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Introduction

The theory of “‘invariant matrices’” was the subject of Schur’s dissertation in 1901
[8a] and his first major mathematical achievement. The problem which Schur posed
and solved completely was to find all functions F from m X m matrices to rXxr
matrices such that

(i) the r’ entries of F(A) are polynomial functions of the m?entriesof A -i.e., Fis
a polynomial mapping from the space of m Xm matrices to the space of rxr
matrices;

(ii) F(AB)=F(A)F(B) for all m xm matrices A, B. Schur called F(A) an
“invariant form” or “‘invariant matrix” of A; he showed that each such F could be
split up into homogeneous components, and that the homogeneous F of degree n are
in a natural one-one correspondence with the representations of the symmetric
group 8, provided that n <m.

In 1927 [8b] Schur returned to this question, and showed that all the irreducible
invariant matrices of degree n could be obtained by decomposing the nth tensor (or
Kronecker) power T"(A)=A ® -+ - ® A. To state this result in modern language,
let V be a finite-dimensional vector space over a field k of characteristic 0, and let
T V)=V ®:-:-® V be its nth tensor power over k. The symmetric group S, acts
on T"(V) by permuting the factors, so that we have a finite-dimensional represen-
tation of §,, which we decompose into its isotypic components:

T"(V)=@ Homys, (Ex, T (V) @x E- =D Fr(V) Ok Erry

say, functorially in V': here the E,, are the distinct irreducible £S,-modules. If now
A: V-V is a linear transformation, then F,(A): F.(V)~> F,(V) is an irreducible
invariant matrix of A, homogeneous of degree », and all the irreducible invariant
matrices of degree n, up to equivalence, arise in this way. Thus an invariant matrix in
Schur’s sense defines a functor F on the category V, of finite-dimensional k-vector
spaces, which is polynomial in the sense that for each pair of vector spaces U, V, the
mapping F:Hom(U, V)->Hom(F(U), F(V)) is a polynomial mapping between
these vector spaces.
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We shall take this observation as our starting point. The purpose of this paper is to
investigate polynomial functors between more general categories than the category
Vi :
For the adjective “‘polynomial” to make sense, we need from the beginning an
underlying field of scalars. If £ is any field, an additive category A in Grothendieck’s
sense {5] (i.e., admitting finite direct sums) will be called k-linear if each object of A
admits scalar multiplication by the elements of k, satisfying the obvious conditions
(see §1 for the precise definition), which imply that Hom (X, Y) is a k-vector space
for any two objects X, Y in A.

Now let A, B be k-linear categories, where k is an infinite field. A (covariant)
functor F: A~ B will be said to be polynomial if for all X, Y in A the mapping
F:Homa(X, Y)-Homa(F({X), F(Y)) is a polynomial mapping. We shall also need
to assume that the category B is pseudo-abelian (or Karoubian) [3]: this means that
idempotent morphisms have images and hence determine direct sum decompositions
— briefly, “idempotents split™.

The basic idea (following Schur) is that polynomial functors F:A- B can be
treated in the same way as polynomials. First we show that F is the direct sum of its
homogeneous parts (Section 2}, and hence we may assume from now on that F is
homogeneous of degree n >0 (the case n =0 being trivial). Next, just as a homo-
geneous polynomial can be linearized, so can our functor F': the linearization Lg of F
(see Section 3 for definition) is a multilinear functor of # variables, i.e. a functor from
A" =AX-:-XA to B which is k-linear in each variable.

In Section 4 we define an action of the symmetric group S, on LX) =
Le(X, ..., X),where X is any object of A, and (because we shall want to divide by
n!) we assume from now on that the field k has characteristic 0. Then the subobject
(LX) of S,-invariants is defined, and our first main result (4.10) is that the
functor F can be reconstructed from its linearization Lg:

Theorem 1. F is isomorphic to the functor X — (LE(XO)

This result reduces the study of homogeneous polynomial functors to that of
multilinear functors, and the next step would therefore be to classify the latter. We do
not attempt this task in any great generality; from now on we take A to be the
category V 4 of finitely-generated projective left A-modules, where A is a k-algebra.

