>V o_s s the nth tensor power functor, and Up:V a~s,~> B is the
k-linear functror (Section S) defined by

Um(Q)=M ®a-s, Q.

In other words, every homogeneous polynomial functor of degree n is obtained by
composing T" with a linear functor.

Now let P, denote the category of homogeneous polynomial functors F: V4 -» Bof
degree n, and let M,, denote the category of right A ~ S,-module objects M in the
category B for which the tensor product M ® 45, T" (P) exists for all P in V4 (this
condition will be automatically satisfied if B is a category of modules), the morphisms
in M,, being the morphisms in B which commute with the action of A ~ S,,.

(6.5) Theorem. The functors a:P,>M, and B:M, > P, defined by

a(F)=L{(A), BM)=Uy°T"

constitute an equivalence of categories.

Proof. We have Boa =1p_ by (6.4), and we have to verify that a e B =1y, . If
B (M) =F, we have
F(Pl@ @P,,)zM@A-snT"(Pl@ @P,,)

and therefore, from the definition of Lg in Section 3,

Le(Pry o, P =M @ams, ( © Puy @+~ @ Puun)

s€S,
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so that
LE(A)=Lr(A,...,A)=M Qa-s,(A~S,)=M. O
It follows from (6.5) that the functors « and 8 establish a one-one correspondence
between the isomorphism classes of homogeneous polynomial functors of degree n
from V4 to B, and the isomorphism classes of right A ~ §,-module objects in the

category B. We shall now examine some of the properties of this correspondence,
taking the category B now to be Vg, where B is a k-algebra.

(6.6) Tensor product. Let F, G:V 4~ Vg be homogeneous polynomial functors, of
degrees m and n respectively. Let F ® G be the functor defined by

(F® G)(P)=F(P)®: G(P);

it is homogeneous polynomial of degree m + n, with values in the category Vg, 5. If
L™ (A)=M and LE(A) = N, we have

(FRG)P)=(M ®a-s, T"(P)) ®k (N ®a-s, T"(P))
=(M Qi N) ®a~(s,.x5.) T"""(P)

by use of the isomorphism (6.2). Hence F® G corresponds to the
(B ® B, A~S,..,)-bimodule

M N=(M®:N)Da~s, x5 (A~ Snin)

which we call the induction product of M and N. Since tensor products are
commutative and associative (up to isomorphism), so also are induction products.

(6.7) Composition. Let C be another k-algebraandlet F: V4> Vg G: Vg >V, be
homogeneous polynomial functors of degrees m, n respectively. Then Ge F: V4>
V¢ is a homogeneous polynomial functor of degree mn. If L¥’(A)=M and
L% (B)=N,sothat M isa (B, A ~ S,.)-bimodule and N is a (C, B ~ §.,)-bimodule,
then we have

(GoF)P)=N®p-s5, T"(M Ra~s, T"(P))
=(NQ®p-s5, T"M))Ra-s,,~s, T""(P)
so that G o F corresponds to the (C, A ~ S,,,)-bimodule
NeM=(N®g-s, T" (M) ®a~s, ~s. (A~ S,)

which we call the composition product (or plethysm) of M with N. Since composition
of functors is associative, so is this composition product (up to isomorphism).
The two products just defined satisfy the “distributive law™

(6.8) (N1o M) (Nzo M)=(N,+- N2)o M.
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For the corresponding relation for the functors is
6.8 (G1°F)®(G2°F)=(G1®G2)°F,

which is obvious from the definitions.

(6.9) Remark. In the situation of (6.7), if F is linear (so that m = 1 and F = Uy in
the notation of (5.5)), and if B=C =k, then M is a right A-module, finite-
dimensional over k; N is a finite-dimensional &S, -module; and we have

(GoF)P)=N @5, T"(M @4 P)
=(N @ (T"(M) @1na) TA(P)))S“
=(N®, T"(M)) ®a-~s, T"(P),

the last two isomorphisms by virtue of (A.2). Hence in this case G © F corresponds to
the right A ~ §,-module T"(M) ®,. N =M ~ N, i.e. to the wreath product of M by
N.

7. Irreducible polynomial functors

A functor F:V 4~ Vg is said to be irreducible if F # 0 and F has no subfunctors
other than 0 and F. If F is an irreducible polynomial functor, the decomposition of
Section 2 shows that F must be homogeneous, of degree say n; discarding the
uninteresting case n =0, it then follows that F corresponds, in the correspondence
established in Section 6, to a (B, A ~ §,)-bimodule which is finitely-generated and
projective as a left B-module and is simple as a right A ~ S,-module. In particular,
when A =B =k, the irreducible polynomial functors V, >V, of degree n cor-
respond to the simple kS,-modules, i.e. to the irreducible k-representations of S,.

