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Abstract

The functions of Computable Analysis are defined by enhancing the capacities of normal Turing Machines
to deal with real number inputs. We consider characterizations of these functions using function algebras,
known as Real Recursive Functions. Bournez and Hainry 2006 [5] used a function algebra to characterize the
twice continuously differentiable functions of Computable Analysis, restricted to certain compact domains.
In a similar model, Shannon’s General Purpose Analog Computer, Bournez et. al. 2007 [3] also characterize
the functions of Computable Analysis. We combine the results of [5] and Graça et. al. [13], to show
that a different function algebra also yields Computable Analysis. We believe that our function algebra is
an improvement due to its simple definition and because the operations in our algebra are less obviously
designed to mimic the operations in the usual definition of the recursive functions using the primitive
recursion and minimization operators.
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1 Introduction

Computable Analysis is a well accepted paradigm of computability for real num-
bers and real functions. Nonetheless, other approaches to computation over the reals
have been proposed. Among these there are models that evolve step by step, like
BSS-machines [1] or real random access machines, and continuous-time models like
Shannon’s General Purpose Analog Computer (GPAC) [19] [12], continuous neural
networks [15] or Moore’s real recursive functions [16] (for an up-to-date review of
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continuous-time models see [2]). Recently, there has been a quest for character-
izations of computability of real functions (in this paper, “computable” with no
additional reference will always refer to Computable Analysis) based on alternative
models, namely on those with a continuous state space that evolve in continuous
time. One motivation for this research has been to understand the computational
power of continuous-time systems, and search for an analog of the Turing-Church
thesis in the context of real computation.

The first true model of a universal continuous time machine was proposed by
Shannon [19]. However, this has been proved to be weaker then Computable Analy-
sis since computable functions like Euler’s Γ or Riemann’s ζ are not “GPAC genera-
ble” [17] [18]. Note that the computability of all GPAC generable functions follows
from the results in [13], and the fact that they correspond precisely to the solutions
of polynomial differential equations as shown in [12].

To improve the upper bounds on Shannon’s GPAC a new notion of limit com-
putation with polynomial differential equations (called GPAC-computability) was
proposed in [11] and explored further in [3]. In that paper, it is shown that the
real computable functions are precisely the GPAC-computable functions as long as
we restrict ourselves to compact domains. Although GPAC-computability relies on
a simple dynamics, the parameters of the differential equations can be arbitrary
computable reals and the limit operator applies to functions with an arbitrary slow
convergence rate (see [8] for some remarks on that model).

A more general approach to computability over the reals with differential equa-
tions was proposed in [16]; it is called Real Recursive Functions. It is a recur-
sion theory on the reals and provides algebraic characterizations of classes of real
functions. The general theory contains many non-computable functions, result-
ing essentially from the inclusion of a powerful zero finding operator over the real
line. Restricting the theory, it is possible to define classes that extend to the reals
certain classes of discrete functions like the primitive recursive or the elementary
computable functions [6] [7].

Instead of asking which functions over the naturals have extensions in the reals,
Bournez and Hainry proposed classes of real recursive functions that correspond
precisely to classes of real computable functions. They describe analog character-
izations for the real elementary computable functions [4] and for the functions of
Computable Analysis, all restricted to C2 functions on compact domains [5]. This
last characterization contains a set of basic functions and is closed under compo-
sition, linear integration, a limit operation and a root finding operation. In this
paper we propose a class of real recursive functions which is simpler in some re-
spects, avoiding the use of a root-finding operation, which has the disadvantage
of directly mimicking the operation of minimization over the naturals. This is ac-
complished by strengthening the operation of integration, removing the linearity
restriction. A significant point is then to show that this class is not too strong.
To accomplish this, we use the results of Graça et. al. [13] to show that even this
general integration preserves computability.
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2 Formulating the Main Result

We now provide the basic definitions and state the result, leaving the proof for the
next section. We start by defining a flexible set of computable functions over the
reals, R, placing no restriction on the domains of the functions (see [14] or [20]
for details on Computable Analysis and Type-2 computability). Unless otherwise
stated, for us, a function will always have some domain E ⊆ R

k, for some positive
integer k, and codomain R.