At this stage tensor products enter naturally. Suppose L: V4 - Bis k-linear in each
variable, and let T"(A)=A ® - - - ® A be the nth tensor power of A over k. Then
T"(A) acts on L'*”(A)=L(A,...,A) on the right, and thus L'"'(A) is a right
T"(A)-module object in the category B. With an appropriate definition of tensor
product in this context, we show (5.6) that

Theorem 2. L is isomorphic to the functor

(Py, ... ,Pn)'—*Lw(A) 1A (P& - B Po).
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From Theorems 1 and 2 we have immediately

Theorem 3. Let F: V5> B be a homogeneous polynomial functor of degree n> 0.
Then F is isomorphic to the functor

P (LE(A) ®rnia) T"(P))*

In this situation the symmetric group S, acts on all three ingredients: the k-algebra
T"(A), the right T"(A)-module L¥'(A), and the left T"(A)-module T"(P), and in
the two last cases the action of S, is compatible with the module structure. This leads
us in Section 6 to the second main theme of this paper, namely wreath products. The
vector space T"(A)®« kS, is a k-algebra for the multiplication (@ ® s)(6 ® )=
a - s(b)® st, where a,bc T"(A) and s, € S,; this k-algebra we call the wreath
product of A with S,, and denote itby A ~ S,.. (If A = kI is the algebra of a group [,
then A ~ §, is the group algebra of the wreath product I" ~ S,..) In this way we may
regard the nth tensor power (over k) as a functor from V4 to V4., and Theorem 3
then takes the form ((6.4), (6.5)):

Theoremd. Let F:V 5> B bea homogeneous polynomial functor of degree n >0, and
let M =L (A). Then F=Up o T", where T": V4~V a_s, is the nth tensor power,
and Ung:Va~s, > B is the k-linear functior Q > M ® a~s, Q.

Moreover the functors a: Fr>LE(A), B: M ~> Uny © T" constitute an equivalence of
the category of homogeneous polynomial functors F:V o~ B of degree n with the
category of right A~S,-module objects in B. ’

Suppose now that B is the category V, of finite-dimensional k-vector spaces. Then
it follows from Theorem 4 that the classification of irreducible polynomial functors
F:V4->V, of degree n is tantamount to the classification of simple A ~ §,-
modules, finite-dimensional over k ; and this is a particular case of the classification of
simple modules over twisted group rings, which we discuss in the Appendix. In this
way we obtain (7.2), on the assumption that k is algebraically closed (and of
characteristic 0):

Theorem 5. Every irreducible polynomial functor F:V 4 = V. is isomorphic to a tensor
product of functors of the form

P—V @us,, T"(E ®4 P)

where E (resp. V) is a finite-dimensional simple right A-module (resp. kS,.-module),
and no two of the E’s are isomorphic. Moreover, this factorization of F as a tensor
product is unique (up to the order of the factors).

Next, in Section 8, we turn our attention to the Grothendieck group K (P.,) of the
category P, of polynomial functors F:V 4, -V, of bounded degree. K(P,) is a
commutative graded ring, the multiplication being tensor product of functors;
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moreover, itis a A-ring, A ‘(F) being the composition of F with the ith exterior power
A': Vi > V.. The structure of K(P,) is given (8.1) by

Theorem 6. K(P,) is the free A-ring generated by the classes of the functors P—
E ®a P, where E runs through a complete set of non-isomorphic finite-dimensional
simple right A-modules.

Finally, in Section 9 we specialize to the case where A = kG is the group algebra of
a finite group G, and k is the field of complex numbers. Then the ring K (P 4) may be
canonically identified with the direct sum R(G) = @,.;0 R(G,),where G,=G ~ §,,
is the wreath product of G with S,, and R(G,) is the Grothendieck group of
kG,-modules. By Theorem 6, R(G) is the free A-ring generated by G*, the set of
isomorphism classes of simple kG-modules.

We next introduce C(G) =@ ,=0 C(G.), where C(G,) is the space of k-valued
class functions on G,, and we proceed to make C(G) into a A-ring. The multiplication
is defined by means of induction of class functions, and the A-structure by means of
the Adams operations ¢": the details are in Section 9. It then appears that C(G) is
the free k-A-algebra generated by Gy, the set of conjugacy classes of G.