We shall assume from now on that B =k and that k is algebraically closed (and
of course of characteristic 0). The irreducible linear functors from V4 to V.
correspond, up to isomorphism, to the simple right A-modules which are
finite-dimensional over k. Let A* denote the set of isomorphism classes of finite-
dimensional simple right A-modules, and for each a« € A* choose arepresentative E,
of the class a. Let L,: V4=V, denote the corresponding linear functor, so that

(7.1)  L.(P)=E,®aP.

In particular, we shall use this notation when A =kS,,: to each class = € Sj
(= (kS )*) there corresponds a linear functor L, : V.5 - V., defined by L.(P)=
E, ®s,, P

It follows from (A.S) that the finite-dimensional simple right A ~ §,-modules are
induction products of wreath products of the form

(Ecn -~ pr) """ (Ea, -~ EP")
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where a;,...,a,€ A* are distinct classes, and p, e S¥, (1<i<r) with my++- -+
m, =n. Since the induction product is commutative, the order of the factors is
immaterial. From (6.9), the wreath product E, ~ E, (a € A*, p € §¥) corresponds to
the functor '

P>E,®s. T (E, ®aP)

i.e. to the functor L, T™ = L,. Hence:

(7.2) Theorem. Every irreducible polynomial functor F:V o~V is isomorphic 10 a
tensor product

r

® (Lﬂi ° TMi OLG.‘)

i=1

where the a; € A* are all distinct, the m; are positive integers and p; € S*,. Moreover, this
factorization of F is unique (up to the order of the factors).

(7.3) Remark. The irreducible representations of S, are customarily indexed by the
partitions of n, and it is convenient to identify LI ,,.o S} with the set of all partitions
(including the empty partition). It then follows from (7.2) that the irreducible
polynomial functors F: V4 » V, are indexed by the partition-valued functions p on
A* such that

loll= T |pla)l<co.
A‘

acs

In particular, when A = k, the irreducible polynomial functors V, - V, are indexed
by partitions 7. We shall denote by F,. the functor corresponding to #, so that

(7.4)  Fo(V)=E, Q®us, T"(V)

where n =|n| and E,, is the simple kS,-module indexed by 7.

8. The Grothendieck ring

Let P4 (resp. PY) denote the category of polynomial functors F:V, >V, of
bounded degree (2.3) (resp. homogeneous of degree n). Since the category V, is
abelian, so are the categories P, and P’. Let K (P,), K (P'2’) denote their respective
Grothendieck groups. We shall denote by [F] the class of F in K(P4).

K (P4) has plenty of structure. First of all, it is graded: indeed, it is clear from

Section 2 that

K(Pa) =P KPR
n=0

Next, it is a commutative ring, the ring structure being defined by the tensor product
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(6.6), namely
(F1-[Gl=[F® G]

and the ring structure respects the grading. Moreover, K(P,) is a A-ring, the
A-operations being defined by

A'TFI=[N ° F],

where A': Vi = V. is the ith exterior power functor.

K (P,) also carries a scalar product. If F, G are polynomial functors, it is clear that
the set Hom(F, G) of functorial morphisms from F to G has the structure of a
k-vector space. If F and G are homogeneous of degrees m and n respectively, and
¢ e Hom(F, G), then we have A" - ¢ =¢ - A" for all A €k, so that ¢ =0 unless
m=n; and if m =n, then Hom(F, G) is finite-dimensional over k, because it is
isomorphic to Hom 4 s, (M, N), where M and N are the A ~ §,-modules which
correspond to F and G respectively. So we may define a Z-valued scalar product in
K(P4) by

(F, G)=dim; Hom(F, G)= Y dim, Hom(F,, G,)

n=0

where F,, G, are the homogeneous parts (Section 2) of F, G respectively.

(8.1) Theorem. K (P,) is freely generated as a A-ring (over Z) by the classes [L, ],
a € A*, in the notation of Section 7.

Proof. For any k-algebra B, let R(B) denote the Grothendieck group of the
category of finite-dimensional right B-modules. It follows from the Jordan-Hélder
theorem that R(B) may be canonically identified with the free Z-module generated
by B*.

