
Journal of Complexity 22 (2006) 250–274
www.elsevier.com/locate/jco

Computational complexity of diagram satisfaction in
Euclidean geometry

Nathaniel Miller∗
Department of Mathematical Sciences, University of Northern Colorado, Ross Hall, Greeley, CO 80639, USA

Received 2 March 2005; accepted 2 September 2005
Available online 21 November 2005

Abstract

In this paper, it is shown that the problem of deciding whether or not a geometric diagram in Euclidean
Geometry is satisfiable is NP-hard and in PSPACE, and in fact has the same complexity as the satisfaction
problem for a fragment of the existential theory of the real numbers. The related problem of finding all of
the possible (satisfiable) diagrams that can result when a segment of a diagram is extended is also shown to
be NP-hard.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Euclidean geometry; Diagrams; Computational complexity

1. Introduction

Case analysis has long been a sticking point in attempts to understand how diagrams are used
in mathematics, particularly in geometry. When using diagrams, a question that immediately
arises is: how many different diagrams must I consider? Indeed, one of the earliest criticisms
of Euclid’s Elements, which argues extensively using diagrams, was that he did not distinguish
enough cases. Some more recent commentators have argued that proofs that rely on diagrams are
inherently informal because the process of finding all of the cases that need to be considered is a
non-algorithmic human process that is perhaps even open-ended: each time someone finds a case
that has not been dealt with yet, a new proof has to be constructed for that case. However, this
is incorrect. In other work (see [3] or [4]), it is shown how to construct a formal system FG for
Euclidean Geometry that uses geometric diagrams as its syntactic objects and is similar enough
to the way that people normally use diagrams informally in geometry to directly formalize the

∗ Fax: +1 970 351 1225.
E-mail address: nat@alumni.princeton.edu.

0885-064X/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jco.2005.09.003

http://www.elsevier.com/locate/jco
mailto:nat@alumni.princeton.edu

N. Miller / Journal of Complexity 22 (2006) 250–274 251

Fig. 1. Two primitive diagrams.

kinds of proofs that Euclid gives in Book I of The Elements. In this paper, it is shown how we can
use a well-defined syntax and semantics of diagrams to understand how case analysis works in
Euclidean geometry, and that this problem is NP-hard.

In fact, case analysis in Euclidean geometry can be done by an algorithm, which has been
implemented in the computerized formal proof system CDEG (Computerized Diagrammatic
Euclidean Geometry). CDEG automatically does this case analysis in the course of construct-
ing a proof. However, there is a sense in which geometric case analysis is difficult. Consider
the problem of finding all of the new diagrams that can result from extending a line segment
in a given diagram outward until it intersects another element of the diagram. The algorithm
used by CDEG solves this problem, but sometimes returns extra diagrams that do not repre-
sent any physically realizable situation. There is in fact a computable algorithm which returns
precisely those diagrams that represent the physical situations that could occur when you ex-
tend the line—that is, it does not return any extra unrealizable cases—but we will show that the
problem of finding precisely the realizable cases is at least NP-hard, and in fact has the same
complexity as the satisfaction problem for a particular fragment of the existential theory of real
arithmetic.

2. Basic syntax and semantics of diagrams

Because the purpose of this paper is not to explain the formal system FG for doing Euclidean
Geometry, just barely enough will be explained here for the complexity discussion to make sense.
The interested reader is referred to [3] or [4] for more details.

If we want to discuss the role of diagrams in geometry, we must first say what is meant by
the term diagram in this context. Fig. 1 shows two examples of the sort of diagrams we want
to consider. They contain dots and edges representing points, straight lines and circles in the
plane, but note that a diagram may not look exactly like the configuration of lines and circles
that it represents; in fact, it may represent an impossible configuration, like the second diagram
in Fig. 1.

It is possible to give a formal syntax for such diagrams that eliminates many, though not all, of
the unsatisfiable diagrams. The formal definition of what constitutes a diagram and of the formal
deductive system FG that manipulates them is discussed at great length in [3,4]; the details will not
be given here. The general idea is that a diagram is a kind of planar graph. The formal definition
as a kind of graph with lots of conditions, however, is just meant to mimic the ways that diagrams
are used informally. An important idea here is that two diagrams represent the same situation if

252 N. Miller / Journal of Complexity 22 (2006) 250–274

Fig. 2. A diagram array containing two marked versions of the first primitive diagram in Fig. 1.

they are topologically equivalent as graphs in the plane; in this case, we say that the diagrams are
equivalent.

In order to distinguish the pieces of diagrams from the geometric objects that they represent,
we will refer to the diagrammatic objects that represent points as dots; the diagrammatic objects
that represent lines as dlines; the diagrammatic objects that represent circles as dcircs; the dia-
grammatic objects that represent angles as di-angles; and the outer box surrounding a diagram
as the frame. We call a dline that intersects the frame twice and therefore represents an infinite
line a proper dline, and we call one that does not intersect the frame at all and therefore repre-
sents a line segment a dseg. We allow dsegs and di-angles in diagrams to be marked with slash
marks to show that they represent congruent pieces, as is traditional in Euclidean geometry. In
this case, we will refer to a set of slash marks as a marker. (Di-angles will be marked by draw-
ing a bold arc through the angle and then putting the marker on the arc.) We also allow several
diagrams to be joined together along their frames to represent the existence of multiple possible
situations; we call the resulting object a diagram array. Diagram arrays are allowed to be empty.
Fig. 2 shows a diagram array containing two different marked versions of the first diagram in
Fig. 1.

We would like to discuss the relationship between diagrams and real geometric figures. By a
Euclidean plane, we mean a plane together with a finite number of designated points, circles,
rays, lines, and line segments, such that all the points of intersection of the designated circles,
rays, etc. are included among the designated points. The elements of Euclidean planes are the
objects about which we would like to be able to reason. We consider the designated points of a
Euclidean plane to divide its circles and lines into pieces, which we call designated edges.

It is very easy to turn a Euclidean plane P into a diagram. We can do this as follows: pick
any new point n in P, pick a point pl on each designated line l of P, and let m be the maximum
distance from n to any designated point, any pl , or to any point on a designated circle. m must
be finite, since P only contains a finite number of designated points, lines and circles. Let R be
a circle with center n and radius of length greater than m, and let F be a rectangle lying outside
of R. Then if we let D be a diagram whose frame is F, whose segments are the parts of the edges
of P that lie inside F, whose dots are the designated points of P, and whose dlines and dcircles
are the connected components of the lines and circles of P, then D is a diagram that we call
P’s canonical (unmarked) diagram. (Strictly speaking, we should say a canonical diagram, since
the diagram we get depends on how we pick n and the pl ; but all the diagrams we can get are
equivalent.) We can also find P’s canonical marked diagram by marking as equal those dsegs or
di-angles in D that correspond to congruent segments or angles in P. These canonical diagrams

N. Miller / Journal of Complexity 22 (2006) 250–274 253

give us a convenient way of identifying which Euclidean planes are represented by a given
diagram.

Definition 1. A Euclidean plane M is a model of the primitive diagram D (in symbols, M�D,
also read as “M satisfies D”) if

(1) M’s canonical unmarked diagram is equivalent to D’s underlying unmarked diagram, and
(2) if two segments or di-angles are marked equal in D, then the corresponding segments or

di-angles are marked equal in M’s canonical marked diagram.

M is a model of a diagram array if it is a model of any of its component diagrams.

This definition just says that M�D if M and D have the same topology and any segments or
angles that are marked congruent in D really are congruent in M. Note that this definition makes
a diagram array into a kind of disjunction of its primitive diagrams and that the empty diagram
array therefore has no models.

It is immediate from the definitions that every Euclidean plane is the model of some dia-
gram, namely its canonical underlying diagram, and that if D and E are equivalent diagrams,
then M�D iff M�E. In other words, the satisfaction relation is well defined on equivalence
classes of diagrams. The full converse of this statement, that if M�D and M�E, then D ≡ E,
is not true, since D and E may have different markings. However, it is true if D and E are
unmarked.

3. Construction rules

The formal system FG also has rules to manipulate and reason with diagrams: rules of construc-
tion, inference, and transformation. These rules allow FG to mimic traditional informal proofs in
geometry. Of these, the ones that are relevant to the case analysis problem are the construction
rules. The rules work as follows: each rule, when applied to a given diagram D yields a diagram
array of all the diagrams that satisfy the rule. Two of these rules (there are several others) are given
in Table 1. These two rules correspond directly to Euclid’s first two postulates, which state that
a line segment can be drawn between any two points, and that any line segment can be extended
indefinitely.