Definition 2.1 We say a function f is in C(R) iff there is a Type-2 Turing Ma-
chine M such that for any x̄ in the domain of f , M calculates f(x̄) on input x̄; for
x̄ not in the domain of f , we ask nothing of M .

Though the above definition is convenient, useful theorems will consider restrictions
of the domains.

Definition 2.2 Suppose F is a set of functions. By its compact restriction, de-
noted [F ], we mean the following set of functions: Consider any function f(x1, . . . , xk)
in F and any product of intervals ([a1, b1]× . . .× [ak, bk]), where ai, bi are rationals.
If the domain of f includes this product, then the restriction of f to this product is
in [F ].

We will basically consider the set [C(R)] ∩ C2, where for an integer k ≥ 1, we let
Ck refer to the set of (possibly partial) functions which are k times continuously
differentiable with respect to any variable on their domain of definition.

We now turn our attention to function algebras. We use the term operation to
refer to a function whose inputs and outputs are real functions.

Definition 2.3 Suppose B is a set of functions (called basic functions), and O is
a set of operations. Then FA[B;O] is called a function algebra, and it denotes the
smallest set of functions containing B and closed under the operations in O. For
ease of readability, we often list the elements of B or O simply as a list separated
by commas.

Some of the most important operations will be defined using differential equa-
tions. In general an initial value problem (IVP) is given by a system of equations
like the following:

h1(x̄, 0) = f1(x̄)
...

hk(x̄, 0) = fk(x̄)

∂
∂th1(x̄, t) = g1(x̄, t, h1, . . . , hk)

...
∂
∂thk(x̄, t) = gk(x̄, t, h1, . . . , hk).
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The functions fi are used to give initial conditions depending on the parameters x̄

and the functions gi are used to describe the differential equations. More succinctly,
the above system of equations will be written as:

h̄(x̄, 0) = f̄(x̄)
∂
∂t h̄(x̄, t) = ḡ(x̄, t, h̄),

with the bars on top of the functions indicating a vector of functions. Given func-
tions f̄ , ḡ, by a solution to the corresponding IVP, we essentially mean the usual
notion. However, since f̄ and ḡ may be partial, we further clarify what we intend.
We mean to take functions h̄ such that for every x̄, either h̄(x̄, t) is not defined for
any t, or is defined for t on some open interval containing 0; in this latter case, we
take the interval to be a maximal such interval.

We can now define the operations we will be using (note that in the operations
there is an implicit choice of which arguments of the function we choose to use; any
choice is allowed):

(i) The operation ODE takes as input some functions f̄ and ḡ of appropriate
arities, sets up the corresponding IVP discussed above to obtain a solution h̄

(as discussed above), and returns h1, the first function in the list h̄.

(ii) LI is the same as ODE, with the restriction that the ḡ are linear in the h̄.

(iii) Let comp be the operation which takes two functions and returns the functional
composition; a composition of partial functions is defined on the maximal well-
defined domain.

(iv) Let Inverse be the operation which takes a function f(t, x̄) such that for any
x̄, f(t, x̄) is a bijection in t, such that ∂

∂tf(t, x̄) > 0 for all t. The operator
Inverse then returns Inverse(f,t), the inverse f−1 in t, i.e. f(f−1(t, x̄), x̄) = t =
f−1(f(t, x̄), x̄).

(v) The operation UMU takes a function f(t, x̄) such that:
(a) For any x̄, f(t, x̄) is increasing (not necessarily strictly) in t, and
(b) For any x̄, there is a unique t such that f(t, x̄) = 0 (and at that t, ∂

∂tf > 0),
then returns the function UMU(f, t) = the unique t such that f(t, x̄) = 0.