Now from (6.5) it follows that K(P%’)=R(A ~ S,), the irreducible functors
corresponding to the simple modules. Hence K (P'4)) is freely generated as Z-module
by the classes of the irreducible functors, and the same is therefore true of K (P4).

For each a € A%, let K|, be the Z-submodule of K(P,) generated by the classes

[L,>T™oL,], where m is any integer =0 and p € $*. From (7.2) it follows that
(8.2) K(P,)= @i)‘* K..
Moreover, each K, is a subring of K(P,), by virtue of the distributive law (6.8"),
which also shows that the linear mapping from K (P,) - K, defined by [F]1->[F > L,]
is a ring homomorphism; it is in fact an isomorphism, because K, (resp. K (Py)) is
freely generated as 2 Z-module by the classes [L, o T™ o L, ] (resp.[L, e T™]). Hence
we have

(8.3) K(P.)=K, foreachaecA*

From (8.2) and (8.3), it follows that the proof of (8.1) reduces to the special case
A =k: that is to say, we are reduced to showing that K(P,) is the free A-ring
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generated by the class [1y, ] of the identity functor. This is a known result ([1, 7]), but
for completeness we include the proof.
Lett,, 12, . .. be an infinite sequence of independent variables and for each r = 1 let

A=2h, ...t}
be the Z-algebra of symmetric polynomials in #,,. . ., t. This is a graded ring, say

A=@ AP
n=0
where A" consists of the homogeneous symmetric polynomials (including 0) of
degree n. The homomorphism Z[t4, . . ., 1] > Z[14, . . ., .} whichsends #,.., to 0 and
the other ¢; to themselves defines on restriction to A, a surjective homomorphism
q.: A1 A, of graded rings. We set

A=lim A,

the inverse limit being taken in the category of graded rings, so that A =P,»0 A",
where A" =lim A", Then by the fundamental theorem on symmetric functions we
have A =Z[ey, e, . ..}, where the e’s are the elementary symmetric functions in the
variables t; ({7, Chapter I]). We make A into a A -ring by defining A"(e;) = e, for all
n=1, and then A is the free A -ring over Z generated by e;.

Now let F: V-V, be a polynomial functor. Foreach A =(A1,...,A,)e k" let(A)
denote the diagonal endomorphism of k" with eigenvalues Ay, ..., A, Then trace
F((A)) will be a polynomial in A,,...,A, which is symmetric because trace
F(s(A)s™!) =trace F((A)) for all permutations s € S,. Since the trace is an additive
function, it determines a mapping

ch,: K(Py)» A,

namely ch,[F] (Ay,...,A,)=trace F((A)). Since the trace of a tensor product is the
product of the traces, ch, is a homomorphism of graded rings. Moreover, it is clear
from our definitions that ch,=gq,°ch,.,; hence, letting r—»>c, we obtain a
homomorphism of graded rings

ch: K(Py)=»A

called the characteristic homomorphism. In particular, ch[ly,]=e;, and more
generally ch[ \"] = e,. Likewise, the images under ch of the symmetric powers S” are
the complete symmetric functions h,.

To complete the proof of (8.1) it is enough to show that

(8.4) ch:K(P.)-> A is an isomorphism of A-rings
Proof. {1] We have already remarked that ch{A"]=e,, and that A =2Z[ey, e,...],

from which it follows that ch is surjective. Now the rank of A"’ as Z-module is equal
to the number of monomials in the ¢; of total degree n, hence is the number p(n) of
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partitions of n. On the other hand, the rank of K (P), the component of degree # in
K (P:), is by (6.5) equal to the rank of R(S.), i.e. to the number of irreducible
representations of S,, hence is also equal to p(n). Consequently ch: K (P”) > A" is
a surjective homomorphism between free Z-modules of the same rank, hence is an
isomorphism. Finally, the fact that[ A" ] corresponds to e, = A " (e;) shows thatchis an
isomorphism of A -rings. O

There is another description [1] of the characteristic homomorphism which we
shall now explain. Each element s of the symmetric group S, acts on T"(k") by
permuting the factors in this tensor product, hence s - T"((A)) is a linear trans-
formation of T"(k"), where as before (A) denotes the diagonal endomorphism of "
with eigenvalues Ay, .. ., A, Define 4, ,(s)e A" by

A, (s)A)=trace(sT"((A))).

Since s commutes with 77 ((A)) it follows that 4, , is a class function on S, with values
in A, Also it is easily seen that 4,.,(s) = g, © 4,.,+1(s), so that the 4,,,(s) for fixed n
and s and varying r define anelement 4, (s) € A" andthat A, is a class functionon S,
with values in A™.