As a relatively simple example of how these rules work, consider the diagram shown in Fig. 3.
What happens if we apply rule C1 to this diagram in order to connect points C and D? We get the
diagram array of all diagrams extending the given diagram in which there is a dseg connecting
points C and D. In this case, there are nine different topologically distinct possibilities, as CDEG
confirms, which are shown in Fig. 4. (In order to check carefully that these are the only possibilities,
you need to know the precise definition of what constitutes a legitimate diagram; the interested
reader is again referred to [3] or [4].)

Table 1
Some of the diagram construction rules

Diagram construction rules

C1. If there is not already one existing, a dseg may be added whose endpoints are any two given existing distinct dots.
C2. Any dseg can be extended to a proper dline.

254 N. Miller / Journal of Complexity 22 (2006) 250–274

D

C

BA

Fig. 3. What can happen when points C and D are connected?

A B

BA

C D

D C

C

D

A B

C

D

A B

D

C

A B

D

C

A B

D

BA

C

D

A B

CD

C

BA

Fig. 4. The result of applying rule C1 to points C and D in the diagram in Fig. 3.

4. Satisfiable and unsatisfiable diagrams

In the preceding sections, we gave a thumbnail sketch of how we can define a formal system
in which geometric diagrams are defined as a type of planar graphs that meet certain conditions.
We also gave a definition of what it means for a Euclidean plane to satisfy a diagram, and pointed
out that the definition of a diagram was designed to eliminate as many unsatisfiable diagrams as
possible.

An obvious question, then, is how well could our definitions have succeeded at eliminating these
unrealizable situations? That is: did we succeed in eliminating all of the unsatisfiable diagrams,
or are there still some diagrams with no models?

The answer is that there are indeed unsatisfiable diagrams. Fig. 5 shows a diagram which is
unsatisfiable because according to Desargues’ theorem, in any model of this diagram, line XY
would have to intersect line B ′C′ at point Z. The usual proof of Desargues’ theorem is as follows:
imagine that the diagram shows a two-dimensional projection of a three-dimensional picture of
a pyramid with base ABC and summit vertex E. Then the triangles ABC and A′B ′C′ determine
two different planes P1 and P2 in three-space. Lines AB and A′B ′ meet in three-space, because
they both lie in the plane determined by triangle ABE, and since AB lies in P1 and A′B ′ lies in
P2, their point of intersection X must lie in the intersection of P1 and P2. Likewise, if Y is the
intersection of AC and A′C′ and Z is the intersection of BC and B ′C′, then Y and Z also lie in
the intersection of the two planes. Since two planes intersect in a line, this means that X, Y, and Z

N. Miller / Journal of Complexity 22 (2006) 250–274 255

Z

Z'

Y

X

C'

A'

B'

E

CB

A

Fig. 5. An unsatisfiable diagram.

should be collinear; but in the given diagram, point Z does not fall on the line XY , so the diagram
is unsatisfiable. This example is particularly striking because it contains nothing but unmarked
dsegs, but there are many other possible examples.

This shows that our definition of what constitutes a diagram is still too broad in one sense,
because there are diagrams that are unsatisfiable. However, it is hard to imagine a reasonable
definition of what a diagram is under which the diagram in Fig. 5 does not qualify. Our next
question, then, is: is there some additional set of conditions that could be added to eliminate all
of the unsatisfiable diagrams? It would be extremely convenient to find such a set of conditions.
For example, consider what happens when we apply one of the construction rules to a satisfiable
diagram. We get back an array of possible results. As it now stands, we know that because the
construction rules are sound, at least one of the diagrams that we get back must be satisfiable, but
many of them may not be satisfiable. If we could find a set of conditions that eliminated these
unsatisfiable diagrams, then we would not have to waste our time looking at these extra cases. So
such a set of conditions would be extremely powerful.

The very fact that such a set of conditions would be so powerful might make us suspect
they would be too powerful, and that such a set of conditions is impossible to find. But somewhat
surprisingly, it can in fact be computed whether or not a given diagram is satisfiable. Our definition
of satisfiability can be translated into the first-order language of real arithmetic, and we can apply
Tarski’s theorem, which says that there is a procedure for deciding if a given sentence of the first-
order language of arithmetic is true or false (as a statement about the real numbers). (See [7].)
In fact, in Section 6, we show the formula that translates our definition of diagram satisfaction is
�1, which means that the decision procedure is in PSPACE. This means that we could define a
diagram to be strongly well-formed if it is a diagram under our old definition, and Tarski’s decision
procedure says that it is satisfiable. Then the strongly well-formed diagrams would exactly capture
the possible configurations of real Euclidean planes. The problem with this approach is that the
decision procedure given by Tarski’s theorem can take intractably long to run. A set of conditions
that correctly determine if a diagram is satisfiable but take exponentially long to evaluate are not
really useful.

So a new question is: is there a procedure that determines whether or not a given diagram is
satisfiable in a reasonable amount of time? To be more specific, our question becomes: is there a

256 N. Miller / Journal of Complexity 22 (2006) 250–274

polynomial-time algorithm for determining whether or not a given diagram is satisfiable? It turns
out that the answer to this question is no, assuming that P �= NP. In Section 5 we will show that
the diagram satisfiability problem is NP-hard. Thus, we will have shown that diagram satisfaction
is NP-hard and in PSPACE.

5. NP-hardness

In this section, we show that the problem of determining if a given diagram is satisfiable is
NP-hard. The problem of determining if a given boolean formula is satisfiable is well known to
be NP-complete, so it suffices to show how to reduce the boolean satisfiability problem to the
diagram satisfiability problem in log-space. (See [2] for a proof that the boolean satisfiability
problem is NP-complete.)

We will consider here only boolean formulas without OR gates; as is well known, a boolean
formula that includes OR gates can be converted into one without OR gates by using De Morgan’s
Laws to rewrite the formula (A ∨ B) as ¬(¬A ∧ ¬B). Thus, we will consider a boolean formula
to be a string composed of three types of symbols: boolean variables (x1, x2, x3, . . .), parenthesis,
and the logical operators AND (∧) and NOT (¬). A string of these symbols is a boolean formula
if it is a boolean variable, in which case it is called an atomic formula, or if it is of the form (A∧B)

or ¬A, where A and B are boolean formulas. The proper subformulas of a formula are defined as
follows: the proper subformulas of A ∧ B are A, B, and the proper subformulas of A and B; the
proper subformulas of ¬A are A and its proper subformulas; and atomic formulas have no proper
subformulas. The subformulas of F are F along with all of the proper subformulas of F. Given an
assignment of truth values (true and false) to the boolean variables of a formula, the truth value
of the formula can be determined as follows: if the formula is a boolean variable, then the truth
value of the formula is the same as the truth value of the variable; if the formula is of the form
(A∧B), then the formula is true if and only if both of the subformulas A and B are true; and if the
formula is of the form ¬A then it is true just if A is false. A boolean formula is satisfiable if and
only if there is an assignment of truth values to its propositional variables that makes the whole
formula true.

For every boolean formula F, we can define a corresponding diagram D(F) which is satisfiable
if and only if F is. The basic idea of the construction is to come up with a piece of a diagram that
can be satisfied in exactly two ways. One of these ways will stand for the truth value TRUE, and
the other will stand for the truth value FALSE. For this purpose, we will use the diagram shown in
Fig. 7, which can be satisfied in exactly two different ways, as represented in the left half of Fig.
6. (In one of these ways, ai = Y1; in the other, ai = Y2.) We will have one such diagrammatic
piece for each boolean variable, and then we will find appropriate ways to combine the pieces to
mimic the logical connectives AND and NOT. Thus, we will be able to come up with a diagram
that is satisfied by a sequence of triangles just if our formula is satisfied by the corresponding
sequence of truth values.

We define D(F) formally as follows: let F1, F2, F3, . . . , Ff −1 be the proper subformulas of
F, arranged in order of increasing complexity, so that if Fj is a subformula of Fk then j �k,
and let Ff be F. For each i, 0� i�f + 1, we are going to define a subdiagram Di(F). D(F)

will be a diagram that contains disjoint copies of all of these subdiagrams. In order to construct
D(F), we first pick 6f + 8 distinct markers: six di-angle markers ai , bi , gi , ei , hi , and mi for
each subformula Fi of F; six other di-angle markers, labeled here by one slash mark and the
names Y1, Y2, Z, H , and R; and two dseg markers, shown as two and three slash marks. Marker
R will be used to mark right angles and will also be designated by drawing the usual right angle

N. Miller / Journal of Complexity 22 (2006) 250–274 257

H

HR
Y1

Z

Y2

C

B

DA

Fig. 6. D0(F).

ai

Fig. 7. Subdiagram contained in Di(F) if Fi is an atomic formula or a conjunction.

ai aj

Fig. 8. Di(F) when Fi is ¬Fj .

symbol in the diagrams. In the following discussion, the marker names will also be used to refer
to the measures of the angles that they represent; it should be clear from context which meaning
is intended.