Now let x : R(G) -» C(G) be the linear mapping which takes each representation to
its character. The basic fact (9.8) is

Theorem 7. x: R(G)- C(G) is a homomorphism of A-rings.

It is this fact which underlies the computation of the character tables of the wreath
products G, = G ~ S, (Specht [9]). We shall not attempt to reproduce the details in
this introduction; the reader will find them at the end of Section 9.

The paper ends with an appendix on twisted group rings, which include the wreath
products A ~ S, as particular cases. Here we have restricted ourselves to the results
we need in the body of the paper, and have not attempted a complete account.

Finally, it should perhaps be said that the methods of this paper are elementary
throughout, and demand from the reader no more than a general familiarity with
functorial linear algebra, as expounded (for example) in Bourbaki’'s Algébre.

1. Polynomial functors

Let A be an additive category in the sense of Grothendieck [3). A field of scalars
for A is any subfield of the ring of endomorphisms of the identity functor 1, of A, or
more precisely is an embedding of a field k in this ring. Thus each element A €k
determines a morphism 1, - 14; that is to say, for each object X in A we have a
morphism Ax: X - X such that 1 x is the identity morphism, Ax + ux = (A + u)x and
Axux =(Ap)x for all A, w €k, and fAx = Ayf for all morphisms f: X > Y in A. We
shall often write A in place of Ax, whenever the context permits.
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Since composition of morphisms in an additive category is bilinear, we have
A+w)f=Af+ufandA(f+g)=Af+ArgforallA,uckandf, g: X » Y in A. Hence
Homa (X, Y)is a k-vector space.

A category A as above will be called a k-linear category.

Let A, B be k-linear categories. A (covariant) functor F: A - B is said to be
polynomial if, for each pair of objects X, Y in A, the mapping F:Hom.(X, Y) -
Homg(FX, FY) is a polynomial mapping between these k-vector spaces. We may
express this condition as follows:

(1.1) Given any finite sequence of morphisms f;: X > Y in A and elements \;ek
(1ssi=<vr), the morphism F(Afi+- - -+Af,) is a polynomial in Ay, ..., A, with
coefficients in Homg(FX, FY') (dependingon f, ..., f, and F).

We shall assume throughout that the field & is infinite (and from Section 4 onwards
that it has characteristic 0). The coefficient morphisms in (1.1) are then uniquely
determined. We shall also assume that the category B is pseudo-abelian (see the
introduction).

2. Homogeneity

Let F: A-> B be a polynomial functor. For each object X in A, the morphism
F(Ax) will be a polynomial in A with coefficients in Endg(FX) independent of A, say

2.1 Flx)= X u.(X0OA"

n=0

where u,(X) e Endg(FX). Since F((Au)x)=F(Axux)=F(Ax)F(ux), we have

L w00 =( 5 unOV)( E unl0n”)
n=0 n= n=
for all A, u € k. Because k is infinite, it follows that u, (X)* = u,(X) for all n =0, and
that u, (X)u,(X) =0 for m # n. Also, by taking A =1 in (2.1), we have ¥ u,(X) =
F(1x)=1gx Since the category B is pseudo-abelian, it follows that the morphisms
u,(X) determine a finite direct sum decomposition of F(X), say

F(X)= ®0Fn(X)
where F,(X) is the image of u,(X).

Moreover, if f: X - Y is any morphism in A, we have F(f)F(Ax) =F(Ay)F(f) for
all A € k, from which and (2.1) it follows (again because k is infinite) that F(f)u,(X) =
u,(Y)F(f) for each n =0, in other words that each u, is an endomorphism of the
functor F. Hence F(f) induces by restriction morphisms Fr(f): F,(X)-> F,(Y), and
each F, is a funcror, which is clearly polynomial. Consequently we have a direct
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decomposition of the functor F:

(2.2) F=@ F,

n=0

n

in which each F, is a homogeneous polynomial functor of degree n. For F,,(A)=A
and hence, in the situation of (1.1),

Fn(A/\lf1+' * '+A/\rfr)=Fn(/\)Fn(/\1fl+' " '+Arfr)
=A"Fn(A1fl+' * '+/\rfr)

which shows that F,(A,f;++ - - +A,f,) is a homogeneous polynomial of degree n in
Ay ooy An
The F, are called the homogeneous parts of F.