Now let F:V,~>V, be a homogeneous polynomial functor of degree n, let
E= L(I?’(k) be the corresponding kS,-module, and let yg be the character of E. Then
we have

(8.5)  ch[F]={xg 4

where (, ) is the usual scalar product of class functions on S,,:

vy == T u(sels ™)== T u(s)e(s).

! seS, n! SES,

To prove (8.5), let M =E ®, T"(k"), so that M = F(k"), and let o, & be the
endomorphisms of the vector space M defined by

c=L ¥ s®s  6=1®THO)).

n!ses,

Then o is a projection of M onto M ~; also o commutes with ¢ because, as we have
already remarked, the action of s€ S, on T"(k") commutes with T"((A)). Hence

trace(o@) = trace(e | M*").
But trace(¢ | M) = trace F((A)) =ch,[F](Ay, ..., A,), and on the other hand

trace(od) = % Y trace(s ® sT"((A))

= (XE, An.r(/\l; ) /\r»'

Letting 7 » o0, we obtain (8.5). [
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Asin (7.4) let E, (s a partition of n) be the simple &S,-module indexed by =, and
let F,: V. - V, be the corresponding functor. Let x™ be the character of E,.. Since
the xy” form an orthonormal basis for the class functions on §,,, it follows from (8.5)
that

(8.6) 4, =Y ch[F,]- x".

Now ch[F,]is an isobaric polynomial in the elementary symmetric functions e, say

Ch[F-rr]zfﬂ'(els €2,.. )

As a symmetric function in the variables #, this is the S-function [ 7] corresponding to
the partition #. If now R is any A-ring and x is any element of R, we define the Schur
operation s, on R by

$2(X) = fulx, A2(x), A2(x), .. ).

It remains for us to compute the symmetric functions 4, (s) for each permutation
s € S,. For this purpose we shall use the following lemma, whose proof we leave to the
reader:

(8.7) Let f1, ..., fu: V> V be linear transformations of a finite-dimensional vector
space V, and let ¢: T" (V) T"(V) be the linear transformation defined by

P01 ®@ - Qua)=filL) ®fa(t) D+ @ frultn-1).
Then trace(¢) =trace(f,f,—y - - - f1). O
Suppose first that s is the n-cycle (12-- - n), and apply (8.7) with fy=---=f, =
(A) and V =k’. We obtain
trace(sT"((A)) = trace((A)") = }: Af
so that
(8.8) A.(5) =Yt =p. say,
when s is an n-cycle.

If now s is a product of disjoint cycles s; of orders ny, ns,..., where v=
(ny, na, . ..) is a partition of n, then sT"((A)) is the tensor product of the s;T™((A)),
and therefore its trace is the product of the traces of the factors: consequently
(8.9) If se S, has cycle-type v =(ny, na, .. .), then

A,(S)=PpaPny " =p,  say,

a product of power sums. [}

Now in the A-ring A, p,, is " (e,), where the ¢’s are the Adams operations. Hence
it follows from (8.6) and (8.8) that the &" are expressed in terms of the Schur
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operations s, by

(8.10) U" =L X(0)Sn

where the sum is over the partitions 7 of n, and x (», is the value of the character y ™ at
an n-cycle. More generally, if we define operations ” for each partition v =
(n1, na,...) by ¢"(x)=¢"(x)¢¥™*(x) ..., then from (8.6) and (8.9) we have

(8.11) =Y XIS

where yx. is the value of y™ at elements of cycle-type ». Of course (8.10) and (8.11)
are not new: they are originally due to Frobenius.

Remark. The graded ring K(P4) also carries the structure of an (associative,
commutative) graded Hopf algebra. The comultiplication may be defined as follows:
if F: V4>V, is a polynomial functor, define AF by AF(P;, P,) = F(P; @ P-); then
AF is a polynomial functor on the category Vaxa =V4 XV, hence [F]>[4AF]isa
mapping

K(Pa)»K(PaxPa)=K(Ps)®OK(Pa),

which is easily verified to have the required properties.

9. Characters of wreath products

In this final section we shall apply the results of Section 8 to the situation in which &
is the field of complex numbers and A is the group algebra kG of a finite group G. (In
fact, everything will work provided that k is a splitting field for G contained in C.)
The category V, is then the category of all finite-dimensional kG-modules. We
denote by G* the set of isomorphism classes of simple kG-modules, and for each
v € G* we choose a representative E,, of the class .