Besides constant functions like “0” we will also use the following basic functions:

• For a positive integer k, let θk(x) =

⎧⎨
⎩

0, x < 0;

xk, x ≥ 0.
, a Ck−1 version of the dis-

continuous function which indicates whether a number is to the left or right of
zero.

• Let P be the set of projection functions (e.g. P(2,1)(x, y) = x, P(3,2)(x, y, z) = y,

etc.).

We now define all the function algebras we will be using.

Definition 2.4 (Function Algebras)
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• Let BH
(∞)
k be FA[0, 1,−1, θk, P; comp, LI,UMU]

• Let BH
(c)
k be the functions of BH

(∞)
k that can be defined using c or less applications

of the operation UMU.

• Let L(∞)
k be FA[0, 1,−1, θk, P; comp, LI, Inverse]

• Let L(c)
k be the functions of L(∞)

k that can be defined using c or less applications
of the operation Inverse.

• Let Gk be FA[0, 1,−1, θk, P; comp, ODE]

To make the connection to Computable Analysis, we consider a limit operation.

Definition 2.5

• Let LIM∗ be the operation which takes a function f(t, x̄) and returns F (x̄) =
limt→∞f(t, x̄) if the limit exists, |F (x̄) − f(t, x̄)| ≤ 1/t, for t ≥ 1, and F is C2.

• Given a class of functions F , we let F(LIM∗) denote the closure of F under the
operation LIM∗ (for all the classes considered, it will in fact suffice to apply the
operation LIM∗ just once).

Note that we use the expression LIM∗ to distinguish it from the limit LIM that we
use in [9], which is the same, except that it has no restriction that the resulting F

need be C2.
We now state the main claim, that the compact restriction of our function alge-

bra coincides with the compact computable functions which are C2.

Theorem 2.6 For r ≥ 3, C2 ∩ [C(R)] = [Gr(LIM∗)].

3 The Proof

The following 4 steps prove theorem 2.6, modulo a few lemmas (whose proofs follow).

(i) A series of lemmas (3.2, 3.5, 3.11) will show the following inclusions for any
c ≥ 0 and k ≥ c + 3:

BH
(c)
k ⊆ L(c)

k ⊆ Gk−c ⊆ C(R).

(ii) Lemma 3.1 will show that for some fixed constant “bh”, and for any k ≥ 3, we
have:

C2 ∩ [C(R)] ⊆ [BH
(bh)
k (LIM∗)].

(iii) C(R) is closed under LIM∗ (easy to see; discussed in [9] after lemma 13 for the
case of elementary computable functions).

(iv) Putting together the previous three steps we arrive at the following inclusions
(for k ≥ bh + 3) by closing under limits and considering compact restrictions:

C2 ∩ [C(R)] ⊆ [BH
(bh)
k (LIM∗)] ⊆ [L(bh)

k (LIM∗)] ⊆
⊆ [Gk−bh(LIM∗)] ⊆ [C(R)(LIM∗)] ∩ C2 ⊆ [C(R)] ∩ C2

Theorem 2.6 follows by choosing k = r + bh, with r ≥ 3 in the preceding

M.L. Campagnolo, K. Ojakian / Electronic Notes in Theoretical Computer Science 221 (2008) 23–35 27



inclusions.

The main result from [5] that we use is the following lemma (with an altered form
discussed in [8]); also note that they did the construction for k = 3, but it is similar
for larger k, while maintaining the restriction to just C2 functions. Furthermore, we
include a fixed constant we call bh, allowed since their construction is uniform.

Lemma 3.1 There is a fixed constant bh, such that for any k ≥ 3, we have

C2 ∩ [C(R)] ⊆ [BH
(bh)
k (LIM∗)].

Note that [5] uses a restricted kind of LI operation, which they use in proving the
opposite inclusion to the above lemma; however, we can simply use LI since we will
not use their argument to show the opposite inclusion.

The rest of the paper will prove the three inclusions of step i above, in order.
The following lemma proves the first inclusion of step i.

Lemma 3.2 For k ≥ 2 and c ≥ 0, BH
(c)
k ⊆ L(c)

k .