(2.3) Remarks. (1) When n =0, we have Fy(A) =1 for all A € k, so that in particular
Fo(0) = Fo(1). It follows that, for all morphisms f: X - Y, Fo(f) = Fo(Oxv) and hence
is independent of £, and is an isomorphism of Fo(X) onto Fo( Y'). Hence all the objects
Fy(X) are canonically isomorphic.

(2) Next,when n =1, we have Fi(Af1 +Asf5) = A1g1+ Az, say; taking (A, A2) to
be (1, 0), (0, 1) successively, we see that g; = F1(f;) and hence that Fy(Afi +Azfy) =
ALFi(f1) + A2F5(f5): in other words, F, is k-linear and in particular additive.

(3) The direct sum (2.2) may well have infinitely many non-zero components,
although for any given object X we shall have F,(X) = 0 for all sufficiently large n,
because the sum (2.1) is finite. An example is the exterior algebra functor on the
category of finite-dimensional vector spaces over k.

If F, =0 for all sufficiently large n, we shall say that F has bounded degree.

More generally, let Ay, ..., A, be k-linear categories, andlet P=A; X - - X A, be
the product category, whose objects are all sequences X = (X, ..., X}), where X; is
anobjectof A; for 1 <i=<r,and Homp(X, Y) = @,’-=1 Hom, (X, Y:). The category P
is k-linear. Now let F be a polynomial functor from P to a pseudo-abelian category B.
If Ai,...,A €k, then F((Ay)x,,...,(A,)x,) will be a polynomial in Ay, ..., A, with
coefficients in Endg(FX), say

(2.4) FAr, oo s A)= Y tmpom (X1 XA -2 AT

.....

‘‘‘‘‘ =, are endomorphisms of the functor F, and
..... m (X1, s X)) DY Frnyom, (X, ..., X7, then
m, are subfunctors of F giving a direct decomposition

Exactly as before, we see that the u,,,
that if we denote the image of u,,,
the F,.,,...,

(2.5) F= @ Fn,

summed over all (my,...,m,)eN". Each F,, . is homogeneous of multidegree
(my, ..., m),ie.

m,(/\l,-..,,\,):A'l”l .. /\:"r

.....
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3. Linearization

Again let F: A - B be a polynomial functor. In view of the decomposition (2.2), we
shall assume from now on that F is homogeneous of degree n > 0. The considerations
at the end of Section 2 apply to the functor F': A" > B defined by F'(X1, ..., X,) =
F(X,@---@X,), and show that there exists a direct decomposition, functorial in
each variable,

F(XIG')"'@XH):@F:nl m,.(Xl’-'-’Xn)

summed over all (m,, ..., m,)e N" suchthat m,+---+m, =n.

Our main interest will be in the functor F)
morphism u,
place of u,,_,
deviation of F,see (3.2) below.) The functor Lr: A" - B is homogeneous and k-linear
in each variable (and therefore additive in each variable (2.3)).

To recapitulate the definitionsof Lr and v,let Y = X, @ - - @ X,,. Then there exist
monomorphisms i,: X, - Y and epimorphisms p,: Y - X, for 1 <a < n, such that

(3.1)  pain=1lx, paig=0 ifa =g,

I 1=

iapa = ly.
1

<3

ForeachA =(Ay,...,A,)€k", let (A) denote the morphism ¥, Aalape: Y = Y, s0 that
(A) acts as scalar multiplication by A, on the component X,. Then ¢ (X}, ..., X,) is
the coefficient of A;...A, in F((A)), and Lg(Xy,...,X,) is the image of
v(X1, ..., X,), and is a direct summand of F(X,®- - ®X,,).