Let G, denote the wreath product G ~ S,. (In particular, G, is the group with one
element, and G, = G.) Let R(G,) denote the Grothendieck group of the category
Vg, ; we shall identify R(G,) with the free Z-module generated by G. The direct
sum

R(G)= @OR(GH)
is a commutative graded ring with respect to the induction product defined in Section
6:if a € G, B € G, then ap is the class of the kG, ..-module obtained by inducing
E, ® Eg from G,, X G, t0 G,,..n. The ring R(G) carries a Z-valued scalar product -
the intertwining number ~ relative to which the union of the G} forms an orthonor-
mal basis of R(G).
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As we have seen in Section 8, R(G) may also be regarded as the Grothendieck
group of the category of polynomial functors of bounded degree from Vg to V. As
such it has the structure of a A-ring and by (8.1) we may canonically identify R(G)
with the free A-ring generated by G*. In other words, R(G) is freely generated as
Z-algebra by the elements A"(y) (n =1, ye G*), and hence is freely generated
as Z-module by the products

(91) Sa = n sa(y)(?’)
vyeG*

where o runs through all partition-valued functions on G*, and the s,(,, are the
Schur operations described in Section 8. The generators (9.1) correspond to the
irreducible polynomial functors F,:V,s = V,, or equivalently to the simple kG,-
modules E,, where n =Y _ |a(y)|: namely s, =[E,].

Next we consider class-functions on the groups G,. Let C(G,) denote the k-vector
space of functions f: G, » k which are constant on each conjugacy class, and let

C(G)= @0 C(G,).

We define a product in C(G) as follows. If fe C(G,) and ge C(G,), then
F® g:(x, y)—f(x)g(y)isaclass function on G,, X G,, and we define fg to be the class
function on G... obtained by inducing f ® g from G., X G, t0 Gp.n In this way
C(G) acquires the structure of a commutative, associative, graded k-algebra, whose
identity element 1 is the characteristic function of G,. The algebra C(G) also carries
a hermitian scalar product (f, g): if f, g are homogeneous, (f, g) is defined to be zero
unless their degrees are equal, and if f, g € G, we define

(9 =lf o= T )T,
lGn|xEG.‘

We recall the classification ([6, 9]) of the conjugacy classes of the wreath product
G, =G ~ S.. Anelement of G, is of the form (x, s) where x =(x, ..., x,)e G" and
s € S,. Express s as a product of disjoint cycles: if z = (i, - - - i,) is one of these cycles,
the element x;, - - + x;,x; of G is determined up to conjugacy in G by x and z, and we
denote its conjugacy class in G by c(x, z). Now let G, denote the set of conjugacy
classes in G. The element (x, s) € G, determines a partition-valued function u on G,
by the following rule: for each ¢ € G, the parts of the partition u(c) are the lengths
of the cycles z in s such that ¢(x, z) = c. Clearly ||| = ¥ | (c)| = n. Call u the type of
(x, s) in G,. Itis well-known, and not hard to verify, that two elements of G, have the
same type if and only if they are conjugate in G,, and that all partition-valued
functions x4 on G such that jju || = n occur as types.

For each such u, let * € C(G,) be the unique function such that

(9.2) Foreach fe C(G,), (f, ¢*) is the value of f at elements of type u.

In other words, ¢*(x, s) is equal to the order of the centralizer of (x, s) in G,, if
(x, s) has type w; and is zero otherwise.
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If u,v are partition-valued functions on G, define uuv by (puv)(c)=
ul(c)uv{c), the union of the partitions w{c), v(c), for each ce G,. With this
definition we have

(9.3) oM =Yt

Proof. Let ||u[= m, ||v]|=n, so that |u U »| = m + n. By Frobenius reciprocity,

F Y )G en = (|G X Gy 0" ® Y") GG,

which by (9.2) is equal to the value of f at an element (x, s) X (y, t) of G, X G,, where
(x, 5) has type u and (y, ¢) type v. The embedding of G,, X G, in G,.. replaces
(x, s)x(y,t) by {(x Xy, sx¢) (up to conjugacy in Gn.n.), and it is clear from the
description of conjugacy types that the type of this element is u w ». Hence {f, ¥*¢")
is the value of f at elements of type i U v in G+, and so (9.3) follows from (9.2) O

We shall now define a A-ring structure on the k-algebra C(G). For this purpose it is
enough to define the Adams operations ¢". For each class ¢ € G, and each integer
n=1, let ¢, be the class of elements (x,s)€ G, such that s is an n-cycle and
c¢{x, 5) = c; this class is described by the partition-valued function » = », . on G, such
that v(c)=n and v(c’) =0 for ¢’ # ¢. Define