We let D0(F) be the subdiagram shown in Fig. 6 and let Df +1(F) be the subdiagram shown
in Fig. 10. For 1� i�f , we define Di(F) as follows:

• If Fi is atomic, then Di(F) is the subdiagram shown in Fig. 7.
• If Fi is ¬Fj , then Di(F) is the subdiagram shown in Fig. 8.
• If Fi is (Fj ∧ Fn), then Di(F) is the subdiagram that contains both of the subdiagrams shown

in Figs. 7 and 9.

Let D◦
i (F) be the (smallest) diagram containing D0, D1, . . . , Di as disjoint subdiagrams, and let

D(F) = D◦
f +1(F).

Note that if F has length n, then it has at most n subformulas, and the subdiagram put into D(F)

for each subformula has a size bounded by a constant, so the size of D(F) is linear in the length
of F. In fact, in order to compute D(F) from F, the only thing that you need to keep track of is
which subformula in F you are currently on, which you can do in log-space.

Now, note that Fig. 7 along with Fig. 6 forces angle ai to be equal to one of Y1 or Y2, since
there are only two triangles that can be built with the given angle and sides. (For proof, see
[1, pp. 304–307].) It follows by induction on the complexity of Fi that ai must be equal either to
Y1 or else to Y2, for every i: if Fi is atomic or a conjunction, then Di(F) contains Fig. 7, and if
it is ¬Fj , then ai is supplementary to aj , which is one of Y1 or Y2 by the inductive hypothesis,

258 N. Miller / Journal of Complexity 22 (2006) 250–274

ei

ei
ei

ei

ei
hi

Y1

ai bi

b i

aj
Z

an

gi

gi

H

mi

hi

Y2

mi

Fig. 9. Subdiagram contained in Di(F) if Fi is (Fj ∧ Fn).

af

Fig. 10. Df +1(F).

and so ai is Y2 or Y1, since Y1 and Y2 are supplements. Furthermore, note that Y2 and Z are
complementary, so Y2 = 90◦ − Z and Y1 = 90◦ + Z.

We want to show these two possible values of each ai correspond to the two possible truth
values of Fi , so that ai < 90◦ iff Fi is true. More specifically, we will say that a model M agrees
with assignment t on a subformula Fi if ai = Y2 and Fi is true under t, or if ai = Y1 and Fi is
false under t. We will show that any model of any of the D◦

i that agrees with a truth assignment t
on the atomic subformulas of F also agrees with t on all of the other subformulas. This means that
the subdiagrams in Figs. 8 and 9 act as logical NOT and AND gates, so that if Fi is (Fj ∧ Fn),
then ai < 90◦ iff aj < 90◦ and an < 90◦, and if Fi is ¬Fj , then ai < 90◦ iff aj �90◦. This is
shown in the following lemma:

Lemma 2. Let t be a function assigning truth values to the boolean variables of F. Then:

(a) For each i�f , there is a model Mi of D◦
i (F) that agrees with t on all atomic subformulas

Fk with k� i.
(b) Furthermore, if M is any model of D◦

i (F) that agrees with t on all atomic subformulas Fk

with k� i, then it must also agree with t on all other subformulas Fk with k� i.

Proof. By induction on i.
Base case: i = 0. In this case, we just have to show that D◦

0(F), which is just D0(F), has a
model. It has one: take any isosceles triangle, draw a perpendicular through the vertex, extend the
base to one side, and connect it to the vertex to get a model of the first half of D0. To get a model
of the other half, bisect a straight angle into two right angles, then divide one of the right angles
into two equal pieces.

N. Miller / Journal of Complexity 22 (2006) 250–274 259

Inductive cases:

(1) Fi is an atomic formula of the form xj . By the inductive hypothesis, D◦
i−1(F) has a model

Mi−1 that agrees with t on all subformulas Fk such that k < i. That model satisfies all of
D◦

i (F) except for the triangle added by Di(F). Any triangle added by Di(F) will have to
be congruent to one of the two triangles ABC or ABD; conversely, any model that extends
Mi−1 and contains a new disjoint triangle which is congruent to ABC or ABD will satisfy
D◦

i (F). So if t (xj) = true, let Mi be such an extension of Mi−1 in which the new triangle
is congruent to ABC, and otherwise let it be such an extension of Mi−1 in which the new
triangle is congruent to ABD. Then Mi agrees with t on Fi , which shows part (a). For part
(b), note that any model M of Di(F) that agrees with t on atomic formulas has a submodel
that is a model of Di−1; so by part (b) of the inductive hypothesis, ak = Y2 iff Fk is true
under t when k� i − 1, and this is also true when k = i, since Fi is atomic. This shows
part (b).

(2) Fi is a formula of the form ¬Fj . By the inductive hypothesis, there is a model Mi−1 of
D◦

i−1(F) that agrees with t on atomic formulas (by part (a)), and therefore agrees with t on all
subformulas Fi with k < i (by part (b)). Let Mi be a model extending Mi−1 that also contains
a new straight angle divided into two pieces such that the clockwise piece is congruent to the
other angles that are marked by aj . Then Mi is a model of Di(F), proving part a. To show
part (b), note that any model M of Di(F) that agrees with t on the atomic formulas of F must
agree with t on all the subformulas Fk such that k < i, as before, so it suffices to show that
it agrees with t on Fi , that is, that ai = Y2 in M iff Fi is true under t. Since j must be less
than i (because the subformulas of F were arranged in order of increasing complexity), and
ai and aj are supplements, ai = Y2 iff aj = Y1 iff Fj is false under t iff Fi is true under t.
This proves (b).

(3) Fi is a formula of the form (Fj ∧ Fn). We want to show that Di(F) forces ai to be less
than 90◦ iff aj and an are both less than 90◦. First note that in any model of Di(F), mi =
(aj + an + Z)/4 + bi − 45◦ (from pieces 2–5 of Fig. 9); Y1 < mi < Y2 (from piece 6 of
Fig. 9); and bi is equal to either Y1 or Y2 (90◦ + Z or 90◦ − Z), because it is supplementary
to ai . There are three cases to consider:

(a) aj = an = Y2 = 90◦−Z. Then mi = (180◦−Z)/4+bi −45◦ = 45◦−Z/4+bi −45◦ =
bi −Z/4. Since 90◦−Z < mi < 90◦+Z, this means that 90◦−Z < bi −Z/4 < 90◦+Z,
so 90◦ − 3Z/4 < bi < 90◦ + 5Z/4. Since bi is either 90◦ − Z or 90◦ + Z, this means
that it must be 90 + Z = Y1. So since ai is supplementary to bi , this means that ai = Y2.

(b) aj = Y1 and an = Y2, or aj = Y2 and an = Y1. Then mi = bi + Z/4; so 90◦ − 5Z/4 <

bi < 90◦ + 3Z/4 so bi must be equal to Y2 to keep mi between Y1 and Y2; so ai = Y1.
(c) aj = an = Y1 = 90◦ + Z. Then mi = bi + 3Z/4, and bi must be equal to Y2 as before,

so ai = Y1.
To prove part (b), let M be any model of D◦

i (F) that agrees with t on atomic formulas. By the
inductive hypothesis, M agrees with t on all subformulas Fk with k < i. It suffices to show
that M agrees with t on Fi . Now, if Fi is true under t, then Fj and Fn must also be true under t
(by the truth table for AND), so by the inductive hypothesis, aj = an = Y2, which is the first
case above, so ai = Y2 in M, as required. On the other hand, if Fi is false under t, then one
of Fj or Fn must also be false. So, by the inductive hypothesis, one or both of ai and an must
be equal to Y2. So we are in either the second or third case above, and in both of these cases,
ai = Y1 in M, also as required. This proves part (b). For part (a), note that we can extend
Mi−1 with pieces satisfying Di(F) as long as we make ai equal to Y1 or Y2 according to the

260 N. Miller / Journal of Complexity 22 (2006) 250–274

three cases above, because the first five pieces of Fig. 9 serve only to define mi , and the last
piece will be satisfied as long as that mi lies between Y2 and Y1.

This proves the lemma. �

We can now prove the following theorem:

Theorem 3. Any boolean formula F is satisfiable if and only if D(F) is satisfiable.