(3.2) Remark. For each subset E of {1, 2, ..., n}, let
wE = Z iapa

acE

so that, in the notation introduced above, ¥ = (1) where u, =1 or 0 according as «
doesordoes not belongto E. Asin (2.4),let t, .. be the coefficientof AT - - - AT
in F((A)), and let ¢ =Y um,,  m, summed over those (my,...,m,)eN" with
support equal to E (i.e. such that m, >0 if and only if a € E). Then it is clear that

Fyg)= ¥ ¢p

DcE
for each subset E of {1, 2,. .., n}. Solving these equations for the ¢'s, we obtain

dp= Y (=1)PEF(yg).
E<D

In particular, when D ={1, 2, ..., n}, we have ép =u,__, = v, and therefore

=Y (~1)""FF(yg),
E
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summed over all subsets E of {1, 2, ..., n}. This formula shows that Lg is the ‘nth
deviation’ of F (see Epstein [4]).

(3.3) Example. Suppose that A = B = V,, the category of finite-dimensional vector
spaces over k, and that F is the nth exterior power A", which is a homogeneous
polynomial functor of degree n. In this case we have

FX,@ - -@X,)= @ A"X)® - @A™(X.)

my,...,
summed over all (m,, ..., m,)e N” such that m,++ -+ -+ m, =n, and hence

Le(X1,. ., X)=A(X)® - OA(X)=X1®" - ® X,

4. The action of the symmetric group

Assume from now on that k has characteristic 0.
With F: A - B as before, consider in particular

LY (X)=Lp(X, ..., X)

for any object X in A. For each permutation s in the symmetric group S, there exists
a morphism s=sx:X">X" (where X"=X @ -+ @ X) which permutes the
summands according to s, namely

4D 5= L ek

in the notation of (3.1). If as before we write A =(A1,...,A.)€ k" and (A) =¥ AaiaPas
then a simple calculation shows that s(A) = (sA) - 5, where sA ={A ;-1 1), , A=)y
and hence that F(s)F((A)) = F((sA))F(s). By picking out the coefficient of A+ - A,
on either side, we see that

4.2) F(s)v=vF(s)

from which it follows that F(s) induces by restriction an endomorphism F(s)of L'?.

Explicitly, if

@.3)  j=jx:LEX)>F(X"),  q=qx:F(X")>LF'(X)

are the injection and projection associated with the direct summand L¥'(X) of
F(X"),sothat gj =1 and jq = v, then

(4.4)  F(s)=qF(s)j.

It follows that F(st) = F(s)E(¢t) for s, t € S,,, so that we have a representation of S, on
LX), functorial in X.
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Our aim now will be to show that this representation of S, determines the functor F
up to isomorphism; more precisely, that there exists a functorial isomorphism of
F(X) onto the subobject of S,-invariants of L’ (X).

(4.5) Example. In the Example (3.3) we have L& (X)=T"(X), the nth tensor

power of X over k, and the action of S, on L¥(X) in this case is given by

F)x,®  ®x)=£()xs-10) ® +* ® X1,

where £(s) is the sign (1) of the permutation s, and xi, .. ., x, are elements of X.
Hence L&' (X)% is the space of skew-symmetric tensors in T"(X), which is iso-
morphic to A"(X) since k has characteristic .

We consider morphisms f: X" - X" of the form f = Y, g &,piaDs, Where the £, are
elements of k. Since F is homogeneous of degree n, F(f) will be a homogeneous
polynomial of degree # in the n’ variables &5, with coefficients in End F(X™"). For
each s € S, let w, denote the coefficient of £,1)1 - * €s(ain In F(f), and let

(4.6) i=Y i X->X", p=Ypa:X">X.

Then we have
4.7 vF(ipyv= Y F(s)v.

seS,

Proof. By (4.2), v commutes with F(s); also v2 = v, so that F(s)v = vF(s)v, which by
definition is the coefficient of Ay -+ * Aty * * * up In

FOFEF ()= F(W)s @) = F(Z Ao it

This coefficient is clearly w,, so that we have w,; = F(s)v.
Again, vF(ip)v is the coefficientof Ay« A ;- -+, in

F((A)F(ip)F((u)) = F((A)ip(u)) = F( ZB /\a#zzfapa)
and this coefficient is clearly . ¢ w, =Y F(s)v. [

We now define two morphisms of functors:
E=qF(i):F~L%, n=F(p)j:L¥>F
(7 and g were defined in (4.3)). Then
(4.8) né=n! (i.e., scalar multiplication by n!)