Yr(c) =y
so that by (9.2) we have

(9.4) {f, & (c)) is the value of f C(G,) at the class ¢,

Nox_v let  be any partition-valued function on G,. By expressing each partition
wulc)=(ui(c), u2(c), .. .) as the union of the one-part partitions (u;(c)), it follows
from (9.3) that
9.5) ¢ =TT (c)=TT¢"“(c)

in the notation of (8.11), the product being over all ¢ € G,,. Since the ¢* form a
k-basis of C(G), it is clear that

(9.6) C(G) is the free A-ring over k generated by G..
(Of course we define ¢"(x)=x forallxek andalln=1.)

(9.7) Let fe C(G.,), ge C(G,), where m >0 and n >0. Then

(fe, ¢"" "(c)H=0 forallceG,.
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Proof. By Frobenius reciprocity this scalar product is equal to

(f®g (»/IMM(C){Gm X Gn) G,.xG.

which is zero because the class Cw+n in G+ does not meet G,, xG,.

Now let
x:R(G)->C(G)

be the Z-linear mapping which assigns to each representation its character. From the
definitions it is clear that y is an isometry and an injective homomorphism of graded
rings, and that it induces an isometric isomorphism of graded k-algebras:
k ® R(G)> C(G). The basic fact, which will allow us to compute the irreducible
characters of the wreath products G,, is that y also respects the A-structures:

(9.8) Theorem. y is a homomorphism of A-rings.

Proof. Since the functions x(v) for y € G* form an orthonormal basis of C(G), we
have

vlc)= ZG‘<'J/1(C),X(Y)>X(Y)

and therefore, since the ¢" are additive,
() =T W' (), x (Y (x (7).

To prove the theorem it is enough to show that ¢" (y(y)) = x(¢"(y)) for all ye G*
and n =1, or equivalently that

9.9) ¢ E©)=TW'© x(MXW" )

Now the functions y(s,) such that |af|=n (9.1) form an orthonormal basis of
C(G,), and therefore

L/f"(c)=“% " (c), x(5a))x (Sa)-
But x(s.) =11, (52 (7)), and by (9.7) the scalar product (¢"(c), x(sa)) therefore
vanishes unless s, is of the form s,.(y) for some y € G* and some partition = of n.
Hence

(1 ¥ ()= L W), x(sx(¥)x (s2(¥)).

Now (x(s-(¥)), ¥"(c)) is by our definitions the value of the character of the
G,.-module E, ®, T"(E,) at an element (x, s)€ G,, where s=(12---n) and x =
(x1,...,x,)€ G" is such that x,x,_; - + - x, € ¢. The action of (x, s) on this module is
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given by
(6, 5) (@U@ @ up)=50 @ x1Uy Dx2u1 ® - ® Xplhn—1
and therefore by (8.7) we have
(U(s(v)), ¥"(c)) = trace((x, 5), E» ®i T"(E,))
= trace(s, E,) - trace(Xp,Xn-1 ** * x1, E,)
=X X (), ¢ (D).
Hence from (1) we have

ey =W ), x(9) T xiox (s (7))

in which the second sum is

X(Z xf'n)sﬂ(v)) =x(" ()
by (8.10). Hence finally we obtain

) =X W), x(¥)Ix " (¥))

which proves (9.9) and hence also (9.8).

The computation of the irreducible characters of G, is an immediate consequence
of (9.8), or rather of the equivalent statement (9.9). Let (x)) be the character table of
G, so that

x2=(y), ¢ e = (), x(v)

is the value of the character y(y) at elements of the class ¢ € G,. Foreach c € G, and
n =1, define

¢"(c)= ZG‘ x¢"(v)ek ® R(G,)
so that xy(¢"(c)) = ¢"(c). Then define, for each partition v = (ny, ns,...)

@"(c)=¢"(c)p™(c) -

and for each partition-valued function u on G, define

¢*= 11 6*c)
ceG,
so that we have y(¢*) = ¢*e C(G,) (where n =||u|).
As before, for each partition-valued function @ on G* such that ||la|=#, let
s« € G be the irreducible representation (9.1) parametrized by a, and let (X %) be
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the character-table of G,, so that
Xa = (sa), ¥*)

is the value of y(s,) at elements of type u.

(9.10) Theorem. The irreducible characters of the wreath product G, =G ~ S, are
determined by the set of equations

" =3 Xosa:

in other words, the character table (X ) of Gn is the transition matrix between the two
k-bases {(¢*) and (s.) of k ® R(G,).