Proof. (⇒)Assume that F is satisfiable. Then there is a truth assignment t of the boolean variables
of F under with F is true. So, by the lemma, there is a model M of D◦

f (F) that agrees with t on
Fi for all i�f . In particular, M agrees with t on Ff . Since Ff = F and F is true under t, this
means that af = Y2 in M. The only difference between D◦

f (F) and D(F) is that D(F) contains
Df +1(F). So it suffices to show that there is an extension of M that satisfies Df +1(F). But
Df +1(F) just says that af < 90◦. So since af = Y2 < 90◦ in M, M can be extended to a model
M ′ that satisfies D(F).

(⇐) Now assume that F is unsatisfiable. Then F is false under all possible truth assignments
of its boolean variables. So, by the lemma, af = Y1 > 90◦ in any model of D◦

f (F), because any
model of D◦

f (F) agrees with some possible truth assignment on atomic formulae. So no model
of D◦

f (F) can be extended to a model of D(F), since af would have to be less than 90◦ in any
such model because it would have to satisfy Df +1. So D(F) is unsatisfiable. �

We have shown how to reduce the question of whether or not a given boolean formula is
satisfiable to the question of whether or not a given diagram is satisfiable, and this reduction can
be done in log-space. Therefore, because the boolean satisfiability problem is NP-complete, we
have the following corollary:

Corollary 4. The diagram satisfiability problem is NP-hard under log-space computable many-
one reductions.

Next, consider the case analysis problem: let D be a satisfiable primitive diagram, and let S(D)

be the set of satisfiable diagrams that can result from extending a given line segment in D outward
until it intersects another segment. The problem of figuring out exactly what diagrams are in
S(D) is also NP-hard. To see this, let F be a boolean formula, let D′′

f +1(F) be the subdiagram
shown in Fig. 11, and let D′′(F) be the smallest diagram containing D0(F), D1(F), . . . , Df (F)

and D′′
f +1(F). Then F is satisfiable iff D′′(F) has a model in which af = Y2, iff D′′(F) has a

af

P

N

L

M
O

Fig. 11. D′′
f +1(F).

N. Miller / Journal of Complexity 22 (2006) 250–274 261

satisfiable extension in which dseg OL is extended into di-angle MON . So since D′′(F) can also
be produced from F in log-space, we also have:

Corollary 5. The case analysis problem is also NP-hard under log-space many-one reductions.

6. Defining diagram satisfaction in first-order logic

In this section we show how to define diagram satisfaction in the theory of real arithmetic.
Given a diagram D that contains dots d1, . . . , dn, dlines l1, . . . , lp, and dcircles c1, . . . , ck , such
that all of D’s dlines are proper, such that there are at least two dots on every dline and dcircle in
D, and such that there is at least one dot on every ray coming out of each marked angle in D, we
will define a formula of the language of real arithmetic

CFD(x1, y1, . . . , xn, yn, m1, b1, . . . , mp, bp, cx1, cy1, r1, . . . , cxk, cyk
, rk)

which is satisfiable over the real numbers iff D is satisfiable. This formula will be called D’s
corresponding formula. It will be constructed so that x1, . . . , rk will satisfy CF iff the Euclidean
plane containing the designated points (x1, y1), . . . , (xn, yn), the lines satisfying the equations
y = m1x+b1, . . . , y = mpx+bp, and the circles satisfying the equations (x−cx1)

2+(y−cy1)
2 =

r2
1 , . . . , (x − cxk)

2 + (y − cyk
)2 = r2

k satisfies D.
We will build up this formula from many simpler formulas. First of all, we are going to want

the points (x1, y1) to be distinct and the ri to be positive, so we define formulas that say this:

DISTINCT(x1, . . . , rk) := ∧
i �=j ((xi �= xj) ∨ (yi �= yj)),

POSR(r1, . . . , rk) := ∧k
i=1ri > 0.

We also need to make sure that every pair of circles and/or lines intersects only at designated
points. In order to do this, we must first define several other predicates.

LC1INT(m, b, cx, cy, r) := r2(m2 + 1) = m2c2
x − 2mcycx + 2mbcx − 2bcy + c2

y + b2,

LC2INT(m, b, cx, cy, r) := r2(m2 + 1) > m2c2
x − 2mcycx + 2mbcx − 2bcy + c2

y + b2.

LC1INT and LC2INT hold if the given line intersect the given circle exactly once or twice,
respectively. This is because a formula from analytic geometry tells us that the distance between
the point (x0, y0) and the line y = mx + b is given by

|x0 − y0 + b|√
m2 + 1

.

So LC1INT says that the distance between the given line and the center of the given circle is equal
to the radius of the circle, while LC2INT says that it is less than the radius of the circle.

CC1INT (cx1, cy1, r1, cx2, cy2, r2) :=
[(cx1 − cx2)

2 + (cy1 − cy2)
2 = r2

1 + r2
2 + 2r1r2] ∨

[(cx1 − cx2)
2 + (cy1 − cy2)

2 = r2
1 + r2

2 − 2r1r2],
CC2INT (cx1, cy1, r1, cx2, cy2, r2) :=

[(cx1 − cx2)
2 + (cy1 − cy2)

2 > r2
1 + r2

2 + 2r1r2] ∧
[(cx1 − cx2)

2 + (cy1 − cy2)
2 < r2

1 + r2
2 − 2r1r2].

262 N. Miller / Journal of Complexity 22 (2006) 250–274

CC1INT and CC2INT hold if two given circles intersect once or twice, respectively. CC1INT
says that the distance between the centers of the given circles is equal to either the sum or the
difference of their radii, while CC2INT says that it is between the sum and the difference of the
radii.

We are now in a position to define the predicates that say that any intersections of lines and/or
circles occur only at one of the designated points.

LLINT (mj1 , bj1 , mj2 , bj2) :=
(mj1 = mj2) ∨
∨n

i=1((mj1xi + bj1 = yi) ∧ (mj2xi + bj2 = yi)).

LLINT says that if the two given lines are not parallel, then one of the given points lies on both
of them, i.e., at their point of intersection.

LCINT(m, b, cx, cy, r) := (LC1INT(m, b, cx, cy, r)

→ ∨n
i=1((mxi + b = yi) ∧ ((xi − cx)

2 + (yi − cy)
2 = r)))

∧ (LC2INT(m, b, cx, cy, r)

→ ∨
i �=j ((mxi + b = yi) ∧ ((xi − cx)

2 + (yi − cy)
2 = r)

∧ (mxj + b = yj) ∧ ((xj − cx)
2 + (yj − cy)

2 = r))),

CCINT(cx1, cy1, r1, cx2, cy2, r2)

:= (CC1INT(cx1, cy1, r1, cx2, cy2, r2) → ∨n
i=1((xi − cx1)

2 + (yi − cy1)
2 = r1)

∧((xi − cx2)
2 + (yi − cy2)

2 = r2))) ∧ (CC2INT(cx1, cy1, r1, cx2, cy2, r2)

→ ∨
i �=j ((xi − cx1)

2 + (yi − cy1)
2 = r1) ∧ ((xi − cx2)

2 + (yi − cy2)
2 = r2)

∧((xj − cx1)
2 + (yj − cy1)

2 = r1) ∧ ((xj − cx2)
2 + (yj − cy2)

2 = r2))).

LCINT says that if the line and circle intersect once, then one of the given points lies on both of
them, and if they intersect twice, then two of the listed points lie on both of them; and CCINT
says the same thing for two circles. We can now define the tuple (x1, . . . , rk) to be well-formed
if its points are distinct, its r’s are positive, and all its points of intersection between circles and
lines are given by listed points; that is, if it satisfies

WF(x1, . . . , rk) := DISTINCT(x1, . . . , rk) ∧ POSR(x1, . . . , rk)

∧ ∧
i �=j LLINT(mi, bi, mj , bj)

∧ ∧
i,j LCINT(mi, bi, cxj , cyj

, rj)

∧ ∧
i �=j CCINT(cx i, cy i

, ri , cxj , cyj
, rj).

Next, we want to say that the given points, lines, and circles have the right graph structure.
First, we define predicates that say that a point lies on a line, on a circle, or at the center of a
circle.

ONLINE(x, y, m, b) := y = mx + b,

ONCIRC(x, y, cx, cy, r) := (x − cx)
2 + (y − cy)

2 = r2,

ISCENT(x, y, cx, cy, r) := (x = cx) ∧ (y = cy).