én= ¥ F(s).

ses,
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Proof. We have n¢ = F(p)jqF{i) = F(p)vF (i), which is the coefficientof A; - - - A, in
F(p)F((A)F(iy= F(p{A)i). Now p(A)i: X - X is scalar multiplicationby A, +- - -+
An, 50 that F(p(A)i) is scalar multiplication by (A, + -+ - +A,)", and the coefficient of
Ay - A, is therefore n!, as asserted.

Next, én = qF (i)F(p)j, so that by (4.3) and (4.7)

jénq = vF(ip)v =Y F(s)v
and hence by (4.4)
=T qF(s)i=L F(s). O

If a finite group G acts on an object Y in an abelian category, and if scalar
multiplication by the order |G| of G is an automorphism of Y, then the subobject
YS = Ker(1—g)

geG
is a direct summand of Y and is equal to the image of the projection

1
0=ré—lg§6g‘

Forsince (1 — g)o = 0 for each g € G, we have Im(o) = Ker(1 — g) and hence Im(o) <
Y°, and on the other hand
Y= Ker(1-g)=Ker¥ (1-g)
geG g
which is equal to Ker(1 - o) because |G| is invertible in Y, and hence is equal to Im(o)
because o> = consequently Y% clIm(o).

If the category is only pseudo-abelian, we define Y° to be the image of the
projection ¢. In our situation, G is the symmetric group, acting on L¥'(X) via F;
since the characteristic of k is zero (this is the first point at which we have made use of
this assumption) scalar multiplication by n! is an automorphism, and therefore
L¥(X)% is defined and is a direct summand of L{(X). Let

e LP(X)*>LP(X);  mLE(X)>LE (X)™

be the associated injection and projection, so that 7e =1 and

(4.9) m=a=i' ¥ I:"(s)=-1—'§n
n nt

+ €S,

by (4.8).

(4.10) Theorem. F(X) is funciorially isomorphic to L (X)*. More precisely, the
morphisms

g=n&: F(X)» LX)  n'=ne:LP(X)* >F(X)

are functorial isomorphisms such that £ n'=n! and n'¢' = n'.
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Proof. This is a direct consequence of (4.8) and (4.9), since we have
&n'=méne =n!lmeme = n!
and

1 14 1
uX3 =17£7r§=;;n§n§=n!. O

It follows from (4.10) that every homogeneous polynomial functor of degree n >0
from A to B is of the form

X->L(X,...,X)%,

where L: A" > B is k-linear in each variable, and is acted on by S,. The next step,
therefore, would be to classify such functors. We shall not attempt to do this in any
great generality; from now onwards we shall take A to be the category V 4 of finitely
generated projective left A-modules, where A is a k-algebra.

5. Tensor products and linear functors

Let A be aring, B an additive category. A lefr A-module object in B is an object M
of B together with a ring homomorphism of A into Endg(M). Equivalently,
N > Homg(M, N) is a functor from B to the category of right A-modules and
homomorphisms. Likewise we define a right A-module object in B. If B is a category
of left modules over a ring B, a right A-module object in B is the same thing as a
(B, A)-bimodule.

Let M be a right A-module object in B. Then for each object NV in B the abelian
group Homg(M, N) is a left A-module, and therefore if P is any left A-module the
abelian group Hom 4 (P, Homg(M, N)) is defined. If there exists an object E in B and
for each N an isomorphism

Homg(E, N) > Hom4 (P, Homg(M, N))

functorial in N, we shall say that E is a tensor product of M and P over A, and write
E =M ®4 P. The tensor product, when it exists, is therefore defined by

(5.1) Homg(M ®4 P, N)=Homu{P, Homg(M, N))

and (since it represents a functor) is unique up to isomorphism. Note also that M and
P lie in general in different categories.