Proof. We have

(6%, 50) = (Sar 3™ = (x(5a)> X (™)
=(x(sa) ¥*)= X0

since the s, form an orthonormal basis of R(G,), (9.10) follows directly. O

Remarks. (1) The characters of wreath products G ~ S, were first worked out by
Specht (9]. Curiously, (9.10), which is a direct generalization of Frobenius’s formula
(8.11) for the characters of S,,, does not occur in Specht’s paper, although the reverse
set of equations does, namely (in our notation)

Sa=Y 2. X"
m

where z,, is the order of the centralizer of an element of type u in G,. In the particular
case where G has order 2 (so that G, is the hyperoctahedral group), (9.10) occurs in
A. Young [10].
{(2) The degree of the representation s, of G, is equal to
nt T d5" hae
yeG*

where d, is the degree of v, and A, is the product of the hook-lengths of the
partition a (y) [7].

Appendix: Twisted group rings

(1) Let R be a ring and let G be a finite group which acts on R as a group of
automorphisms. Consider the free left R-module R on G as basis, the elements of
which are formal sums ¥ . s @, + g With coefficients a, € R. Define a multiplication in
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R° by the rule
(S 8)(Ton )= 5 a;- gl6n) - gh.
g h &h

In this way R © becomes an associative ring with identity element 1 - ¢, where 1 and e
are the identity elements of R and G respectively. We denote this ring by R X G and
call it the twisted group ring of G over R. The mapping a »a - ¢ embeds R as a
subring of R X G.

Examples. (1) LetV be a group on which G acts as a group of automorphisms, and
let N X G denote the semidirect product of N with G. If k is any commutative ring,
the group algebra of N X G over k is (kN) % G.

(2) Let A be a k-algebra, R =T"(A) the nth tensor power of A over k. The
symmetric group S, acts on R by permuting the factors, and T"(A) X §,, is what we
have called the wreath product A ~ S, (Section 6).

Let M be aleft R-module in which G actsinsuchaway that g(x +y) =g(x)+g(y),
glax)=gla)g(x) for ae R, ge G and x, y e M. Then M becomes a left R x G-
module if we define (a - g)x = a - g(x). Conversely, any left R X G-module may be
regarded as a left R-module (by restriction of scalars) on which G acts as above, by
defining g(x) to be (1 - g)x. Likewise for right modules. In particular, R itself is a left
and right R X G-module.

Let M, N be left R X G-modules. Then G acts on Homg (M, N) in the usual way:
(g d)x)=glep(g™'(x) for g€ G, d:M->N and xeM, and it is immediately
verified that

(A.1)  (Homg(M, N))® = Homgxc(M, N).

(2) Suppose in this section that the order |G| of G is a unit in R. Let B be a
pseudo-abelian category, let M be a right R X G-module objectin B, and let N be a
left R X G-module. Then, with tensor products defined as in Section 5, we have

(A2) (M®rN)°=M QN
in the sense that if one side exists, so does the other and they are canonically

isomorphic.

Proof. Let Y be an object of B on which G acts, and suppose that scalar multi-
plication by |G| is an automorphism of Y. Then (Section 4) Y € is defined to be the
image of the idempotent morphism

o=|G|™! geZG g

Now let X be any object of B. Then (since Hom is additive) Homg(Y ©, X) is the
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image of o acting on Homg(Y, X), and therefore
Homg(Y S, X) = (Homa(Y, X))°.
Taking Y =M ®zx N, we have
Homa((M ®& N)%, X) = (Homs(M ®z N), X))°
= Homg (N, Homg(M, X)))°
=Hompg.g(N, Homg(M, X)
=Homg(M ®gxg N, X)
which proves (A.2). O3

(A.3) Let P be a left R X G-module which is projective as a left R-module. Then P is
projective as a left R X G-module.

Proof. By choosing a set of generators of P we obtain an exact sequence

(%) oaoiFiP—)O

of R X G-modules and homomorphisms, where F is free. Since P is R-projective,
there exists an R-homomorphism y: P - F such that 8y = 1p. Let

v*=|G|™" ¥ gyg”’,
geG

then y* is an R X G-homomorphism and By* = 1,. Hence the exact sequence ()
splits over R X G, and therefore P is R X G-projective. O

(3) Let E be an R-module. Since G acts on R, we can twist the action of R on E by
an element g€ G. To be precise, let *E denote the R-module whose underlying
additive group is E, but with scalar multiplication defined by (a, t)—g~'(a)v for
a € R and v € E. The submodules of *E are the same as the submodules of E, so that
¢E is simple if E is simple. In this way G acts on the set R* of isomorphism classes of
simple R-modules. The set of g € G such that #E is R-isomorphic to E is a subgroup
H of G, called the inertia group of E.