N. Miller / Journal of Complexity 22 (2006) 250–274 263

We now want to make sure that the points occur in the right order. For this purpose, we use two
predicates that say that two points are adjacent to one another on a given line and that one point
follows another in the clockwise direction on a given circle:

ADJONLINE(xj1 , yj1 , xj2 , yj2 , m, b) :=
ONLINE(xj1 , yj1 , m, b) ∧ ONLINE(xj2 , yj2 , m, b)

∧∧
i �=j1,j2

(ONLINE(xi, yi, m, b)

→ (¬((xj1 < xi < xj2) ∨ (xj2 < xi < xj1))))

and

CADJONCIRC(xj1 , yj1 , xj2 , yj2 , cx, cy, r) :=
ONCIRC(xj1 , yj1 , cx, cy, r) ∧ ONCIRC(xj2 , yj2 , cx, cy, r)

∧[(yj1 �cy ∧ yj2 �cy ∧ xj1 < xj2) →
∧

i �=j1,j2
((ONCIRC(xi, yi, cx, cy, r) ∧ yi �cy)

→ (¬((xj1 < xi < xj2))))]
∧[(yj1 �cy ∧ yj2 �cy ∧ xj2 < xj1) →

∧
i �=j1,j2

(((ONCIRC(xi, yi, cx, cy, r)

→ ((xj1 < xi < xj2) ∧ y1 > cy))))]
∧[(yj1 �cy ∧ yj2 �cy ∧ xj2 < xj1) →

∧
i �=j1,j2

((ONCIRC(xi, yi, cx, cy, r) ∧ yi �cy)

→ (¬((xj2 < xi < xj1))))]
∧[(yj1 �cy ∧ yj2 �cy ∧ xj2 > xj1) →

∧
i �=j1,j2

(((ONCIRC(xi, yi, cx, cy, r)

→ ((xj1 < xi < xj2) ∧ y1 < cy))))]
∧[(yj1 �cy ∧ yj2 �cy ∧ xj2 < xj1) →

∧
i �=j1,j2

((ONCIRC(xi, yi, cx, cy, r) ∧ yi �cy)

→ (¬((xj2 < xi < xj1))))]
∧[(yj1 �cy ∧ yj2 �cy ∧ xj2 > xj1) →

∧
i �=j1,j2

(((ONCIRC(xi, yi, cx, cy, r)

→ ((xj1 < xi < xj2) ∧ y1 < cy))))]
∧[(yj1 < cy ∧ yj2 > cy) →

∧
i �=j1,j2

(ONCIRC(xi, yi, cx, cy, r)

→ (¬(xi < xj1 ∧ yi < cy) ∧ ¬(xi < xj2 ∧ ji > cy)))]
∧[(yj1 > cy ∧ yj2 < cy) →

∧
i �=j1,j2

(ONCIRC(xi, yi, cx, cy, r)

→ (¬(xi > xj1 ∧ yi > cy) ∧ ¬(xi > xj2 ∧ ji < cy)))].
Now we are in a position to write down a formula saying that the points, lines, and circles have
the right graph structure. (Actually, it says something slightly stronger, since any points on circles
must lie in the right orientation.) First we define the sets

ADJx = {j1, j2|dj1 , dj2 are adjacent on x},

264 N. Miller / Journal of Complexity 22 (2006) 250–274

where x can either be one of the lines li or one of the circles ci . Then we can write the desired
formula as follows:

GFD(x1, . . . , rk) :=
[∧p

i=1

∧
{j |dj lies on li }ONLINE(xj , yj , mj , bj))]

∧[∧p
i=1

∧
{j |dj does not lie on li }¬ONLINE(xj , yj , mj , bj)]

∧[∧k
i=1

∧
{j |dj lies on ci }ONCIRC(xj , yj , cxj , cyj

, rj))]
∧[∧k

i=1
∧

{j |dj does not lie on ci }¬ONCIRC(xj , yj , cxj , cyj
, rj)]

∧[∧k
i=1

∧
{j |dj is the center of ci }ISCENT(xj , yj , cxj , cyj

, rj))]
∧[∧k

i=1
∧

{j |dj is not the center of ci }¬ISCENT(xj , yj , cxj , cyj
, rj)]

∧[∧p
i=1

∧
(j1,j2)∈ADJli

ADJONLINE(xj1 , yj1 , xj2 , yj2 , mj , bj))]
∧[∧p

i=1

∧
(j1,j2)/∈ADJli

¬ADJONLINE(xj1 , yj1 , xj2 , yj2 , mi, bi)))]
∧[∧p

i=1

∧
(j1,j2)∈ADJci

ADJONCIRC(xj1 , yj1 , xj2 , yj2 , cx i, cy i
, ri))]

∧[∧p
i=1

∧
(j1,j2)/∈ADJci

¬ADJONCIRC(xj1 , yj1 , xj2 , yj2 , cx i, cy i
, ri))].

We also need to make sure that all the points lie in the correct regions. To do this, we use the
following formulas:

INCIRC(x, y, cx, cy, r) := (x − cx)
2 + (y − cy)

2 < r2,

OUTCIRC(x, y, cx, cy, r) := (x − cx)
2 + (y − cy)

2 > r2,

CW(lx1, ly1, lx2, ly2, x, y) := (lx2 − lx1)(y − ly1) < (x − lx1)(ly2 − ly1),

CCW(lx1, ly1, lx2, ly2, x, y) := (lx2 − lx1)(y − ly1) > (x − lx1)(ly2 − ly1).

INCIRC and OUTCIR say that the given point is inside or outside of the given circle. CW and
CCW say that the point (x, y) lies on the clockwise or counterclockwise side of the directed line
from (lx1, ly1) to (lx2, ly2). This meaning of the formulas follows from the geometric meaning of
the cross product. CW says that the z component of the cross product of the vector from (lx1, ly1)

to (lx2, ly2) and the vector from (lx1, ly1) to (x, y) is negative, and CCW says that it is positive.
We can now define a formula that says that all of the points lie in the correct regions of the

diagram. Recall that we require D to have at least two different dots on each dline li , so we can
pick ai,1 and ai,2 so that dai,1 and dai,2 both lie on li and they are not equal. Define

CWP(i) := {j |dj lies on the clockwise side of the directed line from dai,1 to dai,2};
CCWP(i) := {j |dj lies on the counterclockwise side of

the directed line from dai,1 to dai,2};
INP(i) := {j |dj lies inside ci}; and

OUTP(i) := {j |dj lies outside ci}.
We can now define the formula as follows:

CREGD(x1, . . . , rk) := ∧p
i=1

∧
j∈CWP(i)CW(xai,1 , yai,1 , xai,2 , yai,2 , xj , yj) ∧

∧p
i=1

∧
j∈CCWP(i)CCW(xai,1 , yai,1 , xai,2 , yai,2 , xj , yj) ∧

∧k
i=1

∧
j∈INP(i)INCIRC(xj , jj , cxj , cyj

, rj) ∧
∧k

i=1
∧

j∈OUTP(i)OUTCIRC(xj , jj , cxj , cyj
, rj).

N. Miller / Journal of Complexity 22 (2006) 250–274 265

The last thing that we need to do is to make sure that segments and angles that are marked
congruent are really the same size. To do this, we need a predicate that says that the segment
between (xi1 , yi1) and (xi2 , yi2) is congruent to the segment between (xi3 , yi3) and (xi4 , yi4):

CONGSD(xi1 , yi1 , xi2 , yi2 , xi3 , yi3 , xi4 , yi4) :=
((xi2 − xi1)

2 + (yi2 − yi1)
2 = ((xi4 − xi3)

2 + (yi4 − yi3)
2.

We also need a similar predicate that says that the angle �1 determined by the three points (xi1 , yi1),
(xi2 , yi2), and (xi3 , yi3) is congruent to the angle �1 determined by the points (xi4 , yi4), (xi5 , yi5),
and (xi6 , yi6). (Here, the first point gives the vertex of the angle, and the sides of the angle are rays
going through the other two points, which are given in clockwise order.) First we use the fact that

A · B
|A||B| = cos �

for any two vectors A and B and angle � between them to write a formula that says that cos2 �1 =
cos2 �2, as follows:

ECOS2D(xi1 , yi1 , xi2 , yi2 , xi3 , yi3 , xi4 , yi4 , xi5 , yi5 , xi6 , yi6) :=
((xi3 − xi1)(xi2 − xi1) + (yi3 − yi1)(yi2 − yi1))

2

×((xi5 − xi4)
2 + (yi5 − yi4)

2)((xi6 − xi4)
2 + (yi6 − yi4)

2) =
((xi6 − xi4)(xi5 − xi4) + (yi6 − yi4)(yi5 − yi4))

2

×((xi2 − xi1)
2 + (yi2 − yi1)

2)((xi3 − xi1)
2 + (yi3 − yi1)

2).