Now let A, B be k-algebras, let C = A ®, B and let M be aright C-module object
in the category B. The canonical homomorphismsa-»>a ® 1and b ->1® b of A and
B into C determine by restriction of scalars A-module and B-module structures on
M. Let P be a left A-module and Q a left B-module, so that P&, Q is a left
C-module. The isomorphism (5.1) shows that the abelian group Homg(M ®4 P, N)
has a left B-module structure for each object N in B, so that M ® 4 P, when it exists,
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is a right B-module object in B. In this situation we have
(32) MQ®aesPR%hQ)=(M®4P)®50Q

in the sense that if one side exists, so does the other and they are isomorphic. For by
(5.1

Homg(M ®c (P ®, Q), N) =Homc(P ®: Q, Homg(M, N))
and
Homg((M ®4 P) ®5 Q, N)=Homz(Q, Hom (P, Homg(M, N)))

and each of the Z-modules on the right is isomorphic to the Z-module of functions
from P x Q to Homg(M, N) which are A-linear in the first factor and B-linear in the
second.

We shall now take up the problem raised at the end of Section 4, namely that of
finding all functors L: V> B which are k-linear in each variable, where A is any
k-algebra and B is as before a pseudo-abelian k-linear category.

We begin with the case n = 1. Let then L: V,—> B be a &-linear functor (hence
additive). For each left A-module P let e =ep: P> Homa(A, P) be the canonical
isomorphism, so that e(p)a =ap for ae A and pe P. In particular, taking P =
A,e(a) is right multiplication by a; applying the functor L, we obtain
L(e(a)):L(A)—> L(A) for each a € A, and hence L(A) is a right A-module object in
B.

Now let N be any object in B, and let

(5.3) ¢ = ¢(P):Homg(L(P), N)-> Homa(P, Homg(L(A), N))

be the homomorphism of Z-modules defined by ¢(f)(p)=fo L(e(p)).
(5.4) Foreach PeV 4, y(P) is an isomorphism.

Proof. It is easily checked that ¢/(A) is the isomorphism e. Since ¢ is a morphism
between additive functors, it follows that ¢y(A") = (A)" is an isomorphism. If now
PeV,, thereexists Qe Vysuchthat P @ Q=A" forsome n =0; hence (P @ Q)
is an isomorphism. But ¢(P @ Q)=¢(P) ® ¢{Q), hence ¢(P) is an iso-
morphism. O

From (5.1) and (5.4) it follows that L(P) is a tensor product of L(A) and P over A:

L(P)=L(A)®@, P

functorially in P. In other words,
(5.5) L=Upa
where Uy a) is the functor P—~>L(A)®4 P.
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We consider now the general case. Let L: V3 — B be k-linear in each variable, and
let T"(A) be the nth tensor power of A over k. Then L'"’(A) = L(A, ..., A)isaright
T"(A)-module object in B, the actionof a; ® - - - ® a, € T"(A) being the morphism
Lie(ay),...,e(an)).

(5.6) There exists an isomorphism of functors

L(Py,..., Pn)SL(")A ®7ma) (P& + -+ O p,).

Proof. We shall write out the proof for n =2. Regarding P, as fixed and P, as
variable, we have from (5.3)

L(P,P))=L(P,,A)®a P,
=(L(A,A)®4 P)®@a4 P2 by (5.5) again
=L®(A) ®12a) (PL®cPy) by (5.2). O
From (4.10) and (5.6) we have immediately

(5.7) Theorem. Let F: V5B be a polynomial funcior, homogeneous of degree
n > 0. Then there exists an isomorphism of functors

F(P)=(LP(A)®1~a, T (P))*,

where LYW (A)=Lg(A,..., A), and Lg is the linearization (Section 3) of F, and
T"(P) (resp. T"(A)) is the nth tensor power of P (resp. A) over k.

Remarks. (1) We have assumed throughout, for convenience of exposition, that the
functor F is covariant. There is no difficulty in dealing with contravariant functors: if
F:V, - B is a contravariant polynomial functor, then F*: P F(P*) is covariant,
where P* =Hom(P, A) is the dual of P, and is a finitely generated projective right
A-module; L¥'(A) is now a left T"(A)-module object in B, and in place of (5.7) we
have

F(P)=(T"(P*) ®1~a) L' (A

(2) In (5.7) the symmetric group S, acts on the k-algebra T"(A) and the
T"(A)-module T"(P), by permuting the factors in these tensor products; also S, acts
on the right T"(A)-module object L¥(A); and in each case the action of S, is
compatible with the module structure, so that for exampile s(ap)=s(a)s(p) for
acT"(A), pe T"(P) and s € S,. In the next section we shall consider this situation

more generally.