Proof. We just need to show that any application of UMU in BH
(∞)
k can be simu-

lated by a single application of Inverse in L(∞)
k . Suppose f(t, x̄) satisfies the condi-

tions for the application of UMU. This means for any x̄, f is non-decreasing in t and
has a unique zero. Let F (t, x̄) = θk(f)et − θk(−f)e−t, and we can check that F has
the same zero as f for any x̄, and also has the property that its derivative is positive
at all the t except possibly at its zero, where it may be 0. Now consider the function
G(t, x̄) = f(t, x̄) + F (t, x̄). It has the same zero as f and has a positive derivative
in t, everywhere (using the fact that to apply UMU to f one of the conditions was
that its derivative in t be positive at the zero of t). Now to get the root given by
UMU(f, t), we let H be Inverse(G, t) and return H(0, x̄). �

Now we work towards the second inclusion of step i. Note that when working
in Gk, the ODE operation can solve differential equations with the initial condition
not just for t = 0, but for t equal to a constant definable in Gk. The following
often used lemma follows by an inductive proof on Gk, using the key fact that from
y′ = f(y, t), if f is Ck, then so is the solution y; also recall that the basic function
θk is Ck−1.

Lemma 3.3 Any function in Gk is Ck−1 on its domain.

We often want at least k ≥ 3, since the guarantee of C2 functions allows us to
switch the order of partial derivatives.

Lemma 3.4 For k ≥ 1, if f(t, x̄) ∈ Gk and f satisfies the conditions:

(i) ∂
∂tf > 0

(ii) ∂
∂tf ∈ Gk

then Inverse(f, t) ∈ Gk.
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Proof. First, we notice that for any function f(t, x̄) ∈ Gk we have following prop-
erty: For any x̄ such that f(t, x̄) is defined for some t, there are some constants
(independent of t, but not x̄) α, β ∈ Gk such that f(α, x̄) is defined and f(α, x̄) = β.
The property is easily verified by structural induction on the description of f in
Gk. In addition, Gk contains the function h(z) = 1/z, since it can be defined by the
ODE h(1) = 1 and h′ = −h2.

Now we prove the lemma by applying the Inverse Function Theorem to f(t, x̄),
where x̄ is fixed. By hypothesis we know ∂

∂tf ∈ Gk and ∂
∂tf �= 0; additionally we

know that Gk contains h and is closed under composition, and thus we can define
the differential equation

∂

∂t
f−1(t, x̄) =

1
∂
∂tf(f−1(t, x̄), x̄)

in Gk, with initial condition is given by f−1(β, x̄) = α. Therefore, f−1(f(t, x̄), x̄) =
t = f(f−1(t, x̄), x̄), i.e. f−1 = Inverse(f, t). �

The next lemma shows that c applications of the inverse operation are captured
by Gk−c, the second inclusion in step i of the above proof outline.

Lemma 3.5 For c ≥ 0 and k ≥ c + 3, we have L(c)
k ⊆ Gk−c.

Proof. We will prove a stronger result:

We show that if g ∈ L(c)
k , then g ∈ Gk−c and g′ ∈ Gk−c−1, where g′ denotes any

partial derivative of g.

We first notice that and Gk ⊆ Gk−1 since θk(t) = t θk−1(t). The proof will be
done by induction first in c and then in the description of the function. We skip
the base case (c = 0) since it can easily be proved using the techniques below and
we proceed to prove the induction step. Let’s then suppose that if f ∈ L(c−1)

k , then
f ∈ Gk−c+1 and f ′ ∈ Gk−c, and consider some function g ∈ L(c)

k . We now proceed
by structural induction on L(c)

k :

(1) g is a basic function of L(c)
k and therefore is in Gk−c. All basic functions have

derivatives in Gk−c ⊆ Gk−c−1 except for θk whose derivative is k θk−1 and belongs
to Gk−c−1.