If the squares of the two cosines are equal, then the cosines are equal as long as they have the
same sign; we can check this by making sure that the two dot products have the same sign:

ECOSD(xi1 , yi1 , xi2 , yi2 , xi3 , yi3 , xi4 , yi4 , xi5 , yi5 , xi6 , yi6) :=
ECOS2D(xi1 , yi1 , xi2 , yi2 , xi3 , yi3 , xi4 , yi4 , xi5 , yi5 , xi6 , yi6) ∧
((xi3 − xi1)(xi2 − xi1) + (yi3 − yi1)(yi2 − yi1))

×((xi6 − xi4)(xi5 − xi4) + (yi6 − yi4)(yi5 − yi4)) > 0.

Now, if the cosines of the two angles are equal, then either the angles are equal, or else they sum
to 360◦. So we can check that they are the same by making sure that they are both greater than
or both less than 180◦. We can do this by making sure that (xi3 , yi3) falls on the same (clockwise
or counterclockwise) side with respect to the vector from (xi1 , yi1) to (xi2 , yi2) as (xi6 , yi6) falls
with respect to the vector from (xi4 , yi4) to (xi5 , yi5). The following predicate accomplishes this:

CONGANGD(xi1 , yi1 , xi2 , yi2 , xi3 , yi3 , xi4 , yi4 , xi5 , yi5 , xi6 , yi6) :=
ECOSD(xi1 , yi1 , xi2 , yi2 , xi3 , yi3 , xi4 , yi4 , xi5 , yi5 , xi6 , yi6) ∧
(CW(xi1 , yi1 , xi2 , yi2 , xi2 , yi2) → CW(xi4 , yi4 , xi5 , yi5 , xi6 , yi6)).

We are now in a position to define a formula that says that all of the angles and segments marked
congruent are congruent. First we need to define the following sets:

Cong-segsD := {(di1 , di2 , di3 , di4)|the dseg through di1 and di2

is marked congruent to the dseg through di3 and di4},
Cong-angsD := {(di1 , di2 , di3 , di4di5 , di6)|the di-angle given by di1 , di2 ,

and di3 is marked congruent to the di-angle given by di4 , di5 , and di6}.

266 N. Miller / Journal of Complexity 22 (2006) 250–274

We can use these to define the desired formula:

CONGD(x1, . . . , rk) :=
[∧(di1 ,di2

, di3 , di4) ∈ Cong-segsDCONGSD(xi1 , yi1 , . . . , xi4 , yi4)]∧
[∧(di1 ,...,di6)∈Cong-angsD

CONGANGD(xi1 , yi1 , . . . , xi6 , yi6)].
Finally, we can define the originally promised formula CF as follows:

CFD(x1, . . . , rk) := WF(x1, . . . , rk) ∧ GFD(x1, . . . , rk)

∧ CREGD(x1, . . . , rk) ∧ CONGD(x1, . . . , rk).

Note the following facts:

(1) CFD(x1, . . . , rk) is quantifier free.
(2) D is a satisfiable diagram iff the existential closure of CFD is satisfiable over the Real numbers,

which is a decidable question by Tarski’s theorem. (In fact, the sentence in question contains
only existential quantifiers, and it is known that such sentences can be decided in polynomial
space. For details, see [5].)

(3) If A is a diagram array consisting of primitive diagrams {D1, . . . , Dm}, and each of these
primitive diagrams contains only proper dlines, has at least two dots on each dline and dcircle,
and has at least one dot on every ray coming out of a marked angle, then A is satisfiable iff
the existential closure of CFD1 ∨ · · · ∨ CFDm is satisfiable over the Reals.

(4) Given any diagram array E, we can use the construction rules to find a diagram array E′ whose
primitive diagrams only contain proper dlines and have at least two dots on each dline and
dcircle and one dot on every ray that emanates from a marked angle, such that E′ is satisfiable
iff E is.

It follows from these facts that the general question of satisfiability of diagrams is decidable.

7. Using diagrams to encode real arithmetic

In the preceding two sections, we have shown that the diagram satisfiability problem is NP-
hard and in PSPACE. A natural direction for further inquiry, then, is to see if we can improve
either of these bounds. In particular, if we could improve the second bound to show that the
diagram satisfaction problem was in NP, then it would be NP-complete. While this is still an open
possibility, it seems unlikely. In this section, we will show how to encode a significant fragment of
the existential theory of the real numbers in our diagrams. We will then use this encoding to show
that diagram satisfaction has the same complexity as the satisfiability problem for this fragment,
which we will call PER-DNF. Thus, the diagram satisfaction problem is in NP if and only if the
satisfiability problem for PER-DNF is also in NP. While this is conceivable, it seems unlikely.
Any sentence in the existential theory of the reals can be translated into a sentence in PER-DNF,
and the existential theory of the reals is only known to be in PSPACE; all known algorithms for
deciding this theory are exponential in the number of variables that can occur in a sentence. (See
[5] for details.) On the other hand, the translation from a sentence of the existential theory of the
reals into a sentence of PER-DNF can lead to an exponential blow up of the size of the sentence,
so it is still possible that this fragment has lower complexity than the full existential theory of the
reals. However, the fragment is already strong enough to include formulas that express systems
of equalities and inequalities of polynomials whose degree can be exponential in the length of the
formula.

N. Miller / Journal of Complexity 22 (2006) 250–274 267

The fragment of the existential theory of the reals that we want to consider is the fragment that
only contains positively bounded existential quantifiers, and whose formulas are in disjunctive
normal form with positive literals of the form a = b and a < b. We will call this fragment PER-
DNF, for “the Positive Existential theory of Real arithmetical sentences in Disjunctive Normal
Form.” We will define PER-DNF precisely as follows:

(1) PER-DNF contains a set of numerals. 1 is a numeral, and if n is a numeral, then S(n) is also
a numeral. These numerals are intended to represent the positive integers, and the length of a
numeral is directly proportional to the integer it represents.

(2) The atomic terms of PER-DNF are the numerals along with the variable symbols x1, x2,
x3,

(3) The terms of PER-DNF are defined as follows: if a and b are atomic terms, then a, b, a + b,
and a × b are terms. Note that this definition is not recursive—each term contains at most
one operation symbol.

(4) The atomic formulae of PER-DNF are the following: if s and t are terms, then s = t and s < t

are atomic formulae.
(5) The conjunctions of PER-DNF are defined in terms of the atomic formulae: all atomic for-

mulae are conjunctions, and if A and B are conjunctions, then (A ∧ B) is a conjunction.
(6) The disjunctions of PER-DNF are defined as follows: all conjunctions are disjunctions, and

if C and D are disjunctions, then (C ∨ D) is also a disjunction.
(7) Finally, we define the formulas of PER-DNF as follows: if F(xi1 , . . . , xik) is a disjunction

containing k different variable symbols, then

(∃xi1 > 0) · · · (∃xik > 0)(F (xi1 , . . . , xik))

is a formula of PER-DNF.

Expressions in PER-DNF may be quite awkward and long, since the numerals are long, each term
contains at most one operation symbol, and negation is not available. However, PER-DNF is still
powerful enough to express any sentence that is expressible in the full existential theory of the
reals with positive existential quantifiers and positive rational constants. We will call this theory
the positive existential theory of the reals. In order to see that we can rewrite any sentence in this
theory as a sentence in PER-DNF, first note that we can express a positive rational constant a/b

by the expression (∃xi > 0)(b × xi = a); we can represent expressions involving polynomials
as conjunctions of simpler expressions; and subtraction and division can be rewritten in terms of
addition and multiplication. For example, the expression y = ax2 − b can be rewritten as

(∃x2 > 0)((x2 = x × x) ∧ (x2 × a = y + b)).

So if we start with any formula in the full positive existential theory of the reals, we can use these
tricks to rewrite it as a formula only containing atomic formulae from PER-DNF. Then, to turn
it into a formula of PER-DNF, we just have to put it into disjunctive normal form with positive
literals. We can do this in the usual way, using the distributive law and De Morgan’s laws. First,
we can move all negations inwards using De Morgan’s laws and then remove pairs of negations,
leaving us with a formula in which all negations occur as part of a literal (an atomic formula or
its negation). Next, we can rewrite any negated atomic formulae as disjunctions of un-negated
atomic formulae. That is, we can rewrite ¬(a = b) as (a < b ∨ b < a), and we can rewrite
¬(a < b) as (a = b ∨ b < a). Note that everything that we have done so far has at most linearly
increased the size of our formula. Finally, we can use the distributive law of AND over OR to

268 N. Miller / Journal of Complexity 22 (2006) 250–274

move all ANDs inward, leaving us with a formula in disjunctive normal form, which is therefore
in PER-DNF. Unfortunately, however, this last step can lead to an exponential blowup in the size
of our formula; thus, it is still possible that PER-DNF has lower complexity than the full positive
existential theory of the reals.