6. Wreath products

Let G be a subgroup of S,. The group G acts on T"(A) by permuting the factors:

sS(a1®- - ®a)=a;-y, B - Rasa.
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Let kG be the group algebra of G over k, and define a multiplication in the vector
space T"(A) ®, kG by the rule

(@®s)bP®t)=a- sB)®st

fora, b€ T"(A) and s, t € G. The resulting k-algebra we shall call the wreath product
of A with G, and denote by A ~ G. It is associative and has an identity element
1®---®1®e, where 1 (resp. e) is the identity element of A (resp. G).

In particular, if A is the group algebra kI" of a group [, then T"(A) may be
identified with the group algebra of I'" =Ix---xT, and A ~ G with the group
algebra of the wreath product I ~ G of I" with G:

(6.1) (kM) ~ G =kl ~ G).

(To be quite explicit, we define I' ~ G to be the group whose elements are pairs
(v, s), where y=(y1,...,¥.)€ " and s € G with multiplication defined by (v, s)
(8, 1)=(v - 58, st), where 6 =(8;-11),..., 05 1(n)). The isomorphism (6.1) then
identifies (y, s) with y, ® - - ® v, ® s.)
In view of (6.1), we may leave out the brackets and write kI” ~ G unambiguously.
If also H is a subgroup of a symmetric group S,, then G ~ H is a subgroup of
S. X S,, hence (up to conjugacy) a subgroup of §,.,, we have

(6.2) (A~G)®« (A~H)=A~(GxH)

by identifying (a ® 5) ® (b ® ) with (a ® b) ® (s, t) where ae T"(A), be T?(A),
seGandte H

Again, the wreath product G ~ H is a subgroup of S, ~ S,, which in turn may be
identified (up to conjugacy) with a subgroup of S,, ([6, p. 31]), and then we have

63) (A~G)~H=A~(G~H).
For
(A~G)~H=TT"(A)®«kG) B kH
=T"(A)® TP (kG) @ kH
=T"(A)® (kG~H)=A~ (G~ H).

We may therefore write A ~ G ~ H unambiguously.

Now let M be a left A-module. Then T" (M) is a left T"(A)-module on which S,
acts by permuting the factors, so that we have s(am) =s(a)s(m)forse S, ae T"(A)
and me T"(M). We may therefore regard T"(M) as a left A ~ §,-module by
defining (a ® s)m =a - s(m). If M is finitely-generated and projective, it is a direct
summand of say A", and hence T" (M) is a direct summand of T"(A"), which is a free
T"(A)-module: hence T"(M) is finitely-generated and projective as a T"(A)-
module, and therefore by (A.3) also as an A ~ §,-module. In other words, T" is a
functor from V4 to Vs,



Polynomial functors and wreath products 187

If now V is a left kS,-module, then A ~ S, acts on T"(M) ®, V by the rule
(a®@s)m@v)=a-s(m)®s(v), where ac T"(A), me T"(M), s€S, and ve V.
The resulting A ~ S,-module we call the wreath project of M with V, and denote by
M~V

Let F: V4 - Bbe a homogeneous polynomial functor of degree n ; then L¥(A)isa
right T"(A)-module object in B, on which S, acts via F (Section 4), hence is a right
A ~ §,-module object in B, if we define the right action of s€ S, to be F(s™h.
(Explicitly, if B is a category of modules, the right action of A ~ S, on L(A) is
given by x(a ®s) =5 xa)=s""x)s"'(a) for ac T"(A), s S, and x e L¥(A).)
From (A.2) we have

(LE'(A) ®1~a) T(P)* =L (A) ®a~s, T"(P),
and therefore we can restate (5.7) as follows:
(6.4) Theorem. LetF:V 4 — B be a homogeneous polynomial functor of degree n >0,
and let M = LE’(A). Then

F= Up e T"

where T": V>V o_s s the nth tensor power functor, and Up:V a~s,~> B is the






















