(2) For composition, let g = u ◦ v, where u, v ∈ Gk−c. Therefore g ∈ Gk−c

and since (u ◦ v)′ = (u′ ◦ v) · v′, all the derivatives of g are in Gk−c−1 by inductive
hypothesis.

(3) Suppose that g(t, x̄) is defined by linear differentiation with respect to t, i.e.

g(0, x̄) = u(x̄),
∂

∂t
g(t, x̄) = v(t, x̄) g(t, x̄)
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for some u, v ∈ Gk−c. Then g ∈ Gk−c. We consider the two types of derivatives: ∂
∂tg

and ∂
∂xi

g. It is clear that ∂
∂tg ∈ Gk−c ⊆ Gk−c−1. For ∂g

∂xi
we calculate:

∂g

∂xi
(0, x̄) =

∂u

∂xi
(x̄) and

∂

∂t

∂g

∂xi
=

∂

∂xi

∂g

∂t
=

∂v

∂xi
g + v

∂g

∂xi

since the derivation variables t and xi can be switched (justified because g ∈ Gk−c

and k ≥ c + 3, so we apply lemma 3.3 to conclude that g is C2). By hypothesis,
∂u
∂xi

, ∂v
∂xi

∈ Gk−c−1 and v ∈ Gk−c−1 and thus we obtain a differential equation that
defines ∂g

∂xi
in Gk−c−1.

(4) Suppose that g = Inverse(f, t), where f ∈ L(c−1)
k ; note that to apply Inverse,

we are assuming f is a bijection in t, such that ∂f
∂t > 0. By inductive hypothesis

f ∈ Gk−c+1 ⊆ Gk−c and f ′ ∈ Gk−c. By Lemma 3.4 we conclude that g ∈ Gk−c also.
Let’s look at the two types of derivatives of g: ∂g

∂t and ∂g
∂xi

. By the Inverse Function
Theorem,

∂

∂t
g(t, x̄) =

1
∂
∂tf(g(t, x̄), x̄)

.

This shows that ∂g
∂t is in Gk−c ⊆ Gk−c−1. To prove the claim for ∂g

∂xi
we derivate ∂g

∂t
with respect to xi and switch the order of the derivatives. This leads to a linear
differential equation in ∂g

∂xi
which involves f , g and ∂f

∂t in Gk−c ⊆ Gk−c−1 and the

second derivatives ∂2f
∂t2

and ∂2f
∂t∂xi

. Using similar techniques, it can be shown that
the second derivatives of f are in Gk−c−1. As a result, ∂g

∂xi
is also in Gk−c−1. �

We will now need to introduce some theory from [13] in order to prove the last
inclusion in step i (recall that it was Gk ⊆ C(R)).

Definition 3.6 A subset E ⊆ R
k is r.e.-open if it is open and there are computable

sequences of rationals {an} and {rn} such that E =
⋃∞

n=0 B(an, rn), where B(a, r)
is the open ball in R

k with center a and radius r.

In general, an r.e.-open subset can be exhibited in many ways. At a certain
point we will want to make sure that the r.e.-open set is exhibited in the following
“robust” manner.

Definition 3.7

• A rational ball is an open ball with a rational number radius, which has a vector
of rationals as its center.

• An r.e.-open set is given robustly if for any ball B in its representation, and any
rational ball A ⊆ B, A is in the representation.

Given an r.e. representation of a set, we can devise another r.e. representation
which is robust by enumerating the original representation, while regularly pausing
in order to put in appropriate rational sub-balls of the balls already enumerated.
Since we are dealing with computable rationals which we know exactly, this new
enumeration is r.e.

Lemma 3.8 If a set is r.e.-open, then this can be exhibited robustly.

M.L. Campagnolo, K. Ojakian / Electronic Notes in Theoretical Computer Science 221 (2008) 23–3530



The next lemma will be used in the proof of the inductive step of lemma 3.11.

Lemma 3.9 Given two computable functions with r.e.-open domains, their compo-
sition is computable with an r.e.-open domain.