Suppose now that the ring R is an algebra over an algebraically closed field &, and
that G fixes each element of k. All modules will be assumed to be left modules,
finite-dimensional over k. Qur aim here is to describe (up to isomorphism) all simple
R % G-modules.

Let M be a simple R X G-module. Consider M as an R-module by restriction of
scalars, and let E be asimple R-submodule of M. Foreach g € G, the subspace gE isa
simple R-module of M, isomorphic to °E, and Y ..cgFE is a nonzero R X G-
submodule of M, hence is the whole of M. It follows that M is R-semisimple and that
every simple R-submodule of M is isomorphic to *E for some ge G.
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Let H be as above the inertia group of E, and put N =Y . hE, which is an
R x H-module. If gy, . .., g are left coset representatives of H in G, then the gN
are the isotypic components of M as an R-module, and we have

M= G_Bl &N =(R X G)QrxaaN

which we write as
(1 M =ind(N).

The R % H-module N is a sum of R-submodules isomorphic to E, hence from {2, p.
15, Théoréme 1] and the fact that Endg(E)=k by Schur's lemma (since k is
algebraically closed) we have

2) N=VRE
where
V =Homg(E, N)=Homg(E, M)

is a kH-module, with H acting via its action on N. From (1) and (2), it follows that
M =ind{V ®; E).

Moreover, the kH-module V must be simple, for if V' is a kH-submodule of V then
M’ =ind V' ®, E) will be an R X G-submodule of M. Hence

(A.4) Every simple R % G-submodule M is (up to isomorphism) of the form
indf( V ®x E), where E is a simple R-module, H is the inertia group of E, and V'is a
simple kH-module.

We remarked above that every simple R -submodule of M is isomorphic to °E for
some g € G. Had we started off with E' = ®E in place of E, we should have obtained
an isomorphism

M=ind5(V' @ E")

where H' = gHg ' and V' = Homg(E’, gN) is the simple kH'-module obtained from
V by twisting the action of H by g.

Conversely, every R X G-module M as described in (A.4) is simple. For if M'isan
R x G-submodule of M, then M’ is R-semisimple, hence is the direct sum of its
isotypic components M’ n g.N = g;N', where N'=M'nN,and M' = V' &, E where
V'=Homg(E, N’') is a kH-submodule of V. Since V is simple, we have V'=0or V
and correspondingly M’ =0 or M.

Finally, suppose that M, = indf,‘.(V,- & E;) (i =1, 2) are isomorphic simpie R X G-
modules. Then E, being a simple R-submodule of M, must be isomorphic to °E’; for
some g€ G. Replacing E, by ®E,, we may assume that E,=E,=F say, and
therefore H, = H, = H say. Since V; = Homg(E, M;), it follows that V| and V> are
isomorphic kH-modules.
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To summarize:

(A.5) Theorem. Choose respresentatives E, of the orbits of G in R*, and let H, be the
inertia group of E,. Let V, , run through a complete set of simple kH-modules. Then
the R X G-modules

ind§.(Via ®E,) (aeR*/G,AcH¥)

form a complete set of nonisomorphic simple R X G-modules.

The particular case of this result which is used in Section 7 is that in which
R=T"(A) and G =S, (Example 2). Since k is algebraically closed, we have
R*=(A*)" ([2, p. 94]), the Cartesian product of n copies of A*, on which S, acts by
permuting the factors. For each a € (A*)" the inertia group H, is (up to conjugacy in
S.) of the form S, =S, x---X8§,, where n;+- - -+n,=n, and hence by (A.5) the
simple A ~ S,-modules are of the form

(3) ind$:(V ® T™(E,) ®- - - ® R™(E,,))

for all choices of distinct ey, ..., a,€ A*, integers ny, ..., n, such that} n; =n, and
simple kS,-modules V. Each such Visatensor product V; &; - - - @« V,, where each
V. is a simple kS,,-module, and therefore the module (3) can be written as

(4~ 5)®as. (R (Vi@ T™(E.))

which, in the terminology introduced in Section 6, is an induction product of wreath
products

(an -~ Vl) feret (Ea, -~ Vr)-
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