We can take this idea one step further and encode the full existential theory of the reals by
encoding an arbitrary real number r as a pair of positive real numbers (s, a), where s is equal to
either 1 or 2 depending on whether r is negative or positive and a = |r|, except when r = 0; in
that case, we let s equal 3 and let a equal anything we like. We can then use this convention to
rewrite our original formula with only positive quantifiers. For example, we would rewrite the
formula

(∃r1)(∃r2)(∃r3)(r1 × r2 = r3)

as

(∃s1)(∃a1)(∃s2)(∃a2)(∃s3)(∃a3)((a1 × a2 = a3) ∧ (((s1 = 1 ∧ s2 = 1) ∧ s3 = 2)

∨((s1 = 2 ∧ s2 = 1) ∧ s3 = 1) ∨ ((s1 = 1 ∧ s2 = 2) ∧ s3 = 1)

∨((s1 = 2 ∧ s2 = 2) ∧ s3 = 2) ∨ ((s1 = 3 ∨ s2 = 3) ∧ s3 = 0))).

Any other sentence in the existential theory of the real numbers can be similarly translated into
a sentence in the positive existential theory of the real numbers, with a linear increase in length.
This sentence in the positive existential theory of the real numbers can then be translated into a
sentence in PER-DNF as before, although with a possibly exponential increase in length.

Notice that to determine if sentences in PER-DNF are decidable, we just need to be able to
determine if a set of polynomial equations are satisfiable over the positive reals. If there were
a polynomial bound to the possible height of a solution (as an algebraic number) to such a set
of polynomial equations, then the decidability question for PER-DNF would be in NP. Such an
approach will not work, however, because it is possible to use a formula of PER-DNF to express
a polynomial whose degree is exponential in the length of the formula.

We would now like to encode sentences from PER-DNF as diagrams. In order to do this, we
will first consider a slightly more expressive form of diagram than those contained in FG. We
will consider a system of diagrams that can contain a special length marker that marks dsegs of
unit length. We will call such diagrams unitized diagrams. Unitized diagrams are more expressive
than un-unitized diagrams, because in ordinary un-unitized diagrams, there is no way to force a
segment to have unit length. Because ordinary diagrams only contain topological information and
information about pieces being congruent, and because dilations and magnifications of a figure in
the plane do not change its topology and preserve congruence, it follows that if a Euclidean plane
M satisfies an ordinary diagram D, then any dilation or magnification of M about any point in the
plane will also satisfy D. This is not true of unitized diagrams: if M satisfies a unitized primitive
diagram D, then no dilation of M with scale factor f �= 1 will satisfy D, because any segment
that has length one in M will have length f in the dilation.

The reason that we need to consider unitized diagrams is that they will allow us to capture
multiplication geometrically. We are going to encode real numbers as lengths of segments; then
we will be able to represent addition of real numbers by putting segments next to one another. It is
less obvious how to represent multiplication using lengths, though. We can use similar triangles
to represent the fact that two ratios of lengths are equal; but we can only use this to represent
multiplication if we have a unit length. Once we have a unit length, we can represent the fact that
a × b = c by using similar triangles that show that c/b = a/1. And once we can represent both
addition and multiplication, we should be able to represent all of PER-DNF.

N. Miller / Journal of Complexity 22 (2006) 250–274 269

We will show this in a way that is similar to what we did in Section 5. For every formula F
of PER-DNF we will define a corresponding unitized diagram array A(F) which is satisfiable if
and only if F is. Assume that F contains numerals n1, . . . nj , variable symbols x1, . . . , xq, terms
t1, . . . , tp, and atomic formulae f1, . . . , fk . Our diagram array will use j + q + p + 1 segment
markers—one marker mni for each numeral ni that occurs in F, one marker mxi for each variable
symbol xi that occurs in F, one marker mti for each term ti that occurs in F, and our designated
unit marker. We will also need three additional angle markers ami1, ami2, and ami3 for each term
ti in F that is of the form a × b.

We are now going to define one corresponding diagrammatic piece for each numeral, each
term, and each atomic formula in F. We will do this as follows:

• If ni is a numeral standing for the number N, then its corresponding diagrammatic piece is a
dseg, divided into N pieces, each of which are marked with a unit marker, and the whole of
which is marked by marker mni , as shown in Fig. 12 for the case N = 4.

• If ti is a term, then there are four possibilities:
(1) ti might be a numeral nr . In this case, its corresponding diagrammatic piece consists of a

single dseg marked both by mti and by mnr , as shown in Fig. 13.
(2) ti might be a variable symbol xr . In this case, its corresponding diagrammatic piece consists

of a single dseg marked both by mti and by mxr , as shown in Fig. 14.
(3) ti might be of the form ai+bi . In this case ai and bi are both atomic terms and therefore each

have their own corresponding markers mai and mbi . The diagrammatic piece corresponding
to ti in this case is a dseg marked by mti , which is divided into two smaller dsegs marked
by mai and mbi , as shown in Fig. 15.

(4) Finally, ti might be of the form ai × bi . In this case, its corresponding diagrammatic
piece consists of two triangles. In both triangles, the three angles are marked by the three
angle markers ami1, ami2, and ami3. Two sides of the first triangle are marked by mti
and mbi , while the corresponding sides of the second triangle are marked by mai and the
unit marker. This is shown in Fig. 16. (The idea behind this is that in any model of this
diagrammatic piece, the two triangles must be similar because their angles are congruent,
making their sides are proportional. This means that if the side marked by mti has length
c, then c/b = a/1, so c = ab, as desired.)

• If f is an atomic formula of F then there are two possibilities:
(1) f is of the form ti = tr . Then its corresponding diagrammatic piece consists of a

single dseg, marked with the markers for both terms, mti and mtr . This is shown in Fig.
17.

(2) f is of the form ti < tr . Then its corresponding diagrammatic piece consists of a dseg
marked with mtr , divided into two smaller dsegs, one of which is marked by mti . This is
shown in Fig. 18.

Next, recall that F is the existential closure of a disjunction of conjunctions; our array will contain
one diagram D(C) for each disjunctive clause C in F. Each such clause C is a conjunction of atomic
formulae. D(C) is defined to be the (smallest) diagram that contains as disjoint subdiagrams the
diagrammatic pieces corresponding to each numeral, term, and atomic formula occurring in C.
A(F) is then the diagram array containing D(C) for each disjunctive clause C in F. Note that
A(F) is again producible from F in log-space; in fact, we can produce it by just reading through
F from left to right, producing the corresponding diagrammatic piece for each part of F as we
come to it.

270 N. Miller / Journal of Complexity 22 (2006) 250–274

mni

1 1 1 1

Fig. 12. The diagrammatic piece corresponding to the numeral ni that stands for the number N.

mti

mnr

Fig. 13. The diagrammatic piece corresponding to ti when ti is the numeral ni .

mti

mxr

Fig. 14. The diagrammatic piece corresponding to ti when ti is the variable symbol xi .

mti

mai mbi

Fig. 15. The diagrammatic piece corresponding to ti when ti is the expression ai + bi .

ami2

ami1
ami3

ami2

ami1 ami3

1

mai

mbi

mti

Fig. 16. The diagrammatic piece corresponding to ti when ti is the expression ai × bi .

mti

mtr

Fig. 17. The diagrammatic piece corresponding to fi when fi is the atomic formula ai = bi .

N. Miller / Journal of Complexity 22 (2006) 250–274 271

mtr

mti

Fig. 18. The diagrammatic piece corresponding to fi when fi is the atomic formula ai < bi .

We are now in a position to prove the following theorem:

Theorem 6. Let F be the formula (∃x1 > 0) · · · (∃xq) G(x1, . . . , xq) of PER-DNF, where
G(x1, . . . , xq) is quantifier free. Then the sequence of positive real numbers (r1, . . . , rq) sat-
isfies G(x1, . . . , xq) if and only if there is a Euclidean Plane that satisfies F’s corresponding
unitized diagram array A(F) in which the segments marked by mxi have length ri .

Proof. (⇒) Assume that (r1, . . . , rq) satisfies G(x1, . . . , xq). Then, since G is a disjunction,
there must be one of its disjunctive clauses C such that (r1, . . . , rq) satisfies C. Let D(C) be C’s
corresponding diagram.

We can assign each term t in C a corresponding value v(t), which is the value it inherits from
the assignment of the values (r1, . . . , rq) to the variables (x1, . . . , xq). In particular, if a numeral
ni stands for the number Ni , then v(ni) = Ni ; v(xi) = ri ; v(ai + bi) = v(ai) + v(bi); and
v(ai × bi) = v(ai) × v(bi).