Proof. It is well known that the composition of real computable functions is real
computable. We consider the r.e.-open condition. Suppose f and g are computable
unary functions, both with r.e.-open domains, F and G, respectively (restricting to
unary functions simplifies our discussion to the consideration of intervals rather than
balls). By lemma 3.8 we assume that G is exhibited robustly; additionally, we can
assume that if the interval G is in G, then the closure Ḡ is in the domain of g. Now
to give an r.e. listing of the domain of f ◦g we proceed as follows. We simultaneously
list the intervals for F and G. For an open interval G of G, we consider its closure
Ḡ, which is in the domain of g. The minimum, m, and the maximum, M , of g on
Ḡ are computable. If the interval [m, M ] is contained in one of the intervals in the
listing of F , then we include G in our listing of the domain of f ◦g. We continue this
process, eventually comparing all intervals. There is the technical issue of how the
algorithm decides a containment of the form: [m, M ] ⊆ (a, b). In the situation we
are concerned with, the a and b are exact rational numbers, but the m and M are
real numbers that we do not have exactly, but can compute to any desired precision.
Since the procedure we are concerned with is a computable enumeration, we can
continually revisit an interval [m, M ], so when we say to consider the containment
[m, M ] ⊆ (a, b), we mean to revisit the question with increasingly more accurate m

and M , till we can decide the containment. As long as m �= a and M �= b we can
eventually decide the inclusion, and it will turn out not to matter that we can never
decide the other inclusions.

Now we show that the algorithm works correctly. First note that we are not
making the domain of f ◦ g too big, since by construction, we only include an
interval in our listing when we are sure that f ◦ g is defined for all values in the
interval. Second, for any x in the domain of f ◦ g, we can show that our algorithm
includes an interval containing x. For x in the domain of f ◦ g, that means x is in
the domain of g and g(x) is in the domain of f . Since g(x) is in the domain of f ,
there is some open interval J = (a, b) of F containing g(x). Let J ′ = (a′, b′) be any
open interval containing g(x), not necessarily in F , such that a < a′ < b′ < b. By
continuity of g, there is an open interval I containing x and such that g(I) ⊆ J ′.
Some open interval of G must contain x, and so by the robustness of G, there is a
rational interval R in G such that x ∈ R ⊆ I. At some point the algorithm considers
the inclusion g(R̄) ⊆ J . We know g(R̄) ⊆ J̄ ′, thus not only do we have g(R̄) ⊆ J ,
but we know that the endpoints of the interval J are not the same as those of g(R̄),
so we can eventually decide the inclusion, putting R, which contains x, into our
listing. �

The next lemma follows easily from the hard work of [13] (the proof below points
to the relevant parts of that paper. Note that in that paper, though not always
stated, by a “computable function” they mean to include the restriction to an r.e.-
open or “r.e.-closed” domain; we do not concern ourselves with “r.e.- closed”).
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Lemma 3.10 If f is a C1 computable function with a computable gradient function,
then the solution to the initial value problem y′ = f(t, y), y(0) = a (a computable)
is computable and the domain of y is r.e.-open.

Proof. Since f and its gradient function are computable, theorem 2.7 of [13] shows
that f is “effectively Lipshitz” (in fact theorem 2.7 just refers to derivatives, but,
as discussed with D. S. Graça, it should refer to the gradient and then a similar
proof works to prove it). We do not concern ourself with the definition of this
notion of Lipshitz, but simply note that theorem 3.1 of [13] shows that if f is C1

and effectively Lipshitz, then y is computable on its maximal interval of definition
containing the initial condition; furthermore, this interval is r.e.-open. �

Lemma 3.11 For k ≥ 3, Gk ⊆ C(R).

Proof. We proceed by induction, showing the following holds for any function of
Gk:

� Any function and any partial derivative of it is computable, and furthermore
have r.e.-open domains.

Note that in general a computable function need not have a computable derivative,
nor is Gk closed under differentiation, so we include the condition on the derivative
in �. Now we discuss the three cases in the induction.

(1) For basic functions � is true.
(2) For composition, consider functions g(x) and f(u, y) which are computable,

with computable partial derivative functions, where all these functions have r.e.-
open domains. We first note that the composition h(x, y) = f(g(x), y) is computable
with an r.e.-open domain, by lemma 3.9. For the derivatives note that:

∂

∂y
h =

∂

∂y
f(g(x), y)

∂

∂x
h =

∂

∂u
f(g(x), y)

∂g

∂x

Applying lemma 3.9 again, we see that both derivatives are computable with
r.e.-open domains, because we have expressed them as compositions and products
of computable functions with r.e.-open domains (by inductive hypothesis).

(3) For the ODE operation consider the initial value problem:

y(0, x) = g(x), ∂
∂ty(t, x) = f(t, y, x)

Note that to simplify the discussion we have assumed just a single equation and a
single x (relaxing these assumptions we would just use the multi-variate chain rule
below and get a larger linear system in the end). Inductively we assume that f

and g and their partial derivative functions in t or y are computable with r.e.-open
domains (even if not in the class); thus, due to the definition of the gradient in
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terms of its partial derivatives, we know the gradient is computable. So we can
apply lemma 3.10 to say that y is computable with an r.e.-open domain. Now
consider the derivatives of y. The derivative in t is just f , which is computable with
an r.e-open domain. For the derivative in x we start with the defining equation for
y, and calculate:

∂

∂x∂t
y =

∂

∂x
f(t, y, x)

∂

∂t

(
∂y

∂x

)
=

∂f

∂y

(
∂y

∂x

)
+

∂f

∂x
,

where the change in the order of differentiation from ∂x∂t to ∂t∂x is justified because
y is C2. The last differential equation defines ∂y

∂x as a linear differential equation
using the functions ∂f

∂y and ∂f
∂x . Note that ∂f

∂y = ∂
∂yf(t, y) should be understood as:

Differentiate f with respect to its second argument and then compose the function y

at this place. By inductive hypothesis, the derivatives ∂
∂yf and ∂

∂xf are computable.

We already know that y is computable, so ∂f
∂y composed with y is computable.

Since ∂y
∂x is defined by a linear differential equation using computable functions, it

is computable. Furthermore, the domain of the solution ∂
∂xy is the same as ∂

∂yf ,
since the differential equation is linear. Since the domain of ∂

∂yf is r.e.-open, so is
the domain of ∂

∂xy. �

4 Future Work, Questions, and Conjectures

We now discuss possible improvements of our results. Three specific ways to improve
the results are as follows: Removing the restriction to C2 functions, allowing more
flexible domains (perhaps non-compact), and simplifying the function algebras. On
the first point, as in our paper [9] which removed this restriction, we believe this is
just an artifact of the current proof, and expect that is restriction can be removed.
Concerning the second point, the use of compact domains is used in a significant way
in the proof of [5] (i.e. they use this constraint to show a computable C2 function
has a computable derivative; this is in general false for unbounded domains). We
do not conjecture anything here, but will ask a question along these lines. On the
third point, in line with our paper [8], we believe that we can dispense with the
function θk, in essence showing that it suffices to work with an approximation of it
that can be built with other functions in the respective function algebras. We are
thus lead to the following conjecture and question.

Conjecture Supposing Fk is one of the function algebras we have considered in
this paper, let aF be the same function algebra, but without the basic function θk

(in such a case we also leave off the now useless subscript k). Then

[C(R)] = [aBH(∞)(LIM)] = [aL(∞)(LIM)] = [aG(LIM)].
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Question Can the restriction to compact domains be removed, or can such a
restriction be proved necessary in our context?

In our paper [8], we show how to use our “method of approximation” to remove
the function θk for a different function algebra. While it seems that the same
approach might work here, there are some challenges. As a final note, we point
to a new paper [10] with the claim that theorem 3.1. of [13] can be improved by
replacing the assumption that f be effective Lipschitz by the assumption that f be
continuous and the solution to the differential equation is unique. This could mean
an improvement of our result along with a simpler proof.
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