We will now construct a Euclidean Plane M that satisfies D(C). M consists of the following
disjoint pieces:

• For each numeral ni occurring in C, M contains a segment of length v(ni), with points along
the segment dividing it into v(ni) congruent pieces, each of length one. This part of M will
satisfy the diagrammatic piece corresponding to ni .

• For each term ti occurring in C, M contains the following in order to satisfy the diagrammatic
piece corresponding to ti :
(1) If ti is a numeral nj , then M contains a segment of length v(nj).
(2) If ti is a variable symbol xj , then M contains a segment of length v(xj) = rj .
(3) If ti is of the form ai + bi , then M contains a new segment of length v(ti) = v(ai)+ v(bi),

divided into two smaller segments, one of length v(ai), and the other of length v(bi).
(4) If ti is of the form ai × bi , then M contains two disjoint right triangles. In the first triangle,

the side that is on the counterclockwise side of the right angle has length 1, and the side
that is on the clockwise side of the right angle has length v(ai). In the second triangle, the
side that is on the counterclockwise side of the right angle has length v(bi), and the side
that is on the clockwise side of the right angle has length v(ti) = v(ai) × v(bi). Note that
each side of the second triangle is v(bi) times longer than the corresponding side of the
first triangle. (This is true of the third sides by the Pythagorean Theorem.) Thus, all the
sides of the triangles are in the same proportion, so the two triangles are similar and their
angles are all the same, as D(C) requires.

• For each atomic formula fi occurring in C, M contains the following in order to satisfy the
diagrammatic piece corresponding to fi :
(1) If fi is of the form ai = bi , then M contains a segment of length v(ai). Note that in this

case, we must have v(ai) = v(bi), because the assignment of (r1, . . . , rq) to (x1, . . . , xq)

makes C true, and fi is one of the clauses of C, so it must be true under this assignment of
values, which means that v(ai) = v(bi).

272 N. Miller / Journal of Complexity 22 (2006) 250–274

(2) If fi is of the form ai < bi , then M contains a segment of length v(bi), with a point along it
marking off a segment of length v(ai). This is always possible, because as in the previous
case, we must have v(ai) < v(bi) because fi must be true under the given assignment.

Finally, note that M�D(C) because it contains all the right pieces, and if two dsegs are labeled
with the same label in D(C), then they are actually the same length in M. In particular, if a dseg
is marked by mni , then its corresponding segment in M has length v(ni); if a dseg is marked by
mxi , then its corresponding segment in M has length v(xi); if a dseg is marked by mti , then its
corresponding segment in M has length v(ti); and if a dseg is marked by the unit marker, then its
corresponding segment in M has length one. Thus, M�A(F) and gives each segment marked by
mxi the length v(xi) = ri , is as required.

(⇐) Conversely, assume that M�A(F). Then M must satisfy one of the diagrams in this array,
which must be D(C) for some clause C of F. Since M�D(C), it must give all dsegs in D(C) that
are marked with a given marker the same length. So we can let r1 be the length of those segments
marked by mx1, let r2 be the length of those segments marked by mx2, and so on. We need to
show that the assignment of (r1, . . . , rq) to the variables (x1, . . . , xq) of C makes C true.

We can define v(t) for each term t occurring in C exactly as in the previous case.
Our first step is to show that if a dseg in D(C) is marked by marker mti , then its corresponding

segment in M has length v(ti). This is true because:

• If ti is a numeral, then the dseg marked with mti is also marked equal to a segment divided
into v(ti) equal pieces, each one marked as having length one. (This segment comes from the
numeral’s corresponding diagrammatic piece.) So the segment in M that corresponds to this
dseg must have length v(ti).

• If ti is a variable, it is true by assumption that the segments marked by mti have length ri = v(ti).

• If ti is of the form ai +bi , then mti marks a segment S divided into two smaller segments marked
with mai and mbi . Since ai and bi must be numerals or variable symbols, it follows from the
cases we have already shown and/or from our assumption that these two smaller segments must
have lengths v(ai) and v(bi). Since the length of the whole segment S must be the sum of these
two lengths, it must be equal to v(ai) + v(bi) = v(ai + bi) = v(ti).

• If ti is of the form ai × bi , then mti marks a dseg that is part of a pair of triangles like
those shown in Fig. 16, which correspond to two triangles in M. Since all three pair of angles
must be congruent in the two triangles, the triangles must be similar, and their sides must
therefore be proportional. As before, we know from the previous cases and/or our assumption
that those segments marked by mai and mbi have lengths v(ai) and v(bi) respectively. So if
c is the length of the side marked with mti , it follows from the similarity of the triangles that
c/v(ai) = v(bi)/1. Cross multiplying, we have c = v(ai) × v(bi) = v(ai × bi) = v(ti), as
required.

Now that we know that segments marked with mti have length v(ti), it follows almost immediately
that each clause fi of C must be true under the given assignment:

• If fi is of the form ai = bi , then there is a dseg in C(D) that is marked by both mai and mbi .
The corresponding segment in M must therefore have a length equal to both v(ai) and v(bi).
The only way that this can happen is if v(ai) = v(bi), which makes fi true under the given
assignment.

• On the other hand, if fi is of the form ai < bi , then there is a dseg AB in C(D) that is marked
by mbi and contains a smaller dseg AC that is marked by mbi . AB’s corresponding segment in
M must therefore have a length equal to v(bi), and must contain a segment of length v(ai). As

N. Miller / Journal of Complexity 22 (2006) 250–274 273

before, the only way that this can happen is if v(ai) < v(bi), which again makes fi true under
the given assignment.

Since each clause of C is true under the given assignment, C as a whole is true under the
assignment, which makes G true under the assignment, as was required. �

This theorem shows that we can reduce questions about the satisfiability of formulas in PER-
DNF to questions of satisfiability of unitized diagrams. We would really like to be able to use
ordinary un-unitized diagrams, however, since diagrams in geometry do not normally contain a
unit length marker. We can accomplish this using the following theorem:

Theorem 7. Let D and Du be primitive diagrams that are identical except that all instances of
one dseg length marker m in the un-unitized diagram D are replaced by the unit length marker in
the unitized diagram Du. Then D is satisfiable if and only if Du is satisfiable.

Proof. (⇒) Assume that M�D. Then all of the segments in M marked by marker m must be
the same length l. Let M ′ be a Euclidean Plane obtained from M by dilating it about any point
in the plane with scale factor 1/l. Then M ′ has the same topology as M, and lengths and angles
that were the same in M are the same in M ′, since dilations preserve shape and congruence. So
M ′ still satisfies D. Furthermore, those segments in M ′ marked by marker m must have length
l × (1/l) = 1. Thus, they have unit length, so M�Du.

(⇐) Assume that M�Du. D is identical to Du, except that some segments that are required to
have unit length by Du are not required to have unit length by D. However, nothing in D says that
they cannot have unit length; therefore M�D. �

Taking the previous two theorems together, we arrive at the following corollary:

Corollary 8. The satisfaction problem for PER-DNF is log-space many-one reducible to the
diagram satisfaction problem.

Conversely, in Section 6, we showed how to reduce the diagram satisfaction problem to that of
the existential theory of the reals. Using the tricks discussed earlier in this section, we can convert
the sentence of the existential theory of the reals that encodes a diagram into one in PER-DNF.
As previously discussed, in the general case, a conversion like this can lead to an exponential
growth in the length of the sentence. In this case, however, we have a finite bound to number of
conjunctions that a disjunction can be inside, and this bound does not change as we increase the
size of the diagram. Therefore, in this case, the sentence can be rewritten as one in PER-DNF
with only a polynomial increase in length. This means that the diagram satisfaction problem is
reducible to the satisfaction problem for PER-DNF in polynomial time. Combining this result
with that of Corollary 8, we have the following conclusion:

Theorem 9. The diagram satisfiability question and the satisfiability question for PER-DNF are
in the same complexity class with respect to polynomial time many-one reductions.

References

[1] T.L. Heath (Ed.), Euclid Elements, second ed., Dover Publications, New York, 1956.

274 N. Miller / Journal of Complexity 22 (2006) 250–274

[2] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading,
MA, 1979.

[3] N. Miller, A diagrammatic formal system for Euclidean geometry, Ph.D. Thesis, Cornell University, Ithaca, NY, 2001.
[4] N. Miller, Euclid and His Twentieth Century Rivals: Diagrams and the Logic of Euclidean Geometry (working title),

CSLI Publications, Stanford, CA, to appear.
[5] J. Renegar, On the computational complexity and geometry of the first order theory of the reals, J. Symbolic Comput.

13 (1992).
[7] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California Press, Berkeley, CA,

1951.

